首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface of the northern martian ice cap is known to contain alternating white-dark scarp-trough features, and one method of their formation involves spatially coherent patterns of ice accumulation and ablation via sublimation. In this so-called “accublation” model, the internal ice sheet layers submerge into the ice sheet across the accumulation zone and emerge to the ice surface across the ablation region. Here we report on an Antarctic analogy to the martian accublation model, which demonstrates that surface mass balance conditions actually affect internal ice-sheet structure as predicted by D. A. Fisher (2000, Icarus144, 289-294). This analogy shows how it is possible for ancient ice to become exposed at the surface of an ice sheet, allowing the paleoclimate record stored within the ice to be measured without the need for deep ice coring.  相似文献   

2.
The Antarctic ice cap is the largest ice sheet of modern times. It is of considerable importance to predict the sea level variability due to the associated changes in ice volume. We present the results of a simple grounded ice sheet model, developed from Oerlemans [Oerlemans, J., 2002. Global dynamics of the Antarctic Ice Sheet, Climate Dynamics 19, 85–93.], in which the net oceanic evaporation influences the ice cap volume in two ways, through changes in: (i) the accumulation rate, and (ii) the mean sea level. The net evaporation changes are driven by the sea surface temperature (SST) anomaly time series of Howard [Howard, W.R., 1997. A warm future in the past, Nature, 388, 418–419.] for the subantarctic Southern Ocean over the period 220 kyr to the present. The effect of the waxing and waning of the northern hemisphere ice sheets is integrated into the model using an independent model, in which ice melting depends on the SST anomaly and ice calving depends on the sea level anomaly. A series of analytical expressions are derived for the related properties of the coupled ocean–ice system applicable over time scales of 100 kyr, which show, in particular, that the Antarctic ice cap volume changes are due mainly to the effects of the northern hemisphere ice sheets on sea level (which influences ice calving), rather than directly to changes in SST, and hence the ice cap volume is greatest during interglacial periods. This conclusion, which is independent of the specification of the ice melting regime for the northern hemisphere ice sheets, strongly suggests that the changes in accumulation flux estimated from the Vostok proxy temperature data and used in other studies of the Antarctic mass balance have been overestimated. A simple expression is also presented for the lag of ice cap volume to SST, and it is found that the predictions for the mean sea level variability are similar to observations for a melting flux of the northern hemisphere ice sheets about twice their accumulation flux due to the net oceanic evaporation, except during major deglaciations when these two fluxes appear to be of similar magnitude.  相似文献   

3.
Increased melting on glaciers and ice sheets and rising sea level are often mentioned as important aspects of the anticipated greenhouse warming of the earth's atmosphere. This paper deals with the sensitivity of Greenland's ice mass budget and presents a tentative projection of the Greenland component of future sea level rise for the next few hundred years. To do this, the ‘Villach II temperature scenario’ is prescribed,output from a comprehensive mass balance model is used to drive a high-resolution 3-D thermomechanic model of the ice sheet.The mass balance model consists of two parts: the accumulation part is based on presently observed values and is forced by changes in mean anr tempeerature. The ablation model is based on the degree-day method and accounts for daily and annual temperature cycle, a different degree-day factor for ice and snow melting and superimposed ice formation. Under present-day climatic conditions, the following total mass balance results (in ice equivalent per years): 599.3 × 109 m3 of accumulation, 281.7 × 109m3 of runoff assuming a balanced budget, 317.6 × 109m3 of iceberg calving. A 1K uniform warming is then calculated to increase the runoff by 119.5 × 109 m3. Since accumulation also increases by 32 × 109 m3, this leads to reduction of the total mass balance by 887.5 × 109 m3 of ice, corresponding to a sea level rise of 0.22 mm/yr. For temperature increase larger than 2.7 K, runoff, exceeds accumulation, and if ice sheet dynamics were to remain unchanged, this would add an extra amount of 0.8 mmyr to the worl's oceans.Imposing the Villach II scenario (warming up to 4.23 K) and accumulating mass balance changes forward in time (static response) would then result in a global sea level rise of 7.1 cm by 2100 AD, but this figure may go up to as much as 40 cm per century in case the warming is doubled. In a subsequent dynamic model involving the ice flow, the ice sheet is found to produce a counteracting effect by dynamically producing steeper slopes at the margin, thereby reducing the area over which runoff can take place. This effect is particularly apparent in the northeastern part of the ice sheet, and is also more pronounced for the smaller temperature perturbations. Nevertheless, all these experiments certainly highlight the vulnerability of the Greenland ice sheet with respect to a climatic warming.  相似文献   

