首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In Uruguay commercial granite varieties comprise mafic rocks, granitoids, and syenitoids. There is a long tradition in Uruguay, as well as worldwide, of using dimensional stones in architecture and art, specially granitic ones. Some of the present applications of these dimensional stones are as façade cladding, countertops, and outdoor and indoor floor slabs. The color spectrum of the Uruguayan granitic dimensional stones varies from black to light gray, covering a wide variety of red and pink and minor greenish-gray. The décor of these granitic dimensional stones is mainly determined by their fabric, fundamentally the grain size and the color distribution between the different minerals that compose the rocks. In the present research the most important commercial granites were sampled to analyze their petrography and petrophysical properties. A detailed structural analysis has been performed in several deposits, as well as the application of the software 3D Block Expert for modeling the possible raw block size distribution. Other factors controlling the mining viability of the deposits were also studied (e.g., homogeneity/heterogeneity of color and décor) and the possible reserves were calculated.  相似文献   

2.
宋晨  苏尚国  伍月  蔡楠  刘美玉 《岩石学报》2014,30(11):3375-3382
位于华北板块西缘赋存于超镁铁质岩中的金川矿床,是目前世界第三大镍硫化物矿床.金川铜镍硫化物矿床的原生岩浆问题一直存在着较大的争议,前人通过研究金川铜镍硫化物矿体中的堆晶橄榄岩中橄榄石的成分,从而推导原生岩浆的成分.而作者通过对金川铜镍硫化物矿体内部的基性岩脉深入研究,从另一个角度探究金川铜镍硫化物矿床的原生岩浆成分.通过对岩脉岩相学、主量元素的研究表明金川铜镍硫化物矿体中的岩脉主要是辉绿岩,因其MgO的含量的不同可以划分为高镁辉绿岩和低镁辉绿岩.辉绿岩脉的主量元素和微量元素显示这两类岩脉发生过分离结晶作用.PGE元素特征显示辉绿岩脉和金川矿床是同一期次产物,Pmelts的模拟演化得出本文中辉绿岩脉的液相线矿物橄榄石的牌号为Fo86,与金川矿床发现最高牌号Fo86一致.同时Ol-CATS-Q相图表明JC100925-5样品形成的源区在3GPa以上.多种因素显示这种高镁的岩浆是金川矿区的原生岩浆.  相似文献   

3.
Dike rocks from the New England platform of Rhode Island and adjacent Massachusetts consist of premetamorphic and post-metamorphic suites. The older group includes metamorphosed dolerite, minette, and schistose dioritic rocks. Post-metamorphic dikes consist of dolerite and sparse monchiquite. The post-metamorphic dolerites are of comparable age to the Eastern North American dolerite suite associated with the Mesozoic basins along the eastern seaboard of North America. However, the southeastern New England dolerites exhibit mineralogy and chemistry more typical of a transitional alkalic suite compared to the more subalkalic tholeiitic dolerites of the Eastern North American suite. Both suites are compatible with a rift tectonic setting, but the more alkalic dolerites may represent a deeper source of small volume melts compared to the Eastern North American dolerites. These more alkaline melts may have concentrated at local centers, or they may be typical of flank dolerites as opposed to the less alkalic varieties that occur within the central axial rift.  相似文献   

4.
This investigation describes five Mesozoic dolerite dikes which intrude Paleozoic metamorphic and igneous rocks of the Inner Piedmont of western South Carolina. The dikes are vertical or nearly so and strike approximately N40° W. Three major northeast-trending faults also occur in the study area. Left lateral displacement of one dolerite is documented at a locality near Cleveland, South Carolina. Elsewhere, several of the dolerite dikes appear to terminate at or near the faults. — The dolerite dikes have subophitic to microporphyritic textures and consist principally of plagioclase (generally An70–80), olivine (dominantly Fo80–90) and augite with subordinate pigeonite, titanomagnetite, chromite and brown, partly glassy mesostasis. In one dike pyroxene compositions trend from augite to ferroaugite in contrast to an augitesubcalcic augitepigeonite trend characteristic of the other dolerites. The contrasting trends primarily result from differences in SiO2 abundance in the dolerite magmas. — Major and trace element analyses indicate the presence of two different olivine-normative dolerite magma types. The two magma types are not related by near surface crystal fractionation. Models for genesis of the olivine-normative dolerite magmas by partial melting of a plagioclase peridotite upper mantle source region are presented. The models require that the source region be enriched in LREE and incompatible elements such as Rb, Ba, Hf and Th relative to Cl chondritic abundances. One magma type appears to represent a primary dolerite magma that ascended from the source region with little subsequent compositional change. The second magma type most likely experienced assimilation of clinopyroxene-garnet (eclogite) during ascent, thereby acquiring a REE pattern with a less steep negative slope for the LREE and a slight positive slope in the HREE.  相似文献   

