首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A new structure element of the Arctic ionosphere has been detected from the data of topside sounding of the ionosphere: quasi-vertical walls of high-density plasma. The importance of studying this phenomenon for geophysics and the practice of radio wave propagation in high latitudes is noted. The Arktika-M hydrometeorological space complex with an onboard ionosonde is proposed for its study. The possibility of observing and analyzing all life-cycle phases of this ionospheric inhomogeneity is shown.  相似文献   

2.
We study the interplanetary features and concomitant geomagnetic activity of the two high-speed streams (HSSs) selected by the Whole Heliosphere Interval (WHI) campaign participants: 20 March to 16 April 2008 in Carrington rotation (CR) 2068. This interval was chosen to perform a comprehensive study of HSSs and their geoeffectiveness during this ??deep?? solar minimum. The two HSSs within the interval were characterized by fast solar-wind speeds (peak values >?600 km?s?1) containing large-amplitude Alfvénic fluctuations, as is typical of HSSs during normal solar minima. However, the interplanetary magnetic field (IMF) magnitude [B o] was exceptionally low (??3??C?5 nT) during these HSSs, leading to lower than usual IMF B z values. The first HSS (HSS1) had favorable IMF polarity for geomagnetic activity (negative during northern Spring). The average AE and Dst for the HSS1 proper (HSS1P) were +?258 nT and ??21 nT, respectively. The second HSS (HSS2) had a positive sector IMF polarity, one that is less favorable for geomagnetic activity. The AE and Dst index averages were +?188 nT and ??7 nT, both lower than corresponding numbers for the first event, as expected. The HSS1P geomagnetic activity is comparable to, and the HSS2P geomagnetic activity lower than, corresponding observations for the previous minimum (1996). Both events?? geomagnetic activities are lower than HSS events previously studied in the declining phase (in 2003). In general, V sw was faster for the HSSs in 2008 compared to 1996. The southward IMF B z was lower in the former. The product of these two parameters [V sw and IMF B z ] comprises the solar-wind electric field, which is most directly associated with the energy input into the magnetosphere during the HSS intervals. Thus the combined effects led to the solar wind energy input in 2008 being slightly less than that in 1996. A detailed analysis of magnetic-field variances and Alfvénicity is performed to explore the characteristics of Alfvén waves (a central element in the geoeffectiveness of HSSs) during the WHI. The B z variances in the proto-CIR (PCIR) were ???30 nT2 and <?10 nT2 in the high speed streams proper.  相似文献   

3.
The Solar Cycle 23?–?24 minimum has been considered unusually deep and complex. In this article we study the ionospheric behavior during this minimum, and we have found that, although observable, the ionosphere response is minor and marginally exceeds the range of normal geophysical variability of the system. Two main ionospheric parameters have been studied: vertical TEC (vTEC, total electron content) and NmF2 (peak concentration of the F region). While vTEC showed a consistent modest decrease of the mean value, NmF2 behavior was less clear, with instances where the mean value for the minimum 23?–?24 was even higher that for the minimum 22?–?23. More extensive work is required to gain a better understanding of the ionospheric behavior under conditions similar to those presented in the last minimum.  相似文献   

4.
The geomagnetic Kp-index data for the 1932–1969 period have been investigated by means of a modified power spectrum technique on the basis of overlapping 2-yr intervals. The observed 27-, and 13.5-day periodicities show an obvious solar cycle dependence through the whole period concerned. Also, periodicities in the range of 9?4 days have been observed through years of minimum and decreasing phases of solar activity. The periodicities observed are found to be related to the existence of variations in the interplanetary medium structure which modulates the geomagnetic activity.  相似文献   

5.
The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from 5 to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005?–?2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (~?1980, ~?1990, and ~?2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995?–?1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27-day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the >?2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods, showing that processes in the magnetosphere act as a low-pass filter between the solar wind and the radiation belt. The A p/K p magnetic currents observed at subauroral latitudes are sensitive to proton auroral precipitation, especially for 9-day and shorter periods, while the A p/K p currents are governed by electron auroral precipitation for 13.5- and 27-day periodicities.  相似文献   

