首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reanalyse the ASCA and BeppoSAX data of MCG–6-30-15, using a double-zone model for the iron line profile. In this model, the X-ray source is located around ≈10 Schwarzschild radii and the regions interior and exterior to the X-ray source produce the line emission. We find that this model fits the data with a similar reduced χ 2 to the standard single-zone model. Thus we show that the presence of a broad iron line feature does not necessarily require that the X-ray source be located close to the last stable orbit or in the disc rotation axis.
Within the framework of this model, the best-fitting inclination angle of the source     for the intermediate-intensity ASCA data set is compatible with that determined by earlier modelling of optical lines. The observed variability of the line profile with intensity can be explained as variations of the X-ray source size. That several active galactic nuclei with broad lines have the peak centroid near 6.4 keV can be explained under certain conditions.
We also show that the simultaneous broad-band observations of this source by BeppoSAX rule out the Comptonization model which was an alternative to the standard inner-disc one. We thereby strengthen the case that line broadening occurs as a result of the strong gravitational influence of a black hole.  相似文献   

2.
We report on an analysis in the  3–10 keV  X-ray band of the long 1999 ASCA observation of MCG–6-30-15. The time-averaged broad iron K line is well described by disc emission near a Schwarzschild black hole, confirming the results of earlier analyses on the ASCA 1994 and 1997 data. The time-resolved iron-line profile is remarkably stable over a factor of 3 change in source flux, and the line and continuum fluxes are uncorrelated. Detailed fits to the variable iron-line profile suggest that the active region (parametrized by the best-fitting inner and outer radii of the accretion disc) responsible for iron-line emission actually narrows with increasing flux to a region around  4–5 r g  . In contrast with the iron line, the power-law continuum exhibits significant variability during the 1999 observation. Time-resolved spectral analysis reveals a new feature in the well-known photon index (Γ) versus flux correlation: Γ appears to approach a limiting value of  Γ∼2.1  at high flux. Two models are proposed to explain both the new feature in the Γ versus flux correlation and the uncorrelated iron-line flux: a phenomenological two power-law model, and the recently proposed 'thundercloud' model of Merloni & Fabian . Both models are capable of reproducing the data well, but because they are poorly constrained by the observed Γ versus flux relation, they cannot at present be tested meaningfully by the data. The various implications and the physical interpretation of these models are discussed.  相似文献   

3.
We present an X-ray spectroscopic study of the prototype far-infrared galaxy NGC 6240 from ASCA . The soft X-ray spectrum (below 2 keV) shows clear signatures of thermal emission well described by a multitemperature optically thin plasma, which probably originates in a powerful starburst. Strong hard X-ray emission is also detected with ASCA and its spectrum above 3 keV is extremely flat with a prominent iron K line complex, very similar to that seen in the Seyfert 2 galaxy NGC 1068 but about an order of magnitude more luminous ( L 3−10keV ≈ 1.4 × 1042 erg s−1). The hard X-ray spectrum indicates that only reflected X-rays of an active galactic nucleus (AGN) buried in a heavy obscuration ( N H > 2 × 1024 cm−2) are visible. This is evidence for an AGN in NGC 6240, emitting possibly at a quasar luminosity (∼ 1045 erg s−1), and suggests its significant contribution to the far-infrared luminosity.  相似文献   

4.
Results of ASCA and ROSAT observations of the Seyfert 1 galaxy RX J0437.4−4711 are presented. The X-ray continuum spectrum can be described by the sum of a power law with photon index 2.15 ± 0.04 and a soft emission component characterized by a blackbody with temperature 29 ± 2 eV. The total luminosity of the soft component is larger than that of the power-law component if the power law is cut off around a few hundred keV. A weak absorption edge with τ = 0.26 ± 0.13 at the rest-frame energy of E  = 0.83 ± 0.05 keV and an Fe Kα line with EW = 430 ± 220 eV at an energy E  = 6.47 ± 0.15 keV are also detected. The X-ray flux showed a 47 per cent increase between two ASCA observations 4 months apart, but no spectral variability was seen. We argue that reprocessing of the hard X-ray emission cannot produce all the soft X-ray emission, since the total luminosity of the soft component is larger than that of the integrated power-law component. Similarities with some stellar black hole candidates are briefly discussed.  相似文献   