5.
Rb-Sr isochron ages have been determined for two suites of Precambrian dikes in the Bidadi-Harohalli area of southeast Mysore State. Whole-rock samples of unmetamorphosed dolerites yield an age of 2420±246 (2σ) m.y., which is a minimum value for the intruded Peninsular Gneiss and Closepet Granite. The dolerite magma originated in the mantle, as indicated by the initial 87Sr/86Sr ratio of 0.7012±0.0010 (2σ). A suite of alkaline dikes, also referred to as felsite and feldspar porphyry dikes, has an age of 832±40 (2σ) m.y., which correlates with the intrusion of the Chamundi Hill Granite and the feldspar porphyry dikes near Srirangapatnam. One of the alkaline dikes has a K-Ar age of 810±25 m.y., indicating an absence of subsequent thermal events in the area.  相似文献   

6.
The oldest igneous rocks in the Paleoproterozoic (~1.88–1.85 Ga) North Baikal postcollisional volcanoplutonic belt of the Siberian craton are the basaltoids of the Malaya Kosa Formation (Akitkan Group). The youngest are the composite (dolerite–rhyolite) and doleritic dikes cutting the granitoids of the Irel’ complex and the felsic volcanic rocks of the Khibelen Formation (Akitkan Group). The position of Malaya Kosa basaltoids in the Akitkan Group section and published geochronological data on the felsic volcanic rocks overlying Malaya Kosa rocks suggest that their age is ~1878 Ma. The rhyolites from the center of a composite dike were dated by the U–Pb zircon method at 1844 ± 11 Ma, and the dolerites in the dikes are assumed to be coeval with them. Malaya Kosa basaltoids correspond to high-Mg tholeiites and calc-alkaline andesites, whereas the dolerites in the dikes correspond to high-Fe tholeiites. Geochemically, these basaltoids and dolerites are both similar and different. As compared with the dolerites, the basaltoids are poorer in TiO2 (an average of 0.89 vs. 1.94 wt.%), Fe2O31 (9.54 vs. 14.71 wt.%), and P2O5 (0.25 vs. 0.41 wt.%). However, these rocks are both poor in Nb but rich in Th and LREE, εNd(T) being negative. According to petrographic and geochemical data, they derived from compositionally different sources. It is assumed that the basaltoids originated from subduction-enriched lithospheric mantle, whereas the dolerites originated from refractory lithospheric mantle metasomatized by subduction fluids. The isotopic and geochemical features of mafic rocks in the North Baikal belt are well explained by their formation during crustal extension which followed subduction and collision in the region. The early stages of postcollisional extension evidenced the melting of subduction-enriched lithospheric mantle with the formation of parent melts for Malaya Kosa basaltoids. At the final stages of the formation of the North Baikal belt, during the maximum crustal extension, Fe-enriched melts rose to the surface and generated the dolerites of the dikes.  相似文献   

7.
In the Precambrian Singhbhum Craton of eastern India, newer dolerite dikes occur profusely with varying outcrop lengths. We have analysed the nature of their length-size and orientation distributions in relation to the theory of fractals. Two orientational sets of dikes (NW-SE and NE-SW) are present. Both the sets show strongly non-power-law size distributions, as reflected in non-linear variations in logarithmic space. We analyzed thousands of data, revealing that polynomial functions with a degree of 3 to 4 are the best representatives of the non-linear variations. Orientation analysis shows that the degree of dispersions from the mean trend tends to decrease with increasing dike length. The length-size distributions were studied by simulating fractures in physical models. Experimental fractures also show a non-power-law distribution, which grossly conforms to those of the dolerite dikes. This type of complex size distributions results from the combined effects of nucleation, propagation and coalescence of fractures.  相似文献   