6.
Short-term variations δf0F2 in the values of the critical frequency of the ionospheric F2 region in middle latitudes due to solar and geomagnetic activities have been investigated. Diurnal and seasonal features of the energy flow from the auroral into midlatitude ionosphere are revealed. It is shown that they could be taken into account if instead of the 3-hour geomagnetic indices or their daily averages a new index is employed which characterizes the average level of geomagnetic activity over intervals of time no less than nine hours usually during the evening and night hours. A technique for short-term predicting δf0F2 in the midlatitude ionosphere is developed which employs the indices of solar and geomagnetic activities, and errors in the predictions are estimated.  相似文献   

7.
Equivalent ionospheric current systems representing IMF sector effects on the geomagnetic field in high latitudes are examined for each of the twelve calendar months by spherical harmonic analyses of geomagnetic hourly data at 13 northern polar stations for seven years. The main feature of obtained equivalent current systems includes circular currents at about 80° invariant latitude mostly in the daytime in summer and reversed circular currents at about 70° invariant latitude mainly at night in winter. Field-aligned current distributions responsible for equivalent currents, as well as vector distributions of electric fields and ionospheric currents, are approximated numerically from current functions of equivalent current systems by taking assumed distributions of the ionospheric conductivity. Two sets of upward and downward field-aligned current pairs in the auroral region, and also a field-aligned current region near the pole show seasonal variations. Also, ionospheric electric-field propagation along geomagnetic field lines from the summer hemisphere to the winter hemisphere with auroral Hall-conductivity effects may provide an explanation for the winter reversal of sector effects.  相似文献   

8.
In order to investigate Pc3-4 geomagnetic pulsations at very low and equatorial latitudes, L=1.0 to 1.2, we analyzed simultaneous geomagnetic data from Brazilian stations for 26 days during October-November 1994. The multitaper spectral method based on Fourier transform and singular value decomposition was used to obtain pulsation power spectra, polarization parameters and phase. Eighty-one (81) simultaneous highly polarized Pc3-4 events occurring mainly during daytime were selected for the study. The diurnal events showed enhancement in the polarized power density of about 3.2 times for pulsations observed at stations close to the magnetic equator in comparison to the more distant ones. The phase of pulsation observed at stations near the magnetic equator showed a delay of 48-62° in relation to the most distant one. The peculiarities shown by these Pc3-4 pulsations close to the dip equator are attributed to the increase of the ionospheric conductivity and the intensification of the equatorial electrojet during daytime that regulates the propagation of compressional waves generated in the foreshock region and transmitted to the magnetosphere and ionosphere at low latitudes. The source mechanism of these compressional Pc3-4 modes may be the compressional global mode or the trapped fast mode in the plasmasphere driving forced field line oscillations at very low and equatorial latitudes.  相似文献   

9.
The solar minimum of 2008 was exceptionally quiet, with sunspot numbers at their lowest in 75 years. During this unique solar-minimum epoch, however, solar-wind high-speed streams emanating from near-equatorial coronal holes occurred frequently and were the primary contributor to the recurrent geomagnetic activity at Earth. These conditions enabled the isolation of forcing by geomagnetic activity on the preconditioned solar minimum state of the upper atmosphere caused by Corotating Interaction Regions (CIRs). Thermosphere density observations around 400 km from the CHAMP satellite are used to study the thermosphere density response to solar-wind high-speed streams/CIRs. Superposed epoch results show that the thermosphere density responds to high-speed streams globally, and the density at 400 km changes by 75% on average. The relative changes of neutral density are comparable at different latitudes, although its variability is largest at high latitudes. In addition, the response of thermosphere density to high-speed streams is larger at night than in daytime, indicating the preconditioning effect of the thermosphere response to storms. Finally, the thermosphere density variations at the periods of 9 and 13.5 days associated with CIRs are linked to the spatial distribution of low?–?middle latitude coronal holes on the basis of the EUVI observations from STEREO.  相似文献   

10.
The dynamics of the high latitude thermosphere are dominated by the ion circulation pattern driven by magnetospheric convection. The reaction of the neutral thermosphere is influenced by both the magnitude of the ion convection velocity and by the conductivity of the thermosphere. Using a threedimensional, time-dependent, thermospheric, neutral model together with different ionospheric models, the effect of changes in conductivity can be assessed. The ion density is described by two models: the first is the empirical model of Chiu (1975) appropriate for very quiet geomagnetic conditions, and the second is a modified version of the theoretical model of Quegan et al. (1982). The differences in the neutral circulation resulting from the use of these two ionospheric models emphasizes the need for realistic high latitude conductivities when attempting to model average or disturbed geomagnetic conditions, and a requirement that models should couple realistically the ionosphere and the neutral thermosphere. An attempt is made to qualitatively interpret some of the features of the neutral circulation produced at high latitudes by magnetospheric processes.  相似文献   