4.
The sensitivity of the ocean circulation to changes in North Atlantic surface fluxes has become a major factor in explaining climate variability. The role of the Antarctic Bottom Water in modulating this variability has received much less attention, limiting the development of a complete understanding of decadal to millennial time-scale climate change. New analyses indicate that the southern deepwater source may change dramatically (e.g., experience a decrease of as much as two thirds during last 800 years). Such change can substantially alter the ocean circulation patterns of the last millennium. Additional analyses indicate that the Southern Hemisphere led the Northern Hemisphere changes in some of the glacial cycles of Pleistocene, implying a seesaw-type oscillation of the global ocean conveyor. The potential for melting of sea ice and ice sheets in the Antarctica associated with global warming can cause a further slowdown of the southern deepwater source. These results demand an assessment of the role of the Southern Ocean in driving changes of the global ocean circulation and climate. Systematic model simulation targeting the ocean circulation response to changes in surface salinity in the high latitudes of both Northern and Southern Hemispheres demonstrate that meltwater impacts in one hemisphere may lead to a strengthening of the thermohaline conveyor driven by the source in the opposite hemisphere. This, in turn, leads to significant changes in poleward heat transport. Further, meltwater events can lead to deep-sea warming and thermal expansion of abyssal water, that in turn cause a substantial sea-level change even without a major ice sheet melting.  相似文献   