8.
The Palaeoproterozoic (1.90–1.60 Ga) crust of central Fennoscandia was intruded repeatedly by dolerite dikes and sills during the Neo- and Mesoproterozoic eons. We report 17 new baddeleyite U–Pb dates comprising six generations of dolerites (in Ma):
Blekinge-Dalarna dolerites 946–978
Protogine Zone dolerites 1,215–1,221
Central Scandinavian Dolerite Group 1,264–1,271
Tuna dikes and age equivalents in Dalarna 1,461–1,462
Värmland dolerites ~1,568
Breven-Hällefors dolerites ~1,595
The favoured tectonic model implies that the majority of these suites were related to active margin processes somewhere west (and possibly south) of the Fennoscandian Shield. Dolerite intrusions are interpreted to reflect discrete events of back-arc extension as the arc retreated oceanward. Initial Hf and Nd isotope compositions of the dolerite swarms fall between CHUR and normal-depleted mantle, and suggest a variably depleted and re-enriched mantle as the source for the here investigated 1.6 to 0.95 Ga old mafic rocks. Repeated recycling of older crustal components, mainly sediments (dominated by material with short residence ages) in earlier subduction systems may have been very efficient at producing geochemically and isotopically variably enriched lithospheric mantle sections beneath the Fennoscandian Shield.
  相似文献   

9.
The Baer ophiolitic massif is located in the northern sub-belt of the western segment of the Yarlung Zangbo Suture Zone (YZSZ) and mainly consists of a lherzolite-dominant mantle suite, dolerite intrusions and limited crustal outcrops. The dolerites show sub-ophitic texture and light rare earth element-depleted chondrite-normalized rare earth element patterns similar to normal-mid-ocean ridge basalts (N-MORB); though, they display enrichments in fluid-mobile elements (Rb, Ba, and Sr) and marked depletions in Th and Nb. The U–Pb ages of several magmatic zircon grains recovered from two dolerite samples indicate that the intrusion of the dikes into the Baer lherzolitic mantle occurred at 125.6–126.3 Ma, consistent with the widespread mafic magmatism between 120 and 130 Ma in the Yarlung Zangbo ophiolites. The dolerites have slightly more radiogenic 87Sr/86Sr ratios (0.7043–0.7054) in comparison to N-MORB, whereas they show 143Nd/144Nd values (0.513067–0.513114) similar to N-MORB and high zircon Hf-isotope compositions. They have a limited range of Nd-isotope (εNd(t) values: +8.2 to +9.1) and juvenile Hf-isotope compositions (εHf(t) values: +8.4 to +14.2 and +10.0 to +15.1) indicating derivation from mantle melts. The moderate spread in the εHf (t) values of zircons indicates derivation of the dolerites parental magma from a weakly contaminated spinel-bearing mantle source. This is also corroborated by the geochemical signatures of the Baer dolerites (enrichment in LILE and depletion in HFSE) suggesting minor slab input to the mantle source of the dike-filling melt. We suggest that the genesis of the dolerite dike-forming melt happened at a stage of subduction initiation in a sub-oceanic mantle domain mildly affected by fluids emanating from the downgoing slab. Our data combined with literature data allow us to presume that the intrusion of the dolerites into the Baer mantle corresponds to an early phase of subduction initiation beneath a developing forearc basin.  相似文献   