5.
We report on a joint ASCA and RXTE observation spanning an ∼400 ks time interval of the bright Seyfert 1 galaxy MCG–6-30-15. The data clearly confirm the presence of a broad skewed iron line ( W ∼266 eV) and Compton reflection continuum at higher energies reported in our previous paper. We also investigate whether the gravitational and Doppler effects, which affect the iron line, may also be manifest in the reflected continuum. The uniqueness of this data set is underlined by the extremely good statistics that we obtain from the approximately four million photons that make up the 2–20 keV RXTE PCA spectrum alone. This, coupled with the high energy coverage of HEXTE and the spectral resolution of ASCA in the iron line regime, has allowed us to constrain the relationship between abundance and reflection fraction for the first time at the 99 per cent confidence level. The reflection fraction is entirely consistent with a flat disc, i.e. the cold material subtends 2π sr at the source, to an accuracy of 20 per cent. Monte Carlo simulations show that the observed strong iron line intensity is explained by an overabundance of iron by a factor of ∼2 and an underabundance of the lower- Z elements by a similar factor. By considering non-standard abundances, a clear and consistent picture can be made in which both the iron line and reflection continuum come from the same material such as, e.g., an accretion disc.  相似文献   

6.
We present ROSAT High Resolution Imager (HRI) and ASCA observations of the well-known ultraluminous infrared galaxy (ULIRG) IRAS 19254−7245 (the 'Superantennae' ). The object is not detected by ROSAT , implying a 3 σ upper limit of X-ray luminosity L X∼8×1041 erg s−1 in the 0.1–2 keV band. However, we obtain a clear detection by ASCA , yielding a luminosity in the 2–10 keV band of 2×1042 erg s−1. The X-ray spectrum of IRAS 19254−7245 is very hard, equivalent to a photon index of Γ=1.0±0.35. We therefore attempt to model the X-ray data using a 'scatterer' model, in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f , is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column density of N H=2×1023 cm−2 for a power-law photon index of Γ=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (∼20 per cent). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton-thick torus ( N H>1024 cm−2) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90 per cent) to the equivalent width of the 6.4 keV line is high (∼3 keV). Overall , the results suggest that most of the X-ray emission originates in a highly obscured Seyfert 2 nucleus.  相似文献   

7.
We study properties of Fe K lines of a large sample of Seyfert 1s observed by ASCA . Fits with power laws and Gaussian lines yield the average linewidth and equivalent width of 0.22±0.03 keV and 0.13±0.01 keV, respectively. Thus, the typical lines are weak and narrow. We then obtain the average line profile of all our spectra, and find it to consist of a narrow core and blue and red wings, with the red wing being much weaker than that of e.g. MCG −6-30-15. We obtain three average spectra of Seyferts grouped according to the hardness, and find the equivalent width of the core (originating in a remote medium) to be ≃50 eV in all three cases. The wings are well fitted by a broad line from a disc with strong relativistic effects. Its equivalent width correlates with the slope, increasing from ∼70 eV for the hardest spectrum to ∼120 eV for the softest one. The inner disc radius decreases correspondingly from ∼40 to ∼10 gravitational radii, and the fitted disc inclination is ∼45°. The obtained correlation between the slope and the strength of the broad Fe K line is found to be consistent with the previously found correlation of the slope and Compton reflection.  相似文献   

8.
Steep soft X-ray (0.1–2 keV) quasars share several unusual properties: narrow Balmer lines, strong Fe  II emission, large and fast X-ray variability, and a rather steep 2–10 keV spectrum. These intriguing objects have been suggested to be the analogues of Galactic black hole candidates in the high, soft state. We present here results from ASCA observations for two of these quasars: NAB 0205 + 024 and PG 1244 + 026.   Both objects show similar variations (factor of ∼ 2 in 10 ks), despite a factor of ∼ 10 difference in the 0.5–10 keV luminosity (7.3 × 1043 erg s−1 for PG 1244 + 026 and 6.4 × 1044 erg s−1 for NAB 0205 + 024, assuming isotropic emission, H 0 = 50.0 and q 0 = 0.0).   The X-ray continuum of the two quasars flattens by 0.5–1 going from the 0.1–2 keV band towards higher energies, strengthening recent results on another half-dozen steep soft X-ray active galactic nuclei.   PG 1244 + 026 shows a significant feature in the '1-keV' region, which can be described either as a broad emission line centred at 0.95 keV (quasar frame) or as edge or line absorption at 1.17 (1.22) keV. The line emission could be a result of reflection from a highly ionized accretion disc, in line with the view that steep soft X-ray quasars are emitting close to the Eddington luminosity. Photoelectric edge absorption or resonant line absorption could be produced by gas outflowing at a large velocity (0.3–0.6 c ).  相似文献   

