首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
The Southern Vanoise is localized in the internal part of the Western Alps, in the Briançonnais zone. In Vanoise the following units can be distinguished (Fig. 1): a pre-hercynian basement (micaschists, glaucophanites, basic rocks), a permian cover (micaschists) and a mesozoic-paleocene cover (carbonate rocks). This area has been affected by the alpine metamorphic event characterized here by high and intermediate pressure facies. The rocks paragenesis are often unbalanced.The paleozoic rocks (Table 1) contain mainly: quartz, albite, paragonite, phengite, blue amphibole, chlorite, green biotite, garnet (Table 2). These minerals were analysed by an electron microprobe (Tables 3, 4 and 5). Mineral composition is highly variable: glaucophane is zoned (Table 5), white micas are more or less substituted with phengite (3.22O3/FeO + MgO)<0.53] whereas the Al rich chlorites [(Al2O3/FeO + MgO)>0.6] are associated with the less substituted white micas (Si=3.2) (Tables 3 and 4). The phengites with a Si content 3.2 occur in rocks where the retromorphic evolution is the most pronounced and penetrative. A metamorphic evolution is characterized by the disappearance of glaucophane which corresponds to the appearance of Al rich chlorite and to the decrease of phengitic substitution.The samples analysis are plotted in the tetraedric diagram: K2O-Al2O3-Na2O, Al2O3-FeO, MgO, on which a special mathematical treatment was applied. This method calculates the location of rocks composition in the four minerals space. This location is internal when the per cent amounts of all four relevant minerals are positive, if any of them is negative, the point is external (Tables 6–9).In Southern Vanoise micaschists, 2 subfacies are successively present (Fig. 3):Subfacies I: glaucophane-chlorite-phengite (Si4+ 3.5)-paragonite. Then subfacies II: chlorite-albite-phengite (Si4+ 3.2)-paragonite.In basic rocks is found essentially: Subfacies III: glaucophane-garnet-phengite-paragonite or IV: glaucophane-garnet-phengite-albite. Then subfacies V: green biotite-chlorite-albite-paragonite.The assemblages I and II proceed through reaction: 2 glaucophane +1 paragonite+2 H2O4.2 albite + 1 chlorite.The assemblage V appears with reactions: 1.8 glaucophane +2 phengite0.4 chlorite+2 green biotite + 3.6 albite +0.4 H2O or 2 glaucophane +2 phengite +0.5 garnet+ 6 H2O2 green biotite +1 chlorite+4 albiteThese reactions are controlled by hydratation: the composition variation of phengite and associated chlorite during the metamorphic evolution determines the stability of some minerals (particularly the glaucophane in Na2O poor rocks).In same rocks the results of mathematical treatment is not consistent with the data (Tables 2, 6–9). This discrepancy corresponds to a desequilibrium between chlorite and phengite.These results imply a continuous metamorphic evolution between two stages (Fig. 6): a first stage (1) at 8 kb, 350 ° C; a second stage (2) at 2 to 3 kb, 400–450 ° C.  相似文献   

2.
The high-pressure schist terranes of New Caledonia and Sanbagawa were developed along the oceanic sides of sialic forelands by tectonic burial metamorphism. The parent rocks were chemically similar, as volcanic-sedimentary trough or trench sequences, and metamorphic temperatures in both belts were 250° to 600° C. From phase equilibria curves, total pressures were higher for New Caledonia (6–15 kb) than for Sanbagawa (5–11 kb) and the estimated thermal gradients were 7–10° C/km and 15° C/km respectively.PT paths identify the higher pressure in New Caledonia (P differences 2 kb at 300° C and 4 kb at 550° C) with consequent contrast in progressive regional metamorphic zonation for pelites in the two areas: lawsonite-epidote-omphacite (New Caledonia) and chlorite-garnet-biotite (Sanbagawa). In New Caledonia the Na-amphibole is dominantly glaucophane and Na-pyroxenes associated with quartz are Jadeite (Jd95–100) and omphacite; in Sanbagawa the amphibole is crossite or riebeckite and the pyroxene is omphacite (Jd50). For both areas, garnet rims show increase in pyrope content with advancing grade, but Sanbagawa garnets are richer in almandine. Progressive assemblages within the two belts can be equated by such reactions as:New Caledonia Sanbagawa glaucophane+paragonite+H2Oalbite+chlorite+quartz glaucophane+epidote+H2Oalbite+chlorite+actinolite and the lower pressure Japanese associations appear as retrogressive phases in the New Caledonia epidote and omphacite zones.The contrasts inPT gradient, regional zonation and mineralogy are believed due to differences in the tectonic control of metamorphic burial: for New Caledonia, rapid obduction of an upper sialic plate over an inert oceanic plate and sedimentary trough; and for Sanbagawa, slower subduction of trench sediments beneath a relatively immobile upper plate.  相似文献   