10.
The construction suitability of a dimension stone depends on its weathering properties along with the petrology and the petrophysical properties. The aim of this study was to evaluate the suitability of the dimension stones from the “Drei Gleichen” area for construction and replacement purposes. In total, six sandstones (Ingersleben, Wachsenburg, Hindfelden, Seeberg, Röhnberg, Gleichenberg; Upper Triassic) as well as two carbonates (Wachsenburg sinter; Quaternary, Wandersleben dolomite; Middle Triassic) were analysed. The results from our laboratory and on-site studies of the dimension stones show that rocks from the same stratigraphic layer, like the sandstones from the upper Triassic, can show major differences in their petrophysical and weathering properties. These differences are attributed to their different diagenesis, resulting, e.g. in varying pore space, water balance and strength properties. The pore size distribution can be divided into four different groups based on their occurring maxima and micropore content. The determined water balance properties as well as moisture expansion and salt attack depend on these groups. Next to this, the mineralogical composition significantly influences the weathering resistance. Sandstones with a high content of altered lithoclasts show a high amount of moisture expansion, low strength and, in consequence, a low weathering resistance against salt attack. Based on the results of the present study, an evaluation of construction suitability could be accomplished. From the analysed sandstones, only the Seebergen sandstone is suitable for construction purposes due to its good availability, good strength properties (high compressive and tensile strength, low softening degree) as well as a low porosity. Furthermore, the Wachsenburg sandstone also shows good petrophysical and petrological properties, but exploitable deposits are too sparse to be of commercial interest. From the carbonates, the Wachsenburg sinter shows very suitable rock parameters, but only sparse outcrops occur, which are not appropriate for mining.  相似文献   

11.
Dolerite dykes intruding Variscan plutonites were studied in terms of mineralogy, petrology, geochemistry and geochronology. The main mineral constituents were studied and the sequence of crystallization has been derived. The geochemical characteristic indicate mantle origin of the dolerites and magma sources different from the hosting granitoids. From SHRIMP analyses of five spots on four different zircon crystals, resulted a 292.0±4.1 Ma age that is interpreted as the time of crystallization of the dolerite. The hosting granitoids are probably the result of mixing between two possible end-members: enriched mantle and acid metaigneous or lower crustal metasediments.

The Variscan age of the dolerites, in combination with the geochemical characteristics, indicated that the enriched mantle basaltic material should be the source of the dolerite veins. These mantle-derived basaltic melts may represent the underplated material, which probably provided the necessary thermal input to the dehydration melting in the lower crust. The dolerites should have intruded the newly formed batholiths before or at the first stages of their uplift, recording the last events of the Variscan subduction.  相似文献   


12.
The Orval Abbey, a major monument of southern Wallonia, Belgium, was partly destroyed and rebuilt several times between the Middle Ages and the present time. The oldest parts are made of natural stones of local origin (Bajocian and Sinemurian limestones) and the most recent parts are mostly made of reconstituted stone. The process of reconstituted stone making is not known. Although confronting the same environmental conditions, the reconstituted stone is much more susceptible to weathering than the natural limestones, especially to salt crystallisation. The present study compared the mineralogical and petrophysical properties of these building materials to gather information on the making of the reconstituted stone and to understand the difference in salt susceptibility between natural and reconstituted stones. Microscopic observations and petrophysical measurements showed that the reconstituted stone is composed of debris of Sinemurian and Bajocian limestone and cement, and the salt efflorescences were thenardite. Within the cement, amorphous grains were found that may correspond to grains of clinker, which have not reacted during stone making. Although its porosity and water transfer properties were close to that of the Bajocian limestone, its pore access distribution was centred around 0.1 μm. Furthermore, the details of the pore size distribution allowed calculating salt susceptibility indices that were very high in the case of the reconstituted stone. Thus, the composition of the cement and the pore size distribution are likely the two factors explaining a high susceptibility of the reconstituted stone to salt weathering.  相似文献   

13.
Owing to its long building history, different types of building stones comprised the construction of the Cologne Cathedral. Severe damage is observed on the different stones, e.g., sandstones, carbonate, and volcanic rocks, especially when the different stone materials neighbor the medieval “Drachenfels trachyte” from the “Siebengebirge”. The question arises, “Is the insufficient compatibility of the implemented building materials causatively related to the strong decay of the Drachenfels trachyte?” The present investigations focus on the petrography and mineralogical composition of eight different stones from the Cologne Cathedral. Petrophysical data, i.e., phase content, moisture and thermal characteristics as well as strength properties are determined and discussed in correlation to each other, showing that not only in terms of lithology great differences exist, but also the petrophysical properties strongly diverge. The ascertained parameters are discussed in view of the deterioration behavior and decay mechanisms of the different stones. To evaluate the compatibility of original, replacement and modern building materials, the properties of the investigated stones are compared to those of Drachenfels trachyte by means of constraints given in the literature. Besides optical properties, petrophysical criteria are also defined as well as strength values. It could be shown that primarily moisture properties, i.e., capillary and sorptive water uptake, water saturation, drying processes and moisture dilatation can be addressed to the deterioration processes.  相似文献   

