首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity of TC intensification and track to the initial inner-core structure on a β plane is investigated using a numerical model. The results show that the vortex with large inner-core winds(CVEX-EXP) experiences an earlier intensification than that with small inner-core winds(CCAVE-EXP), but they have nearly the same intensification rate after spin-up. In the early stage, the convective cells associated with surface heat flux are mainly confined within the inner-core region in CVEXEXP, whereas the vortex in CCAVE-EXP exhibits a considerably asymmetric structure with most of the convective vortices being initiated to the northeast in the outer-core region due to the β effect. The large inner-core inertial stability in CVEX-EXP can prompt a high efficiency in the conversion from convective heating to kinetic energy. In addition, much stronger straining deformation and PBL imbalance in the inner-core region outside the primary eyewall ensue during the initial development stage in CVEX-EXP than in CCAVE-EXP, which is conducive to the rapid axisymmetrization and early intensification in CVEX-EXP. The TC track in CVEX-EXP sustains a northwestward displacement throughout the integration, whereas the TC in CCAVE-EXP undergoes a northeastward recurvature when the asymmetric structure is dominant. Due to the enhanced asymmetric convection to the northeast of the TC center in CCAVE-EXP, a pair of secondary gyres embedded within the large-scale primary β gyres forms, which modulates the ventilation flow and thus steers the TC to move northeastward.  相似文献   

2.
Atmospheric circulation epochs and climate changes   总被引:5,自引:0,他引:5  
The atmospheric circulation studies allow climate changes to be diagnosed and forecasted. Variations in occurrence frequencies of the atmospheric circulation forms W, E, and C (by the Vangengeim classification) and Z, M 1, and M 2 (by the Girs classification), which characterize climatic conditions in most of the Northern Hemisphere, are analyzed over a period of more than 100 years. It is shown that the occurrence frequency of the forms W, C, and M 1 continually decreased, while that of the forms E and Z increased, which indicates a significant change in atmospheric circulation in the Northern Hemisphere during the last century. The occurrence frequency of the forms C and Z demonstrates specific features at inter-decade time scales. Correlations are found between accumulated sums of anomalies of occurrence frequencies of the atmospheric circulation forms C, (W + E), Z, and (M 1 + M 2) and inter-decade variations of the Earth’s rotation. The causes of these relationships are discussed along with possibilities of their use for diagnosis of climatic variations in the Northern Hemisphere.  相似文献   

3.
Both observational and numerical studies of the convective boundary layer (CBL) have demonstrated that when surface heat fluxes are small and mean wind shear is strong, convective updrafts tend to organize into horizontal rolls aligned within 10–20\(^\circ \) of the geostrophic wind direction. However, under large surface heat fluxes and weak to negligible shear, convection tends to organize into open cells, similar to turbulent Rayleigh-Bénard convection. Using a suite of 14 large-eddy simulations (LES) spanning a range of \(-z_i/L\) between zero (neutral) and 1041 (highly convective), where \(z_i\) is the CBL depth and L is the Obukhov length, the transition between roll- and cellular-type convection is investigated systematically for the first time using LES. Mean vertical profiles including velocity variances and turbulent transport efficiencies, as well the “roll factor,” which characterizes the rotational symmetry of the vertical velocity field, indicate the transition occurs gradually over a range of \(-z_i/L\); however, the most significant changes in vertical profiles and CBL organization occur from near-neutral conditions up to about \(-z_i/L \approx \) 15–20. Turbulent transport efficiencies and quadrant analysis are used to characterize the turbulent transport of momentum and heat with increasing \(-z_i/L\). It is found that turbulence transports heat efficiently from weakly to highly convective conditions; however, turbulent momentum transport becomes increasingly inefficient as \(-z_i/L\) increases.  相似文献   