5.
Abstract— Antarctic meteorites have been and are being well studied but the potential for glaciological and climatological information in the sites where they are found is only beginning to be realized. To date, meteorite stranding surfaces have been identified only in East Antarctica: (1) The MacKay Glacier/David Glacier region contains the Allan Hills and the Reckling Moraine/Elephant Moraine stranding surfaces. Because the Allan Hills Main Icefield has a large proportion of meteorites with long terrestrial ages, these concentrations of meteorites must have had catchment areas extending well inland, in contrast to the present. Where known, bedrock topography is mesa-like in form and influences ice flow directions. Ice levels at the Allan Hills may have been higher by 50–100 m in the past. Reckling Moraine and Elephant Moraine are located on a long patch of ice running westward from Reckling Peak; the ice appears to be pouring over a bedrock escarpment. (2) In North Victoria Land, ice diverges around Frontier Mountain and flows into a site behind the barrier where ablation occurs extensively. It is proposed that meteorites and rocks were dumped by ice flow at the mouth of a valley in the lee of the mountain at the site where a meltwater pond existed, in a depression produced by ablation. Later, the pond migrated headward along the valley to a point where it is today, leaving a morainal deposit with the meteorites at a higher level. (3) Between the Beardmore and Law Glaciers, ice flows sluggishly into the southwestern margin of the Walcott Névé. Northeastern sections of the Walcott are virtually barren of meteorites. The entering Plateau ice is diverted northward to flow along the base of Lewis Cliff. This flow apparently terminates in an ice tongue protruding into a vast moraine, where a very large concentration of meteorites was found on the ice. This final segment of flowing ice is called the Lewis Cliff Ice Tongue. Meteorite Moraine, a subsidiary occurrence 2 km to the northeast, is also found against morainal deposits. The origin of the moraines and the history of meteorite concentration at this site is the subject of some debate. (4) The Transantarctic Mountains are submerged along one segment many hundreds of km in length by ice flowing off the Polar Plateau. The Thiel Mountains, Pecora Escarpment and Patuxent Range are the only surface indications of the underlying mountains along this interval, and meteorite stranding surfaces are found at each of these sites. Little is yet known about ice dynamics at these sites. (5) The immense Yamato Mountains meteorite stranding surface covers an area of about 4000 km2. So far, most meteorites have been recovered in the upper reaches of this blue ice field, where ice flow is slowed by outlying subice barriers of the Yamato Mountains. Individual massifs in this range extend northward over 50 km, and the Yamato Meteorite Icefield loses 1100 m in elevation over this distance. (6) The Sør Rondane Mountains form a barrier to ice flow off the Polar Plateau. The major meteorite stranding surface associated with this barrier is the Nansenisen Icefield, a large ablation area about 50 km upstream of the mountains. The existence of a meteorite stranding surface at this site has not been explained so far. Most meteorite stranding surfaces have been functioning for a long time. They are sites where net ablation of the surface is occurring; the ice at these sites is stagnant or flowing only slowly, and the numbers of meteorites with great terrestrial ages decrease exponentially. Concentration mechanisms operating at these sites involve ablation, direct infall, time, low temperatures, moderate weathering and wind ablation. Detrimental to concentration are ice flow out of the area and extreme weathering. In spite of the fact that the Antarctic Ice Sheet is thought to be over 10 Ma old, we do not find stranding surfaces with meteorites having greater terrestrial ages than 1 Ma. This suggests that stranding surfaces are transient features, affected on a continental scale by possible extreme warming during late Pliocene and on a smaller scale by regional changes that produce differential effects between icefields. The latter effect is suggested by differences in the average terrestrial age of meteorites at different stranding surfaces. In either case, these sites seem to appear as a result of thinning near the edges of the ice sheet, and stratigraphic sequences may be exposed in the ice at stranding surfaces. We review five models for the production of meteorite stranding surfaces: (1) simple deflation of the ice sheet, in which ablation removes great thicknesses of overlying ice, exposing the contained meteorites while allowing direct falls to accumulate, (2) simple accumulation of direct falls on a bare ice surface that is not deflating, (3) ablation of ice trapped against a barrier, in which meteorites accumulate by direct infall while inflowing ice contributes meteorites by ablation discovery, (4) deceleration of ice by a subice barrier, which allows ablation discovery of meteorites in incoming ice and accumulation of other meteorites on the surface by direct infall and (5) stagnation of ice by encounter with an ice mass able to produce an opposing flow vector, in which ablation discovery and direct infall accumulation processes operate to build the meteorite concentration.  相似文献   

6.
Previous studies have examined the effect of reduced Arctic sea ice cover on the circulation of climate models. Generally, the response is restricted to high northern latitudes. Here we examine a variant on those simulations, specifying both reduced Arctic sea ice cover and no Greenland ice sheet. The GENESIS general circulation model is used in these experiments. As in earlier studies, we find the effect limited primarily to the high latitudes of the northern hemisphere, being greater in winter than in summer. New results reported herein involve: (1) in winter reduced Arctic ice cover has a significantly greater effect than reduced Greenland ice cover; (2) reduced ice cover had little effect on location of the winter freezing line over North America and Eurasia; (3) removal of ice caused a 30–50% increase in precipitation in high northern latitudes; however there were no significant effects elsewhere. This result does not support the hypothesis that past changes in Arctic ice cover were responsible for significant changes in area of tropical rainforests; (4) there is a peculiar surface pressure anomaly that extends into the high latitudes of the southern hemisphere. This anomaly may be a spurious artifact of the effect of the removed Greenland ice sheet on the spherical harmonic expansion terms in the model. These sensitivity experiments should serve as a useful frame of reference for future Pliocene simulations with a more complete set of altered boundary conditions.  相似文献   

7.
If we assume that the Martian outflow channels are result of sporadic melting of ground ice, their planet-wide distribution could imply that a sheet of ice once covered Mars. This ice sheet could have acted, in a similar manner as Hoyle's oceanic meteoric dust suspension layer model as an initiator of a Martian ice age which would be responsible for the decline of valley network formation at the end of the heavy bombardment period.  相似文献   