14.
Ten dolerite dikes intruded into Triassic fault troughs in the Piedmont area of North Carolina have been analyzed for the contents of major elements plus selected trace elements. The average composition of the initial magma, as indicated by four chill margins for major elements and three for trace elements, is: SiO2, 48.6%; Al2O3, 16.9%; TiO2, 0.57%; Fe2O3, 3.30%; FeO, 6.72%; MgO, 10.59; CaO, 10.42%; Na2O, 2.03%; K2O, 0.20%; MnO, 0.20%; Rb, 2.6 ppm; Sr, 133 ppm; Zr, 46 ppm; Th, 0.4 ppm; and U, below detection limit of approximately 0.1 ppm. One large dike (BP) exhibits a Palisades-type of differentiation by crystal settling of olivine, and the comparatively thick JY dike shows development of micropegmatite toward the center; the smaller dikes, however, are relatively homogeneous across their width. Study of the relationship between SiO2 content and the ratio FeO+Fe2O3/MgO+ FeO+Fe2O3 indicates that most dikes crystallize under conditions of decreasing oxygen pressure, but the differentiation trend of the JY, RD, and RS dikes indicates either constant or increasing oxygen pressure during their evolution.Statistical comparison of the composition of the initial dolerite magmas with a variety of basalt types around the world suggests that the North Carolina dolerites are far more similar to oceanic or oceanic margin tholeiites than to continental tholeiites. The North Carolina rocks are distinctly different from plateau basalts but are similar to the chill zones of the Precambrian Bushveld and Stillwater lopoliths. The comparatively low contents of Th, U, and Sr, plus the relatively high K/Rb ratio all support the possibility that the magmas for the North Carolina dolerites evolved in a dominantly oceanic environment. It seems distinctly possible that continental-type crust and mantle did not exist in the Appalachian Piedmont area in Triassic time, even after major orogeny and the concurrent formation of granitic intrusions.  相似文献   

15.
During the Late Paleozoic or Early Mesozoic the Zayarskaya dolerites (diabases) were intruded into rocks of the Lower Cambrian Usol'ye series (salt strata separated by carbonate and sulfate-carbonate layers) in the Angara-Ilim watershed area of the Irkutsk amphitheater. Both field observations of the two dolerites intruded into salt strata and experimental data on the system dolerite-NaC1 indicate these dolerites were implaced at low water-vapor pressures. They appear little changed except for veinlets or inclusions of halite and calcite, and rocks of skarn mineralogy result where they have intruded nonsalt strata. Contacts between dolerites and salt are sharp, and between the NaCl and dolerite melts none of intermediate composition were found experimentally. In general, iron-bearing sublimates are evolved from the superposition of trap magma onto halogen rocks. No migration of volatile iron chlorides is evident in the Zayarskaya intrusives because the requisite high water-vapor pressures and outlet channels (fissure system, fractures, etc.) were absent. – P. W. Wood.  相似文献   

16.
X射线粉晶衍射仪鉴别鸡血石   总被引:11,自引:6,他引:5  
迟广成  王娜  吴桐 《岩矿测试》2010,29(1):71-73
鸡血石品种按产地可划分为昌化鸡血石和巴林鸡血石两种,根据鸡血石的血色、血量、浓度、血型和地子的颜色、透明度、光泽、硬度、杂质及裂绺等综合特征,可区分昌化鸡血石和巴林鸡血石。通过X射线粉晶衍射仪测试,能快速准确地区分昌化鸡血石和巴林鸡血石,并鉴定鸡血石中血的真假。  相似文献   