4.
Shear-stress partitioning is investigated for one type of flexible plant for very small values of the basal-to-frontal area ratio σ (0.001–0.007). The plant model is made of plastic with irregular structures, which are different from previously investigated rigid regular or flexible roughness elements with larger σ values. The distribution of the surface shear stress and the total shear stress at four plant densities with five plant heights are measured in a wind tunnel using Irwin-type sensors and a load cell, respectively. The wind-tunnel experiments prove that, for these flexible plants, the plant height and lateral cover usually decrease with increasing friction velocity, especially for taller plants, while the plant coverage generally increases. However, these characteristics may be inconsistent with flexible roughness elements with very large σ values (and usually very low aspect ratios) because these elements are less flexible. The present flexible plants generally result in lower shear-stress ratios compared with other roughness elements, which is also proven by the higher values of β (the ratio of the drag coefficient of an isolated roughness element to that of the bare surface) and a constant m (accounting for the difference between the average and peak surface shear stresses) from the present experiments (β?=?184–210 and m?=?0.68–0.79). The peak mean stress ratio of the present flexible plants is not a constant (1.07–1.54) because it is affected by the lateral cover, which is different from previous studies that consider the ratio to be constant without regard for the lateral cover.  相似文献   

5.
The decorrelation length (Lcf) has been widely used to describe the behavior of vertical overlap of clouds in general circulation models (GCMs); however, it has been a challenge to associate Lcf with the large-scale meteorological conditions during cloud evolution. This study explored the relationship between Lcf and the strength of atmospheric convection in the tropics based on output from a global cloud-resolving model. Lcf tends to increase with vertical velocity in the mid-troposphere (w500) at locations of ascent, but shows little or no dependency on w500 at locations of descent. A representation of Lcf as a function of vertical velocity is obtained, with a linear regression in ascending regions and a constant value in descending regions. This simple and dynamic-related representation of Lcf leads to a significant improvement in simulation of both cloud cover and radiation fields compared with traditional overlap treatments. This work presents a physically justifiable approach to depicting cloud overlap in the tropics in GCMs.  相似文献   

6.
A dynamic recycling model (DRM) with an analytical moisture trajectory tracking method, together with Japan Meteorological Agency 25-year reanalysis data, is used to study the regional precipitation recycling process across China, by calculating the regional recycling ratio (ρ r ) at the daily time scale during 1979–2010. The distribution of ρ r shows that, in western China, especially the Tibetan Plateau and its surrounding areas, precipitation is strongly dependent on the recycling process associated with regional evaporation. In Southeast China, however, the contribution from the recycling processes is much smaller due to the influence of the summer monsoon. A precipitation threshold value of about 4 mm/day is obtained from detailed analysis of both extreme and all-range ρ r years. According to this threshold, China is classified into three types of sub-regions: low-precipitation sub-regions (mainly in the northwest), high-precipitation sub-regions (mainly in the south), and medium-precipitation sub-regions (mainly in the northeast). It is found that ρ r correlates positively with precipitation, as well as convective precipitation (P CP) and large-scale precipitation (P LP) in the low-precipitation sub-regions. However, negative ρ r ?~?P LP correlations are found in the high-precipitation sub-regions and nonsignificant correlations exist in the medium-precipitation sub-regions. As P CP is mainly locally generated due to mid-latitude mesoscale systems and the cumulus parameterization used in producing the reanalysis, the recycling ratio positively correlates to the ratio P CP/P LP in almost all sub-regions, particularly in the Tibetan Plateau and its surrounding areas. The correlation between radiation flux and ρ r suggests more net radiation supports more evaporation and higher ρ r , especially in the high-precipitation sub-regions. The influence of clouds on shortwave radiation is crucial, since evaporation is suppressed when the amount of cloudiness increases, especially in the high-precipitation sub-regions. Together with the consideration of soil moisture, it can be inferred that limited soil moisture inhibits evaporation in the low-precipitation sub-regions, while the energy or radiation is the dominant factor controlling evaporation in the high-precipitation sub-regions.  相似文献   