8.
Recent studies have pointed out that persistence of the atmospheric circulation over Europe, as measured by residence times of circulation types, has increased since the mid-1980s in all seasons and for most groups of the types. The greater persistence may affect surface climatic anomalies, particularly the frequency and severity of heat and cold waves associated with severe impacts on society and environment. In this paper, relationships between the persistence of circulation types over Europe and extreme surface air temperature anomalies are studied over the 20th century using the Hess–Brezowsky catalogue of large-scale circulation patterns and long-term temperature series at stations covering most of the European continent. Types significantly conducive to heat and cold waves are identified, and temperature anomalies are linked to their persistence. It is shown that more persistent circulation enhances the severity of temperature extremes over the whole area, which is slightly more important for warm than cold temperature anomalies. The changes in both frequencies and residence times of circulation patterns have been supporting sharply rising trends in warm temperature extremes observed over Europe in recent decades, and the circulation changes may also contributed to the fact that trends in cold temperature extremes have been less pronounced or absent in the same period. The findings also emphasize the need for taking into account the persistence of circulation types together with their frequencies when evaluating links between the atmospheric circulation and the surface climate. In global warming context, the effects of the future climate change on the occurrence and severity of temperature extremes may be exacerbated by a more persistent circulation related to a decreased cyclone activity over mid-latitudes and a northward shift of storm tracks.  相似文献   

9.
It is well-known that the permanent terrestrial ice sheets (glaciers and polar caps) contain a lot of information about the recent geological history and in particular about climatic changes. Extrapolating this fact to other ice sheets in the solar system (e.g. the Mars polar regions, the icy moons of the outer planets, etc.), we may expect a similar wealth of information. To obtain this information it is possible to drill holes or melt the ice by a heated probe, which in this way is able to penetrate the surface and investigate the deeper layers in situ. In the latter case the driving agent is the heating power and the weight of the probe. In this paper we consider the application of such “melting probes” for exploring the structure of ice sheets in extraterrestrial environments. We describe several laboratory experiments with simple melting probes performed under cryo-vacuum conditions and compare the results with tests in a terrestrial environment. The experiments revealed that under space conditions the downward motion of a heated probe in an ice sheet is characterized by intermittent periods of sublimation and melting of the surrounding ice, sometimes interrupted by periods where a part of the probe's outer surface is frozen to the surrounding ice. This leads to a temporary blocking of the probe's downward motion. A similar situation can occur when the trailing tether is frozen in behind the probe. During the periods of ice sublimation the penetration process is significantly more power consuming, due to the large difference between the latent heat of sublimation and the latent heat of melting for water ice.  相似文献   

10.
Caleb I. Fassett 《Icarus》2007,189(1):118-135
Ceraunius Tholus, a Hesperian-aged volcano in the Tharsis region, is characterized by small radial valleys on its flanks, and several larger valleys originating near its summit caldera. All of these large valleys drain from near the lowest present portion of the caldera rim and down the flanks of the volcano. The largest valley debauches into Rahe Crater (an oblique impact crater), forming a depositional fan. Recent study of climate change on Mars suggests that many low-latitude regions (especially large volcanic edifices) were periodically the sites of snow accumulation, likely triggered by variations in spin orbital parameters. We apply a conductive heat flow model to Ceraunius Tholus that suggests that following magmatic intrusion, sufficient heating would be available to cause basal melting of any accumulated summit snowpack and produce sufficient meltwater to cause the radial valleys. The geometry of the volcano summit caldera suggests that meltwater would also accumulate in a volumetrically significant caldera lake. Analysis of the morphology and volumes of the largest valley, as well as depositional features at its base, suggest that fluvial erosion due to drainage of this summit caldera lake formed the large valleys, in a manner analogous to how valleys were formed catastrophically from a lake in Aniakchak caldera in Alaska. Moreover, the event which carved the largest valley on Ceraunius Tholus appears to have led to the formation of a temporary lake within Rahe Crater, at its base. The more abundant, small valleys on the flanks are interpreted to form by radial drainage of melted ice or snow from the outside of the caldera rim. Comparison of Ceraunius Tholus with the volcano-capping Icelandic ice sheet Myrdalsjokull provides insight into the detailed mechanisms of summit heating, ice-cap accumulation and melting, and meltwater drainage. These observations further underline the importance of a combination of circumstances (i.e., climate change to produce summit snowpack and an active period of magmatism to produce melting) to form the valley systems on some martian volcanoes and not on others.  相似文献   