17.
A Middle Paleozoic tectonothermal event in the eastern Siberian craton was especially active in the area of the Vilyui rift, where it produced a system of rift basins filled with Devonian–Early Carboniferous volcanics and sediments, as well as long swarms of mafic dikes on the rift shoulders. Basalts occur mostly among Middle Devonian sediments and are much less spread in Early Carboniferous formations. The dolerite dikes of the Vilyui–Markha swarm in the northwestern rift border coexist with the Mirnyi and Nakyn fields of diamond-bearing kimberlites. The voluminous dikes and sills intruded before the emplacement of kimberlites. The Mir kimberlite crosscuts a dolerite sill and a dike in the Mirnyi field, while a complex dolerite dike (monzonite porphyry) cuts through the Nyurba kimberlite in the Nakyn field. Thus, the kimberlites correspond to a longer span of Middle Paleozoic basaltic magmatism. The basalts in Middle Paleozoic sediments have faunal age constraints, but the age of dolerite dikes remains uncertain. The monzonite porphyry dike in the Nyurba kimberlite has been dated by the 40Ar/39Ar method, and the obtained age must be the upper bound of the dike emplacement. The space and time relations between basaltic and kimberlitic magmatism were controlled by Devonian plume–lithosphere interaction.  相似文献   

18.
Lycian ophiolites located in the Western Taurides, are cut at all structural levels by dolerite and gabbro dikes. The dolerite dikes from this area are both pristine and metamorphosed. The non-metamorphosed dikes are observed both in the peridotites and in the metamorphic sole rocks. Accordingly, the non-metamorphosed dikes cutting the metamorphic sole were generated after cooling of the metamorphic sole rocks. The metamorphosed dolerite dikes are only observed in the peridotites. The physical conditions and timing of the metamorphism for the metamorphosed dolerite dikes are similar to those of the metamorphic sole rocks of the Lycian ophiolites suggesting that the metamorphosed dolerite dikes were metamorphosed together with the metamorphic sole rocks. Therefore, the dike injections in the western part of the Tauride Belt Ophiolites occurred before and after the generation of the metamorphic sole rocks. All metamorphosed and non-metamorphosed dikes are considered to have the same origin and all of them are subduction-related as inferred from whole-rock geochemistry and lead isotopes. Lead isotope compositions of whole rocks of both dike groups cluster in a narrow field in conventional Pb isotope diagrams (206Pb/204Pb = 18.40–18.64; 207Pb/204Pb = 15.56–15.58; 208Pb/204Pb = 38.23–38.56) indicating a derivation from an isotopically homogeneous source. On the 207Pb/204Pb versus 206Pb/204Pb diagram, isotope compositions of the dikes plot slightly below the orogen curve suggesting contributions from mantle reservoir enriched by subducted oceanic lithosphere. Such a signature is typical of island arc magmatic rocks and supports the formation of the investigated rocks in a subduction-related environment.  相似文献   

19.
New structural and petrogeochemical data are obtained on poorly known dikes composed of quartz dolerites of andesite–basaltic composition and located at the northwestern termination of the Murmansk block (Kola Craton). These data allowed us to compare the studied dikes with more well-known units from the dike swarm in the area of the settlement of Liinakhamari and the volcanics of the Pechenga structure, and to discuss their joint geodynamic position. Dolerite dikes are 2.3 Ga in age and intrude granites and plagiogranites of 2.4 and 2.8 Ga in age, respectively. The specificity of the composition of the rocks of andesite–basaltic composition from the dike series, as well as that of the volcanics from the first (Akhmalakhti) formation of the Pechenga structure, is determined by their structural position in the marginal part of the “fading” Sumian plume and in the zone of dynamic influence of regional strike–slip fault zones.  相似文献   

20.
Dolerite sills, at times transgressive, and dykes are common at Majuba Colliery. Their behaviour within the Karoo stratigraphic pile limits and controls the effectiveness of extracting the deep-seated Gus coal seam. Due to the intrusion of dolerites, the coal seam elevation can vary by as much as 70 m. Data from 452 boreholes, 88 of which were drilled to granitic gneiss basement and data from the underground development were used to construct cross-sections through the colliery. Based on texture, geochemistry and mode of emplacement, there exist four different dolerite types (T1 to T4) at Majuba. These are intruded into sedimentary rocks of the Karoo Supergroup although one, the T3 dolerite, has been found intruded into basement gneiss. In the east, an ultramafic intrusion of pre-Karoo Supergroup age created a basement high. By far, the greatest number of dolerite sills intruded within a sandstone unit, and have identical sandstones in the footwall and hangingwall, rather than intruding along lithological boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号