3.
ABSTRACT Paragonite-bearing amphibolites occur interbedded with a garbenschist-micaschist sequence in the Austroalpine Schneeberg Complex, southern Tyrol. The mineral assemblage mainly comprises paragonite + Mg-hornblende/tschermakite + quartz + plagioclase + biotite + ankerite + Ti-phase + garnet ± muscovite. Equilibrium P–T conditions for this assemblage are 550–600°C and 8–10 kbar estimated from garnet–amphibole–plagioclase–ilmenite–rutile and Si contents of phengitic muscovites. In the vicinity of amphibole, paragonite is replaced by symplectitic chlorite + plagioclase + margarite +± biotite assemblages. Muscovite in the vicinity of amphibole reacts to form plagioclase + biotite + margarite symplectites. The reaction of white mica + hornblende is the result of decompression during uplift of the Schneeberg Complex. The breakdown of paragonite + hornblende is a water-consuming reaction and therefore it is controlled by the availability of fluid on the retrogressive P–T path. Paragonite + hornblende is a high-temperature equivalent of the common blueschist-assemblage paragonite + glaucophane in Ca-bearing systems and represents restricted P–T conditions just below omphacite stability in a mafic bulk system. While paragonite + glaucophane breakdown to chlorite + albite marks the blueschist/greenschist transition, the paragonite + hornblende breakdown observed in Schneeberg Complex rocks is indicative of a transition from epidote-amphibolite facies to greenschist facies conditions at a flatter P–T gradient of the metamorphic path compared to subduction-zone environments. Ar/Ar dating of paragonite yields an age of 84.5 ± 1 Ma, corroborating an Eoalpine high-pressure metamorphic event within the Austroalpine unit west of the Tauern Window. Eclogites that occur in the Ötztal Crystalline Basement south of the Schneeberg Complex are thought to be associated with this Eoalpine metamorphic event.  相似文献   

4.
The stability of pumpellyite + actinolite or riebeckite + epidote + hematite (with chlorite, albite, titanite, quartz and H2O in excess) mineral assemblages in LTMP metabasite rocks is strongly dependent on bulk composition. By using a thermodynamic approach (THERMOCALC), the importance of CaO and Fe2O3 bulk contents on the stability of these phases is illustrated using P–T and P–X phase diagrams. This approach allowed P–T conditions of ~4.0 kbar and ~260 °C to be calculated for the growth of pumpellyite + actinolite or riebeckite + epidote + hematite assemblages in rocks containing variable bulk CaO and Fe2O3 contents. These rocks form part of an accretionary wedge that developed along the east Australian margin during the Carboniferous–Triassic New England Orogen. P–T and P–X diagrams show that sodic amphibole, epidote and hematite will grow at these conditions in Fe2O3‐saturated (6.16 wt%) metabasic rocks, whereas actinolite and pumpellyite will be stable in CaO‐rich (10.30 wt%) rocks. With intermediate Fe2O3 (~3.50 wt%) and CaO (~8.30 wt%) contents, sodic amphibole, actinolite and epidote can coexist at these P–T conditions. For Fe2O3‐saturated rocks, compositional isopleths for sodic amphibole (Al3+ and Fe3+ on the M2 site), epidote (Fe3+/Fe3+ + Al3+) and chlorite (Fe2+/Fe2+ + Mg) were calculated to evaluate the efficiency of these cation exchanges as thermobarometers in LTMP metabasic rocks. Based on these calculations, it is shown that Al3+ in sodic amphibole and epidote is an excellent barometer in chlorite, albite, hematite, quartz and titanite buffered assemblages. The effectiveness of these barometers decreases with the breakdown of albite. In higher‐P stability fields where albite is absent, Fe2+‐Mg ratios in chlorite may be dependent on pressure. The Fe3+/Al and Fe2+/Mg ratios in epidote and chlorite are reliable thermometers in actinolite, epidote, chlorite, albite, quartz, hematite and titanite buffered assemblages.  相似文献   