11.
The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface heat flux from a recently presented new hypothesis for the formation of Aram Chaos (Zegers, T.E., Oosthoek, J.H.P., Rossi, A.P., Blom, J.K., Schumacher, S. [2010]. Earth Planet. Sci. Lett. 297, 496-504. doi:10.1016/j.epsl.2010.06.049.). In this hypothesis the chaotic terrain is thought to have formed by melting of a buried ice sheet. The slow sedimentation and burial of the ice sheet led to an increased thermal insulation of the ice and subsequently to a temperature increase high enough to trigger melting and the formation of the subsurface lake. As these processes highly depend on the thermal properties of the subsurface and especially on the surface heat flux, it is possible to constrain the latter by using numerical simulations. Based on the hypothesis for the formation of Aram Chaos, we conducted an extensive parameter study to determine the parameter settings leading to sufficient melting of the buried ice sheet. We find that the surface heat flux in the Aram Chaos region during the Hesperian was most likely between 20 and 45 mW m−2 with a possible maximum value of up to 60 mW m−2.  相似文献   

12.
The land surface of what is now the Barents Sea region may have been eroded to a sub-aerial platform prior to the Quaternary, due to both tectonic uplift-induced and sea-level lowering-induced erosion processes. The Barents Sea was then further eroded into its present form by the subsequent action of ice sheets. Two bedrock configurations, representing the pre-Quaternary sub-aerial Barents Shelf topography and the largely submarine morphology of the present day, were used as input to a glaciological ice sheet model so that the dynamic evolution of the maximum-sized ice sheets, caused solely by a change in bedrock elevation, could be identified. The ice-sheet model was run under constant glacial environmental conditions, until mass balance stability was reached, over both bedrock configurations. The simple parabolic ice sheet surface, which formed on a flat sub-aerial bedrock platform, was found to be significantly different in dynamic character compared with an ice sheet developed on the present submarine bedrock topography. In this latter situation, the central ice dome is drained by ice streams in Bjørnøyrenna, Storfjordrenna and smaller outlet glaciers in the north of the ice sheet.  相似文献   

13.
We use Viking and new MGS and Odyssey data to characterize the lobate deposits superimposed on aureole deposits along the west and northwest flanks of Olympus Mons, Mars. These features have previously been interpreted variously as landslide, pyroclastic, lava flow or glacial features on the basis of Viking images. The advent of multiple high-resolution image and topography data sets from recent spacecraft missions allow us to revisit these features and assess their origins. On the basis of these new data, we interpret these features as glacial deposits and the remnants of cold-based debris-covered glaciers that underwent multiple episodes of advance and retreat, occasionally interacting with extrusive volcanism from higher on the slopes of Olympus Mons. We subdivide the deposits into fifteen distinctive lobes. Typical lobes begin at a theater-like alcove in the escarpment at the base of Olympus Mons, interpreted to be former ice-accumulation zones, and extend outward as a tongue-shaped or fan-shaped deposit. The surface of a typical lobe contains (moving outward from the basal escarpment): a chaotic facies of disorganized hillocks, interpreted as sublimation till in the accumulation zone; arcuate-ridged facies characterized by regular, subparallel ridges and interpreted as the ridges of surface debris formed by the flow of underlying ice; and marginal ridges interpreted as local terminal moraines. Several lobes also contain a hummocky facies toward their margins that is interpreted as a distinctive type of sublimation till shaped by structural dislocations and preferential loss of ice. Blocky units are found extending from the escarpment onto several lobes; these units are interpreted as evidence of lava-ice interaction and imply that ice was present at a time of eruptive volcanic activity higher on the slopes of Olympus Mons. Other than minor channel-like features in association with lava-ice interactions, we find no evidence for the flow of liquid water in association with these lobate features that might suggest: (1) near-surface groundwater as a source for ice in the alcoves in the lobe source region at the base of the scarp, or (2) basal melting and drainage emanating from the lobes that might indicate wet-based glacial conditions. Instead, the array of features is consistent with cold-based glacial processes. The glacial interpretations outlined here are consistent with recent geological evidence for low-latitude ice-rich features at similar positions on the Tharsis Montes as well as with orbital dynamic and climate models indicating extensive snow and ice accumulation associated with episodes of increased obliquity during the Late Amazonian period of the history of Mars.  相似文献   