9.
We examine the K shell emission lines produced by isothermal and simple multiphase models of the hot gas in elliptical galaxies and galaxy clusters to determine the most effective means for constraining the width of the differential emission measure, ( T  ), in these systems which we characterize by a dimensionless parameter, . Comparison of line ratios of two-temperature  ( <1)  and cooling flow  ( 1)  models is presented in detail. We find that a two-temperature model can approximate very accurately a cooling flow spectrum over 0.510 keV.
We re-analyse the ASCA spectra of three of the brightest galaxy clusters to assess the evidence for multiphase gas in their cores: M87 (Virgo), the Centaurus cluster and the Perseus cluster. K emission-line blends of Si, S, Ar, Ca and Fe are detected in each system, as is significant Fe K emission. The Fe K /K ratios are consistent with optically thin plasma models and do not suggest resonance scattering in these systems. Consideration of both the ratios of H-like to He-like K lines and the local continuum temperatures clearly rules out isothermal gas in each case. To obtain more detailed constraints, we fitted plasma models over 1.69 keV where the emission is dominated by these K shell lines and by continuum. In each case the ASCA spectra cannot determine whether the gas emits at only two temperatures or over a continuous range of temperatures as expected for a cooling flow. The metal abundances are near-solar for all of the multiphase models. We discuss the implications of these results and examine the prospects for determining the temperature structure in these systems with upcoming X-ray missions.  相似文献   

10.
We present results from spectral analysis of ASCA data on the strong Fe  ii narrow-line Seyfert 1 galaxy Mrk 507. This galaxy was found to have an exceptionally flat ROSAT spectrum among the narrow-line Seyfert 1 galaxies (NLS1s) studied by Boller, Brandt & Fink. The ASCA spectrum, however, shows a clear absorption feature in the energy band below 2 keV, which partly accounts for the flat spectrum observed with the ROSAT Position Sensitive Proportional Counter (PSPC). Such absorption is rarely observed in other NLS1s. The absorption is mainly the result of cold (neutral or slightly ionized) gas with a column density of (2–3) × 1021 cm−2. A reanalysis of the PSPC data shows that an extrapolation of the best-fitting model for the ASCA spectrum underpredicts the X-ray emission observed with the PSPC below 0.4 keV if the absorber is neutral (which indicates that the absorber is slightly ionized), covers only part of the central source, or there is extra soft thermal emission from an extended region. There is also evidence that the X-ray absorption is complex; an additional edge feature marginally detected at 0.84 keV suggests the presence of an additional high-ionization absorber, which imposes a strong O  viii edge on the spectrum. After correction for the absorption, the photon index of the intrinsic continuum, Γ ≃ 1.8, obtained from the ASCA data is quite similar to that of ordinary Seyfert 1 galaxies. Mrk 507 still has one of the flattest continuum slopes among the NLS1s, but is no longer exceptional. The strong optical Fe  ii emission remains unusual in the light of the correlation between Fe  ii strengths and steepness of soft X-ray slope.  相似文献   

11.
We present XMM-Newton European Photon Imaging Camera (EPIC) observations of the bright Seyfert 1 galaxy MCG–6-30-15, focusing on the broad Fe K α line at ∼6 keV and the associated reflection continuum, which is believed to originate from the inner accretion disc. We find these reflection features to be extremely broad and redshifted, indicating an origin in the very central regions of the accretion disc. It seems likely that we have caught this source in the 'deep minimum' state first observed by Iwasawa et al. The implied central concentration of X-ray illumination is difficult to understand in any pure accretion disc model. We suggest that we are witnessing the extraction and dissipation of rotational energy from a spinning black hole by magnetic fields connecting the black hole or plunging region to the disc.  相似文献   

12.
We present ASCA data on RE J2248−511, extending existing optical and soft X-ray coverage to 10 keV, and monitoring the soft component. These data show that, despite a very strong ultrasoft X-ray excess below 0.3 keV and a soft 0.3–2 keV spectral index in earlier ROSAT data, the hard X-ray spectrum ( α ∼−0.8; 0.6–10 keV) is typical of type 1 active galactic nuclei (AGN), and the soft component has since disappeared. Optical data taken at two different epochs show that the big blue bump is also highly variable. The strength of the ultrasoft X-ray component and the extreme variability in RE J2248−511 are reminiscent of the behaviour observed in many narrow line Seyfert 1s (NLS1s). However, the high-energy end of the ROSAT spectrum, the ASCA spectrum and the Balmer line full widths at half maximum of ∼3000 km s−1 in RE J2248−511 are typical of normal Seyfert 1 AGN.
The change in the soft X-ray spectrum as observed in the ROSAT and ASCA data is consistent with the behaviour of Galactic Black Hole Candidates (GBHCs) as they move from a high to a low state, i.e. a fall in the ultrasoft component and a hardening of the X-ray continuum. This GBHC analogy has also been proposed for NLS1s. Alternatively, the variability may be caused by opacity changes in a hot, optically thin corona which surrounds a cold, dense accretion disc; this was first suggested by Guainazzi et al. for 1H 0419−577, an object which shows remarkably similar properties to RE J2248−511.  相似文献   