7.
The relationship between the radar reflectivity factor (Z) and the rainfall rate (R) is recalculated based on radar observations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather stations over the Yangtze–Huaihe River basin. The data were collected by the National 973 Project from June to July 2013 for severe convective weather events. The ZR relationship is combined with an empirical qrR relationship to obtain a new Zqr relationship, which is then used to correct the observational operator for radar reflectivity in the three-dimensional variational (3DVar) data assimilation system of the Weather Research and Forecasting (WRF) model to improve the analysis and prediction of severe convective weather over the Yangtze–Huaihe River basin. The performance of the corrected reflectivity operator used in the WRF 3DVar data assimilation system is tested with a heavy rain event that occurred over Jiangsu and Anhui provinces and the surrounding regions on 23 June 2013. It is noted that the observations for this event are not included in the calculation of the Z–R relationship. Three experiments are conducted with the WRF model and its 3DVar system, including a control run without the assimilation of reflectivity data and two assimilation experiments with the original and corrected reflectivity operators. The experimental results show that the assimilation of radar reflectivity data has a positive impact on the rainfall forecast within a few hours with either the original or corrected reflectivity operators, but the corrected reflectivity operator achieves a better performance on the rainfall forecast than the original operator. The corrected reflectivity operator extends the effective time of radar data assimilation for the prediction of strong reflectivity. The physical variables analyzed with the corrected reflectivity operator present more reasonable mesoscale structures than those obtained with the original reflectivity operator. This suggests that the new statistical ZR relationship is more suitable for predicting severe convective weather over the Yangtze–Huaihe River basin than the ZR relationships currently in use.  相似文献   

8.
A possibility is studied of extending the range of action of the simple three-parameter formula (ITS-90 scale) proposed in the previous work of the author [2] for the dependence of saturation vapor pressure E on temperature T within the range of 250 to 490 K. The results demonstrated that the dependence ln[E(T)/E(T bas)] = (T - T bas)[A - B(T - T bas) + C(T - T bas)2]/T with four sets of coefficients A, B, and C obtained using one base temperature Tbas equal to the temperature of triple point of water T t = 273.16 K and two additional base values T bas2 = 473.16 K and T bas3 = 623.16 K makes it possible to approximate rather accurately the initial experimental and computed data in the temperature range from the point of homogeneous freezing of 235 K to the critical temperature of 647 K for liquid water and from 193 K to T t for ice. A procedure used for obtaining the inverse function T(E) by solving the third-degree algebraic equation is validated. A hypothesis is proposed for the physical substantiation of additional base points in the form of “a noticeable appearance of dimers at the point T bas2 and their 100% concentration at the temperature T bas3.”  相似文献   

9.
Hygroscopicity measurements of secondary organic aerosol (SOA) particles often show inconsistent results between the supersaturated and subsaturated regimes, with higher activity as cloud condensation nucleus (CCN) than indicated by hygroscopic growth. In this study, we have investigated the discrepancy between the two regimes in the Lund University (LU) smog chamber. Various anthropogenic SOA were produced from mixtures of different precursors: anthropogenic light aromatic precursors (toluene and m-xylene), exhaust from a diesel passenger vehicle spiked with the light aromatic precursors, and exhaust from two different gasoline-powered passenger vehicles. Three types of seed particles were used: soot aggregates from a diesel vehicle, soot aggregates from a flame soot generator and ammonium sulphate (AS) particles. The hygroscopicity of seed particles with condensed, photochemically produced, anthropogenic SOA was investigated with respect to critical supersaturation (sc) and hygroscopic growth factor (gf) at 90% relative humidity. The hygroscopicity parameter κ was calculated for the two regimes: κsc and κgf, from measurements of sc and gf, respectively. The two κ showed significant discrepancies, with a κgf /κsc ratio closest to one for the gasoline experiments with ammonium sulphate seed and lower for the soot seed experiments. Empirical observations of sc and gf were compared to theoretical predictions, using modified Köhler theory where water solubility limitations were taken into account. The results indicate that the inconsistency between measurements in the subsaturated and supersaturated regimes may be explained by part of the organic material in the particles produced from anthropogenic precursors having a limited solubility in water.  相似文献   