14.
Internal layers in ice masses can be detected with ice-penetrating radar. In a flowing ice mass, each horizon represents a past surface that has been subsequently buried by accumulation, and strained by ice flow. These layers retain information about relative spatial patterns of accumulation and ablation (mass balance). Internal layers are necessary to accurately infer mass-balance patterns because the ice-surface shape only weakly reflects spatial variations in mass balance. Additional rate-controlling information, such as the layer age, the ice temperature, or the ice-grain sizes and ice-crystal fabric, can be used to infer the absolute rate of mass balance. To infer mass balance from the shapes of internal layers, we solve an inverse problem. The solution to the inverse problem is the best set or sets of unknown boundary conditions or initial conditions that, when used in our calculation of ice-surface elevation and internal-layer shape, generate appropriate predictions of observations that are available. We also show that internal layers can be used to infer martian paleo-surface topography from a past era of ice flow, even though the topography may have been largely altered by subsequent erosion. We have successfully inferred accumulation rates and surface topography from internal layers in Antarctica. Using synthetic data, we demonstrate the ability of this method to solve the corresponding inverse problem to infer accumulation and ablation rates, as well as the surface topography, for martian ice. If past ice flow has affected the shapes of martian internal layers, this method is necessary to infer the spatial pattern and rate of mass balance.  相似文献   

15.
Currently, and throughout much of the Amazonian, the mean annual surface temperatures of Mars are so cold that basal melting does not occur in ice sheets and glaciers and they are cold-based. The documented evidence for extensive and well-developed eskers (sediment-filled former sub-glacial meltwater channels) in the south circumpolar Dorsa Argentea Formation is an indication that basal melting and wet-based glaciation occurred at the South Pole near the Noachian–Hesperian boundary. We employ glacial accumulation and ice-flow models to distinguish between basal melting from bottom-up heat sources (elevated geothermal fluxes) and top-down induced basal melting (elevated atmospheric temperatures warming the ice). We show that under mean annual south polar atmospheric temperatures (?100 °C) simulated in typical Amazonian climate experiments and typical Noachian–Hesperian geothermal heat fluxes (45–65 mW/m2), south polar ice accumulations remain cold-based. In order to produce significant basal melting with these typical geothermal heat fluxes, the mean annual south polar atmospheric temperatures must be raised from today’s temperature at the surface (?100 °C) to the range of ?50 to ?75 °C. This mean annual polar surface atmospheric temperature range implies lower latitude mean annual temperatures that are likely to be below the melting point of water, and thus does not favor a “warm and wet” early Mars. Seasonal temperatures at lower latitudes, however, could range above the melting point of water, perhaps explaining the concurrent development of valley networks and open basin lakes in these areas. This treatment provides an independent estimate of the polar (and non-polar) surface temperatures near the Noachian–Hesperian boundary of Mars history and implies a cold and relatively dry Mars climate, similar to the Antarctic Dry Valleys, where seasonal melting forms transient streams and permanent ice-covered lakes in an otherwise hyperarid, hypothermal climate.  相似文献   