13.
We present results of the ASCA observation of the Seyfert 2 galaxy NGC 4507. The 0.5–10 keV spectrum is rather complex and consists of several components: (i) a hard X-ray power law heavily absorbed by a column density of about 3-1023 cm−2, (ii) a narrow Fe Kα line at 6.4 keV, (iii) soft continuum emission well above the extrapolation of the absorbed hard power law and (iv) a narrow emission line at ∼0.9 keV. The line energy, consistent with highly ionized neon (Ne IX ), may indicate that the soft X-ray emission is derived from a combination of resonant scattering and fluorescence in a photoionized gas. Some contribution to the soft X-ray spectrum from thermal emission, as a blend of Fe L lines, by a starburst component in the host galaxy cannot be ruled out with the present data.  相似文献   

14.
We use non-simultaneous Ginga ASCA ROSAT observations to investigate the complex X-ray spectrum of the Seyfert 2 galaxy Mrk 3. We find that the composite spectrum can be well described in terms of a heavily cut-off hard X-ray continuum, iron Kα emission and a soft X-ray excess, with spectral variability confined to changes in the continuum normalization and the flux in the iron line. Previous studies have suggested that the power-law continuum in Mrk 3 is unusually hard. We obtain a canonical value for the energy index of the continuum (i.e., α ≈ 0.7) when a warm absorber (responsible for an absorption edge observed near 8 keV) is included in the spectral model. Alternatively, the inclusion of a reflection component yields a comparable power-law index. The soft-excess flux cannot be modelled solely in terms of pure electron scattering of the underlying power-law continuum. However, a better fit to the spectral data is obtained if we include the effects of both emission and absorption in a partially photoionized scattering medium. In particular, the spectral feature prominent at ∼ 0.9 keV could represent O VIII recombination radiation produced in a hot photoionized medium. We discuss our results in the context of other recent studies of the soft X-ray spectra of Seyfert 2 galaxies.  相似文献   

15.
We present the analysis and first results from the Reflection Grating Spectrometer (RGS) during the 320-ks XMM–Newton observation of the Seyfert 1 galaxy MCG–6-30-15. The spectrum is marked by a sharp drop in flux at 0.7 keV which has been interpreted by Branduardi-Raymont et al. using RGS spectra from an earlier and shorter observation as the blue wing of a strong relativistic O  viii emission line and by Lee et al. using a Chandra spectrum as due to a dusty warm absorber. We find that the drop is well explained by the Fe  i L2,3 absorption edges and obtain reasonable fits over the 0.32–1.7 keV band using a multizone, dusty warm absorber model constructed using the photoionization code cloudy . Some residuals remain which could be due to emission from a relativistic disc, but at a much weaker level than from any simple model relying on relativistic emission lines alone. A model based on such emission lines can be made to fit if sufficient (warm) absorption is added, although the line strengths exceed those expected. In order to distinguish further whether the spectral shape is dominated by absorption or emission, we examined the difference spectrum between the highest and lowest flux states of the source. The EPIC pn data indicate that this is a power law in the 3–10 keV band which, if extrapolated to lower energies, reveals the absorption function acting on the intrinsic spectrum, provided that any emission lines do not scale exactly with the continuum. We find that this function matches our dusty warm absorber model well if the power law steepens below 2 keV. The soft X-ray spectrum is therefore dominated by absorption structures, with the equivalent width of any individual emission lines in the residuals being below approximately 30 eV.  相似文献   

16.
We present analyses of the ASCA X-ray spectra of two Seyfert galaxies, Tololo 0109383 and ESO 138G1. In both cases, spectral fitting reveals two statistically acceptable continuum models: Compton reflection and partial covering. Both spectra have strong iron K lines, with equivalent widths greater than 1.5 keV. These large equivalent widths are suggestive of heavier obscuration than that directly indicated by the partial-covering models (  21023 cm-2),  with the actual column densities being 'Compton-thick' (i.e.   N H1.51024 cm-2).  We use the hard X-ray/[O  iii ] flux correlation for Seyferts and data from the literature to provide additional support for this hypothesis. Since Tololo 0109383 is known to have optical type 1 characteristics such as broad Balmer line components and Fe  ii emission, this result marks it as a notable object.  相似文献   