10.
Soil temperature (T s) and its thermal regime are the most important factors in plant growth, biological activities, and water movement in soil. Due to scarcity of the T s data, estimation of soil temperature is an important issue in different fields of sciences. The main objective of the present study is to investigate the accuracy of multivariate adaptive regression splines (MARS) and support vector machine (SVM) methods for estimating the T s. For this aim, the monthly mean data of the T s (at depths of 5, 10, 50, and 100 cm) and meteorological parameters of 30 synoptic stations in Iran were utilized. To develop the MARS and SVM models, various combinations of minimum, maximum, and mean air temperatures (T min, T max, T); actual and maximum possible sunshine duration; sunshine duration ratio (n, N, n/N); actual, net, and extraterrestrial solar radiation data (R s, R n, R a); precipitation (P); relative humidity (RH); wind speed at 2 m height (u 2); and water vapor pressure (Vp) were used as input variables. Three error statistics including root-mean-square-error (RMSE), mean absolute error (MAE), and determination coefficient (R 2) were used to check the performance of MARS and SVM models. The results indicated that the MARS was superior to the SVM at different depths. In the test and validation phases, the most accurate estimations for the MARS were obtained at the depth of 10 cm for T max, T min, T inputs (RMSE = 0.71 °C, MAE = 0.54 °C, and R 2 = 0.995) and for RH, V p, P, and u 2 inputs (RMSE = 0.80 °C, MAE = 0.61 °C, and R 2 = 0.996), respectively.  相似文献   

11.
This study reveals the impacts of climatic variable trends on drought severity in Xinjiang, China. Four drought indices, including the self-calibrating Palmer drought severity index (sc-PDSI), Erinç’s index (I m), Sahin’s index (I sh), and UNEP aridity index (AI), were used to compare drought severity. The ensemble empirical mode decomposition and the modified Mann-Kendall trend test were applied to analyze the nonlinear components and trends of the climatic variable and drought indices. Four and six climatic scenarios were generated in sc-PDSI, I m, I sh, and AI with different combinations of the observed and detrended climatic variables, respectively. In Xinjiang, generally increasing trends in minimal, average, and maximal air temperature (T min, T ave, T max) and precipitation (P) were found, whereas a decreasing trend in wind speed at 2 m height (U 2) was observed. There were significantly increasing trends in all of the four studied drought indices. Drought relief was more obvious in northern Xinjiang than in southern Xinjiang. The strong influences of increased P on drought relief and the weak influences of increased T min, T ave, and T max on drought aggravation were shown by comparing four drought indices under different climate scenarios. Decreased U 2 had a weak influence on drought, as shown by the AI in different climate scenarios. The weak influences of T and U 2 were considered to be masked by the strong influences of P on droughts. Droughts were expected to be more severe if P did not increase, but were likely milder without an increase in air temperature and with a decrease in U 2.  相似文献   

12.
Results of field measurements of the swell-induced undulation of the wind speed taken from a Black Sea platform are presented. The wind speed and its fluctuations were measured at several heights between 1.3 and 21 m above the mean sea level under various wind and swell conditions. Parameters of the swell-induced undulations were derived from cross spectra of the wind-speed fluctuations and the sea-surface displacement. As found, the phase and the amplitude of the wind speed undulation in the layer from k p z = 0.1 to k p z = 3 (k p is the swell wavenumber) are in good agreement with the theory of inviscid shear flow over a wavy surface. The main feature of the vertical profile of the swell-induced undulation is the exponential attenuation of its amplitude with height typical for the potential flow over the fast running waves. At the lowest levels the potential undulations are significantly distorted by the wind-speed variations caused by the vertical displacements of the shear airflow relative to a fixed sensor. No direct impact of swell on the mean properties of the turbulent boundary layer at k p z > 0.1 is revealed. In particular, the mean wind-speed profile and spectra of the horizontal velocity in the inertial subrange obey Monin-Obukhov similarity theory.  相似文献   