16.
A review of remote sensing methods for glacier mass balance determination   总被引:3,自引:2,他引:1  
Airborne and satellite remote sensing is the only practical approach for deriving a wide area, regional assessment of glacier mass balance. A number of remote sensing approaches are possible for inferring the mass balance from some sort of proxy estimate. Here, we review the key methods relevant, in particular to Andean glaciers, discussing their strengths and weaknesses, and data sets that could be more fully exploited. We also consider future satellite missions that will provide advances in our observational capabilities. The methods discussed include observation of elevation changes, estimation of ice flux, repeat measurement of changes in spatial extent, snowline elevation and accumulation–ablation area ratio estimation. The methods are illustrated utilising a comprehensive review of results obtained from a number of studies of South American glaciers, focusing specifically on the Patagonian Icefields. In particular, we present some new results from Glaciar Chico, Southern Patagonian Icefield, Chile, where a variety of different satellite and in-situ data have been combined to estimate mass balance using a geodetic or elevation change approach over about a 25 yr period.  相似文献   

17.
We examine the response of Martian climate to changes in solar energy deposition caused by variations of the Martian orbit and obliquity. We systematically investigate the seasonal cycles of carbon dioxide, water, and dust to provide a complete picture of the climate for various orbital configurations. We find that at low obliquity (15°) the atmospheric pressure will fall below 1 mbar; dust storms will cease; thick permanent CO2 caps will form; the regolith will release CO2; and H2O polar ice sheets will develop as the permafrost boundaries move poleward. At high obliquity (35°) the annual average polar temperature will increase by about 10°K, slightly desorbing the polar regolith and causing the atmospheric pressure to increase by not more than 10 to 20 mbar. Summer polar ground temperatures as high as 273°K will occur. Water ice caps will be unstable and may disappear as the equilibrium permafrost boundary moves equatorward. However, at high eccentricity, polar ice sheets will be favored at one pole over the other. At high obliquity dust storms may occur during summers in both hemispheres, independent of the eccentricity cycle. Eccentricity and longitude of perihelion are most significant at modest obliquity (25°). At high eccentricity and when the longitude of perihelion is close to the location of solstice hemispherical asymmetry in dust-storm generation and in polar ice extent and albedo will occur.The systematic examination of the relation of climate and planetary orbit provides a new theory for the formation of the polar laminae. The terraced structure of the polar laminae originates when eccentricity and/or obliquity variations begin to drive water ice off the dusty permanent H2O polar caps. Then a thin (meters) layer of consolidated dust forms on top of a dirty, slightly thicker (tens of meters) ice sheet and the composite is preserved as a layer of laminae composed predominately of water ice. Because of insolation variation on slopes, a series of poleward- and equatorward-facing scarps are formed where the edges of the laminae are exposed. Independently of orbital variations, these scarps propagate poleward both by erosion of the equatorward slopes and by deposition on the poleward slopes. Scarp propagation resurfaces and recycles the laminae forming the distinctive spiral bands of terraces observed and provides a supply of water to form new permanent ice caps. The polar laminae boundary marks the furthest eqautorward extension of the permanent H2O caps as the orbit varies. The polar debris boundary marks the furthest equatorward extension of the annual CO2 caps as the orbit varies.The Martian regolith is now a significant geochemical sink for carbon dioxide. CO2 has been irreversibly removed from the atmosphere by carbonate formation. CO2 has also benn removed by regolith adsorption. Polar temperature increases caused by orbital variations are not great enough  相似文献   

18.
The Greenland ice sheet through the last glacial-interglacial cycle   总被引:1,自引:0,他引:1  
The evolution of the Greenland ice sheet during the last 150,000 years, in response to a climate history derived from a Greenland ice-margin oxygen-18 record, is simulated by means of a three-dimensional, time-dependent ice-sheet model. The calculations indicate that the ice sheet displayed considerable thinning and ice-margin retreat during the last interglacial (the Eemian) and during a warm interstadial c. 100,000 yr B.P., resulting in a splitting up of the ice sheet into a central-northern and a southern part. However, the ice sheet in Central Greenland survived the warm stages with almost unchanged surface elevations as compared with the present.  相似文献   