17.
We investigate the X-ray spectra of the type 2 Seyfert galaxies NGC 7172 and ESO 103-G35, using BeppoSAX observations, separated by approximately one year. We find that the X-ray spectra of both NGC 7172 and ESO 103-G35 can be well fitted using a power-law model with an Fe K α emission line at 6.4 keV. We did not find any statistically significant evidence for the existence of a reflection component in the X-ray spectra of these two galaxies. The continuum flux has decreased by a factor of approximately 2 during this period, in both objects. However, the spectral index as well as the absorption column have remained constant. We find weak evidence for the decrease of the normalization of the Fe K α emission line in a similar manner to the continuum in NGC 7172. We also report tentative evidence for a broad Fe K α line in agreement with previous ASCA observations. In contrast, in the case of ESO 103-G35 the line flux does not change while its width remains unresolved.  相似文献   

18.
We report on simultaneous ASCA and ROSAT observations of the Seyfert galaxy NGC 5548 made during the ASCA Performance Verification phase. Spectral features due to a warm absorber and reflection are clearly seen in the X-ray spectra. We find that the continuum spectral shape differs between the ASCA and ROSAT data sets. The photon-index obtained from the ROSAT PSPC exceeds that from the ASCA SIS ΔΓ≈0.4. The discrepancy is clear even in the 0.5–2 keV energy band over which both detectors are sensitive. The spectra cannot be made consistent by choosing a more complex model. The problem likely lies in the response curve (estimated effective area) of one, or both, detectors. There may be important consequences for a wide range of published results.  相似文献   

19.
We present simultaneous ASCA and RXTE observations of Ark 564, the brightest known 'narrow-line' Seyfert 1 in the 2–10 keV band. The measured X-ray spectrum is dominated by a steep (Γ≈2.7) power-law continuum extending to at least 20 keV, with imprinted Fe K-line and edge features and an additional 'soft excess' below ∼1.5 keV. The energy of the iron K-edge indicates the presence of highly ionized material, which we identify in terms of reflection from a strongly irradiated accretion disc. The high reflectivity of this putative disc, together with its strong intrinsic O  viii Ly α and O  viii recombination emission, can also explain much of the observed soft excess flux. Furthermore, the same spectral model also provides a reasonable match to the very steep 0.1–2 keV spectrum deduced from ROSAT data. The source is much more rapidly variable than 'normal' Seyfert 1s of comparable luminosity, increasing by a factor of ∼50 per cent in 1.6 h, with no measurable lag between the 0.5–2 keV and 3–12 keV bands, consistent with much of the soft excess flux arising from reprocessing of the primary power-law component in the inner region of the accretion disc. We note, finally, that if the unusually steep power-law component is a result of Compton cooling of a disc corona by an intense soft photon flux, then the implication is that the bulk of these soft photons lie in the unobserved extreme ultraviolet.  相似文献   

20.
We present ROSAT [High Resolution Imager (HRI) and Position Sensitive Proportional Counter (PSPC)] and ASCA observations of the two luminous ( L x ∼ 1041−42 erg s−1) star-forming galaxies NGC 3310 and 3690. The HRI shows clearly that the sources are extended with the X-ray emission in NGC 3690 coming from at least three regions. The combined 0.1–10 keV spectrum of NGC 3310 can be described by two components, a Raymond–Smith plasma with temperature kT  = 0.81+0.09−0.12 keV and a hard power law, Γ = 1.44−0.20−0.11 (or alternatively a harder Raymond–Smith plasma with kT  ∼ 15 keV), while there is no substantial excess absorption above the Galactic column value. The soft component emission is probably a super wind while the nature of the hard emission is more uncertain with the likely origins being X-ray binaries, inverse Compton scattering of infrared photons, an active galactic nucleus or a very hot gas component (∼108 K). The spectrum of NGC 3690 is similar, with kT  = 0.83+0.02−0.04 keV and Γ = 1.56+0.11−0.11. We also employ more complicated models such as a multi-temperature thermal plasma, a non-equilibrium ionization code or the addition of a third softer component, which improve the fit but not at a statistically significant level (2σ). These results are similar to recent results on the archetypal star-forming galaxies M82 and NGC 253.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号