11.
Cross-spectral analysis of ULF wave measurements recorded at ground magnetometer stations closely spaced in latitude allows accurate determinations of magnetospheric field line resonance (FLR) frequencies. This is a useful tool for remote sensing temporal and spatial variations of the magnetospheric plasma mass density. The spatial configuration of the South European GeoMagnetic Array (SEGMA, 1.56 <  L <  1.89) offers the possibility to perform such studies at low latitudes allowing to monitor the dynamical coupling between the ionosphere and the inner plasmasphere. As an example of this capability we present the results of a cross-correlation analysis between FLR frequencies and solar EUV irradiance (as monitored by the 10.7-cm solar radio flux F10.7) suggesting that changes in the inner plasmasphere density follow the short-term (27-day) variations of the solar irradiance with a time delay of 1–2 days. As an additional example we present the results of a comparative analysis of FLR measurements, ionospheric vertical soundings and vertical TEC measurements during the development of a geomagnetic storm.  相似文献   

12.
This study explores the relationship between the sunspot number (SSN) and the ionospheric foF2. It is of interest to locate the SSN value at which the foF2 values are saturated. A regression model is built based on the data of the strictly rise period of the 21st solar cycle recorded by eight ionosonde stations scattering roughly between 40°N and 40°S geomagnetic latitude. Results show that clear saturation features appear around the equatorial anomaly crest region.  相似文献   

13.
The Solar Wind Energy Flux   总被引:1,自引:0,他引:1  
The solar-wind energy flux measured near the Ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10?%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high-speed solar wind (V SW>700?km?s?1) has the same mean energy flux as the slower wind (V SW<700?km?s?1), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.  相似文献   

14.
We have detected several periodicities in the solar equatorial rotation rate of sunspot groups in the catalog Greenwich Photoheliographic Results (GPR) during the period 1931?–?1976, the Solar Optical Observing Network (SOON) during the period 1977?–?2014, and the Debrecen Photoheliographic Data (DPD) during the period 1974?–?2014. We have compared the results from the fast Fourier transform (FFT), the maximum entropy method (MEM), and the Morlet wavelet power-spectra of the equatorial rotation rates determined from SOON and DPD sunspot-group data during the period 1986?–?2007 with those of the Mount Wilson Doppler-velocity data during the same period determined by Javaraiah et al. (Solar Phys. 257, 61, 2009). We have also compared the power-spectra computed from the DPD and the combined GPR and SOON sunspot-group data during the period 1974?–?2014 to those from the GPR sunspot-group data during the period 1931?–?1973. Our results suggest a ~?250-day period in the equatorial rotation rate determined from both the Mt. Wilson Doppler-velocity data and the sunspot-group data during 1986?–?2007. However, a wavelet analysis reveals that this periodicity appears mostly around 1991 in the velocity data, while it is present in most of the solar cycles covered by the sunspot-group data, mainly near the minimum epochs of the solar cycles. We also found the signature of a period of ~?1.4 years in the velocity data during 1990?–?1995, and in the equatorial rotation rate of sunspot groups mostly around the year 1956. The equatorial rotation rate of sunspot groups reveals a strong ~?1.6-year periodicity around 1933 and 1955, a weaker one around 1976, and a strong ~?1.8-year periodicity around 1943. Our analysis also suggests periodicities of ~?5 years, ~?7 years, and ~?17 years, as well as some other short-term periodicities. However, short-term periodicities are mostly present at the time of solar minima. Hence, short-term periodicities cannot be confirmed because of the larger uncertainty in the data.  相似文献   