19.
A coupling procedure between a climate model of intermediate complexity (CLIMBER-2.3) and a 3-dimensional thermo-mechanical ice-sheet model (GREMLINS) has been elaborated. The resulting coupled model describes the evolution of atmosphere, ocean, biosphere, cryosphere and their mutual interactions. It is used to perform several simulations of the Last Deglaciation period to identify the physical mechanisms at the origin of the deglaciation process. Our baseline experiment, forced by insolation and atmospheric CO2, produces almost complete deglaciation of past northern hemisphere continental ice sheets, although ice remains over the Cordilleran region at the end of the simulation and also in Alaska and Eastern Siberia. Results clearly demonstrate that, in this study, the melting of the North American ice sheet is critically dependent on the deglaciation of Fennoscandia through processes involving switches of the thermohaline circulation from a glacial mode to a modern one and associated warming of the northern hemisphere. A set of sensitivity experiments has been carried out to test the relative importance of both forcing factors and internal processes in the deglaciation mechanism. It appears that the deglaciation is primarily driven by insolation. However, the atmospheric CO2 modulates the timing of the melting of the Fennoscandian ice sheet, and results relative to Laurentide illustrate the existence of threshold CO2 values, that can be translated in terms of critical temperature, below which the deglaciation is impeded. Finally, we show that the beginning of the deglaciation process of the Laurentide ice sheet may be influenced by the time at which the shift of the thermohaline circulation from one mode to the other occurs.  相似文献   

20.
Fifty-two kilometres of multi-channel seismic reflection data were acquired from the southern McMurdo Ice Shelf (SMIS) during potential drill site investigations for the Antarctic Drilling (ANDRILL) program. The survey was acquired atop 110 to 220 m of floating ice and extended across ablation and accumulation zones of the ice shelf. Seismic processing was tailored to the ice shelf environment, including: datum static corrections to account for changes in the thickness and average velocity of the near-surface firn layer, and changes in the surface elevation across the survey area; residual static corrections to account for near-surface ice shelf irregularities; and two-step predictive deconvolution to suppress ice and firn layer multiples. A model for the ice shelf thickness was also incorporated in the interval velocity model during depth conversion to ensure that the ice shelf structure did not impose non-static shifts on the seismic section.The depth converted CMP stacked sections reveal several N to NE trending normal faults, that offset reflective horizons by up to 150 m within the lower part of the section and form a broad east-dipping, half-graben structure. The seafloor possesses trough and arch morphology in parallel with the half-graben structure. These features are interpreted as the southern extension of the Terror Rift. The rift succession comprises a dislocated (?)early-Miocene synrift package and a relatively undeformed (?)late-Miocene post-rift package separated by an erosional unconformity. The post-rift package infills and onlaps the rift topography, and drapes over the graben system, reaching a maximum thickness of 400 m. Throughout the post-rift phase, the basin was also influenced by Neogene volcanism, evidenced by three small volcanic features within the seismic profiles, and associated successions of inferred volcanic material. An angular unconformity within the post-rift succession is interpreted as a flexural horizon related to the load of Mount Discovery and/or Mount Morning. Up to 150 m of flexural moat fill occurs above this surface at ~ 20 km from the load centres. The post-rift succession also includes several glacio-geomorphic features, the orientation and morphology of which indicate an approximately SW to NE ice flow direction during a mid-Miocene grounding event and a SE to NW ice flow direction during Quaternary ice sheet grounding events.The thickness and lower extent of the rift succession was not able to be determined because signal-to-noise ratio and vertical resolution were low at these depths. Strata from an earlier, Paleogene, rift episode may underlie the Terror Rift succession, or it may be directly underlain by acoustic basement. A Paleogene rift episode has previously been proposed based on the occurrence of Eocene fossiliferous erratics around the margin of the SMIS and the structural setting revealed by the SMIS seismic reflection profiles is consistent with this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号