13.
We evaluated the potential of polarimetric rainfall retrieval methods for the Tagaytay C-Band weather radar in the Philippines. For this purpose, we combined a method for fuzzy echo classification, an approach to extract and reconstruct the differential propagation phase, Φ DP , and a polarimetric self-consistency approach to calibrate horizontal and differential reflectivity. The reconstructed Φ DP was used to estimate path-integrated attenuation and to retrieve the specific differential phase, K DP . All related algorithms were transparently implemented in the Open Source radar processing software wradlib. Rainfall was then estimated from different variables: from re-calibrated reflectivity, from re-calibrated reflectivity that has been corrected for path-integrated attenuation, from the specific differential phase, and from a combination of reflectivity and specific differential phase. As an additional benchmark, rainfall was estimated by interpolating the rainfall observed by rain gauges. We evaluated the rainfall products for daily and hourly accumulations. For this purpose, we used observations of 16 rain gauges from a five-month period in the 2012 wet season. It turned out that the retrieval of rainfall from K DP substantially improved the rainfall estimation at both daily and hourly time scales. The measurement of reflectivity apparently was impaired by severe miscalibration while K DP was immune to such effects. Daily accumulations of rainfall retrieved from K DP showed a very low estimation bias and small random errors. Random scatter was, though, strongly present in hourly accumulations.  相似文献   

14.
In this research, suitability of different kriging and inverse distance weighted (IDW) methods in estimating occurrence date of frost was evaluated. Data included minimum daily air temperature values from 27 meteorological stations of Fars province in southern Iran from 18 to 45 years. Data ranges of 0 to ?1.5, ?1.5 to ?3 and below ?3°C were considered as mild, moderate and severe frost intensities, respectively. Starting with the first day of autumn, iso-occurrence days for the frost intensities and occurrence probabilities (25%, 50%, 75% and 90%) were estimated using ordinary kriging, cokriging, residual kriging type 1 (RK1), residual kriging type 2 (RK2), universal kriging and IDW methods. In these models, the errors of estimated frost intensities at different probabilities were lowest in the RK2 model, but lack of establishment of spatial structure due to long distance between stations caused the predictions not to be acceptable in some cases. In a proposed method (modified inverse distance weighted, MIDW), the trend between the first and last days of frost occurrence with earth elevation was removed, and the reminder values were estimated by (IDW) method. Although, the errors for estimated frost dates by MIDW and RK2 methods were the same, but the MIDW method did not have the spatial establishment shortcoming. Furthermore, the simplicity and practicality of the MIDW method makes it a reasonable selection.  相似文献   

15.
Accurate estimation of reference evapotranspiration (ET 0 ) is essential for the computation of crop water requirements, irrigation scheduling, and water resources management. In this context, having a battery of alternative local calibrated ET 0 estimation methods is of great interest for any irrigation advisory service. The development of irrigation advisory services will be a major breakthrough for West African agriculture. In the case of many West African countries, the high number of meteorological inputs required by the Penman-Monteith equation has been indicated as constraining. The present paper investigates for the first time in Ghana, the estimation ability of artificial intelligence-based models (Artificial Neural Networks (ANNs) and Gene Expression Programing (GEPs)), and ancillary/external approaches for modeling reference evapotranspiration (ET 0 ) using limited weather data. According to the results of this study, GEPs have emerged as a very interesting alternative for ET 0 estimation at all the locations of Ghana which have been evaluated in this study under different scenarios of meteorological data availability. The adoption of ancillary/external approaches has been also successful, moreover in the southern locations. The interesting results obtained in this study using GEPs and some ancillary approaches could be a reference for future studies about ET 0 estimation in West Africa.  相似文献   

16.
With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ~ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700?μg/m3 under blowing sand weather, 2000?μg/m3 under sand-dust storm weather, and 400?μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z?=?20713.5?M 0.995 under floating dust weather, Z?=?22988.3?M 1.006 under blowing sand weather, and Z?=?24584.2?M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.  相似文献   