15.
A gridded spherical electrostatic analyzer aboard Injun 5 has been used to measure fluxes of thermal and hyperthermal electrons at subauroral latitudes in the midnight sector of the northern ionosphere between altitudes of 2500 and 850 km. Due to the offset between the geomagnetic and geographic poles hyperthermal fluxes, consisting of energetic photoelectrons that have escaped from the sunlit southern hemisphere are observed along orbits over the Atlantic Ocean and North America but not over Asia. The ambient electron temperatures (Te) near 2500 km have their highest values at trough latitudes for all longitudes. At altitudes near 1000 km elevated electron temperatures in the trough were not a consistent feature of the data. Equatorward of the trough, in the longitude sector to which conjugate photoelectrons have access, Te ~ 4000 K at 2500 km and ~ 3000 K at 1000 km. For regions with the conjugate point in darkness Te ? 2300 K over the 1000–2500 km altitude range. The effective thermal characteristics of conjugate photoelectrons are studied as functions of altitude and latitude. The observations indicate that (1) at trough latitudes elevated electron temperatures in the topside ionosphere are mostly produced by sources other than conjugate photoelectrons, and (2) at subtrough latitudes, in the Alantic Ocean-North American longitude sector, conjugate photoelectrons contribute significantly to the heating of topside electrons. Much of the conjugate photoelectron energy is deposited at altitudes >2500 km then conducted along magnetic field lines into the ionosphere.  相似文献   

16.
A detailed analysis of rapid-run magnetograms from Guam (geomagnetic latitude = 4.2°) revealed that there are two kinds of geomagnetic sudden commencement (SC) observed in nighttime. One is the ordinary SC consisting of a main impulse only which has a smooth rise of the H-component. The other is a superposition by a small positive impulse on the very beginning part of the smooth rise of the main impulse and consequently the SC starts with a small stepwise increase of the H-component. The latter type of SC occurs between 20 and 08 h L.T. and its occurrence rate takes the maximum value of about 50% around 03 h L.T. Corresponding magnetograms from a dayside equatorial station (Huancayo, geomagnetic latitude = ?0.7°) were examined and a good correlation was found between the stepwise SC at the nightside (Guam) and SC1 with a preliminary reverse impulse (PRI) at the dayside (Huancayo). Since PRI observed at the dayside equator may be interpreted as an extension of an ionospheric current due to an dusk-to-dawn electric field impressed on the polar ionosphere, our results show that a polar originating ionospheric current can extend to the nightside equator and produce a small but observable magnetic effect in spite of much reduced nighttime ionospheric conductivity.  相似文献   

17.
Wave-like features in range seen on the range/time/intensity (RTI) records of VHF backscatter radars operating in the South of New Zealand are interpreted as being the signature of gravity waves propagating in an ionospheric sporadic-E layer. The data show that, during midsummer in particular, sporadic-E ionisation which has been modified by the passage of a gravity wave can produce two distinct echo types : backscatter from field-aligned irregularities within the sporadic-E layer, probably generated by plasma waves, and a second type of echo resulting from energy backscattered from the surface of the sea after specular reflection in the ionosphere. The backscattering and reflecting region can exist at latitudes at least as low as 49° geographic (57° geomagnetic) latitude during quiet magnetic conditions. We confirm the patchiness of dense sporadic-E, and conclude that gravity waves at sporadic-E heights have amplitudes of the order of several tenths of a kilometre.  相似文献   

18.
The satellite ionosondes in highly elliptical orbits are proposed to be used for the task of continuous monitoring of the Arctic ionosphere. The monitoring scheme with the ionosonde location aboard the Arktika-M satellites is presented. The calculations of the vertical topside and transionospheric sounding using the SIMP1 ionospheric model are performed, which show the feasibility of continuous monitoring.  相似文献   

19.
Calculations of the properties of the ionospheric duct centered at the F2 layer are carried out with a view to investigating the ducted propagation of Pc1 micropulsations in directions out of the geomagnetic meridian plane. For a horizontally uniform ionosphere, duct properties are found to be essentially the same in all horizontal directions. Propagation characteristics of ducted waves, however, vary according to ionospheric and sunspot conditions. In practice, therefore, it is expected that horizontal propagation over a large recording network is not isotropic because of the diurnal changes in the ionosphere.  相似文献   

20.
The operation of a sky-scanning photometer at mid-latitudes has revealed the presence of elongated irregularities in the 6300 Å airglow, which can have a wavelike nature. Wavefronts are aligned near the magnetic meridian, and the motion is to the east with speeds ~100 m/sec. One airglow event in which the ionosphere appeared to corrugate produced a period of moderate spread-F on a nearby ionosonde.It is not clear from comparison with radio experiments that the airglow disturbances are due to the passage in the ionosphere of gravity waves; some characteristics suggest the irregularities could be due to an instability of the ionospheric plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号