17.
An attempt is made to apply the modern methods of surface wave simulation developed for oceanic conditions to the modeling of waves in medium-size inland reservoirs (10–100 km). The results of field measurements of wind speed and waves are described, and on their basis the parameterization C D (U 10) is proposed. WAVEWATCH III spectral wave model was adapted to the conditions of a medium-size inl and reservoir. The simulated data are compared with the field data. The use of the new parameterization C D (U 10) allowed reducing the values of the wind wave growth rate that improved consistency in data from the field experiment and numerical modeling concerning the height of significant waves. Further steps towards improving the quality of prediction of the adapted WAVEWATCH III model are discussed.  相似文献   

18.
The study investigates the reliable computation time (RCT, termed as T c) by applying a double-precision computation of a variable parameters logistic map (VPLM). Firstly, by using the proposed method, we obtain the reliable solutions for the logistic map. Secondly, we construct 10,000 samples of reliable experiments from a time-dependent non-stationary parameters VPLM and then calculate the mean T c. The results indicate that, for each different initial value, the T cs of the VPLM are generally different. However, the mean T c trends to a constant value when the sample number is large enough. The maximum, minimum, and probable distribution functions of T c are also obtained, which can help us to identify the robustness of applying a nonlinear time series theory to forecasting by using the VPLM output. In addition, the T c of the fixed parameter experiments of the logistic map is obtained, and the results suggest that this T c matches the theoretical formula-predicted value.  相似文献   

19.
Combined with TRMM products and Tropical Cyclone (TC) best track data in Northwest Pacific from 1 January 2003 to 31 December 2009, a total of 118 TCs, including 336 instantaneous TC precipitation observations are established as the TRMM TC database, and the database is stratified into four intensity classes according to the standard of TC intensity adopted by China Meteorological Administration (CMA): Severe Tropical Storm (STS), Typhoon (TY), Severe Typhoon (STY) and Super Typhoon (SuperTY). For each TC snapshot, the mean rainfall distribution is computed using 10-km annuli from the TC center to a 300-km radius, then the axisymmetric component of TC rainfall is represented by the radial distribution of the azimuthal mean rain rate; the mean rain rates, rain types occurrence and contribution proportion are computed for each TC intensity class; and the mean quadrantal distribution of rain rates along TCs motion is analyzed. The result shows that: (1) TCs mean rain rates increase with their intensity classes, and their radial distributions show single-peak characteristic gradually, and furthermore, the characteristics of rain rates occurrence and contribution proportion change from dual-peak to single-peak distribution, with the peak rain rate at about 5.0 mm/h; (2) Stratiform rain dominate the rain type in the analysis zone, while convective rain mainly occurred in the eye-wall region; (3) The values of mean rain rate in each quadrant along TCs motion are close to each other, relatively, the value in the right-rear quadrant is the smallest one.  相似文献   

20.
Aerodynamic Roughness Length of Fresh Snow   总被引:1,自引:1,他引:0  
This study presents the results from a series of wind-tunnel experiments designed to investigate the aerodynamic roughness length z 0 of fresh snow under no-drift conditions. A two-component hot-film anemometer was employed to obtain vertical profiles of velocity statistics in a zero pressure gradient turbulent boundary layer for flow over naturally deposited snow surfaces. The roughness of these snow surfaces was measured by means of digital photography to capture characteristic length scales that can be related to z 0. Our results show that, under aerodynamically rough conditions, the mean value of the roughness length for fresh snow is \({\langle{z}_{0}\rangle= 0.24}\) mm with a standard deviation σ(z 0) = 0.05 mm. In this study, we show that variations in z 0 are associated with variations in the roughness geometry. The roughness measurements suggest that the estimated values of z 0 are consistent with the presence of irregular roughness structures that develop during snowfalls that mimic ballistic deposition processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号