5.
In the southern Apennin (= northern part of the region dealt with) and the Coasta Chain (= southern part) there are metabasalts wich are classified in the northern part as:
  1. Glaucophane rocks of the albite-lawsonite-glaucophane-subfacies with the assemblage glaucophane + pumpellyite + lawsonite ±albite ±aragonite ±muscovite (7 rock analyses, 8 mineral analyses). These rocks are conceived as relics of an older burial metamorphism.
  2. Rocks with pumpellyite and chlorite or also chlorite alone, that are interpreted as reaction rims between the metastable glaucophane rocks and the country rock (phyllites, quartzites). The assemblages pumpellyite + chlorite and chlorite alone are to be found (2 rock analyses and 2 mineral analyses).
  3. Rocks with lawsonite and/or epidote belong to the same mineral facies as the country rock: a facies similar to the greenschist facies (called “lawsonite-albite-chlorite-subfacies”) which is characterized by the assemblages lawsonite + albite + chlorite ±calcite and also epidote ±lawsonite + albite + chlorite ± muscovite. These types are attributed to a younger dynamo-metamorphism (2 rock analyses).
In the southern part, the metabasalts can be found only as rocks with epidote and/or lawsonite, a metamorphism with more than one event cannot be proved petrologically (3 rock analyses). Equations of the observed mineral reactions are given. The transitions of one facies into another are represented in the pseudo-quaternary system Al2O3-CaO-Na2O · Al2O3-2 Fe2O3 + FeO + MnO + MgO-(H2O). The pressure-temperature conditions are estimated on the basis of published experimental data (300° C and 6–7 kb for the glaucophane rocks; 400° C and about 6 kb for the rocks with lawsonite and/or epidote) and are compared with geologic facts.  相似文献   

6.
The petrology and mineralogy of lawsonite zone metabasites have been studied northeast of town of Tavanli, NW Turkey. In the field the metabasites are characteristically green and lack foliation; the essential mineral assemblage being sodic pyroxene+ lawsonite+chlorite+quartz±sodic amphibole. Sodic pyroxene of aegirine-jadeite composition occurs as pseudomorphs after magmatic augite. Lawsonite and chlorite are the other two dominant minerals. Sodic amphibole forms progressively from a reaction between sodic pyroxene, chlorite and quartz, and an isograd representing the first abundant occurrence of sodic amphibole in basic rocks has been mapped. The widespread occurrence of sodic pyroxene pseudomorphs in other blueschist terrains indicates that the inferred sodic amphibole producing reaction is of general significance for blueschist metabasites.The conversion of greenstones with the assemblage albite+chlorite+actinolite directly into glaucophane-lawsonite blueschists without any intervening lawsonite zone illustrates the influence of the initial mineral assemblage on the reaction path.  相似文献   

7.
Phase relations of pumpellyite, epidote, lawsonite, CaCO3, paragonite, actinolite, crossite and iron oxide are analysed on an Al-Ca-Fe3+ diagram in which all minerals are projected from quartz, albite or Jadeite, chlorite and fluid. Fe2+ and Mg are treated as a single component because variation in Fe2+/Mg has little effect on the stability of phases on the diagram. Comparison of assemblages in the Franciscan, Shuksan, Sanbagawa, New Caledonia, Southern Italian, and Otago metamorphic terranes reveals several reactions, useful for construction of a petrogenetic grid:
  1. lawsonite+crossite + paragonite = epidote+chlorite + albite + quartz + H2O
  2. lawsonite + crossite = pumpellyite + epidote + chlorite + albite+ quartz + H2O
  3. crossite + pumpellyite + quartz = epidote + actinolite + albite + chlorite + H2O
  4. crossite + epidote + quartz = actinolite + hematite + albite + chlorite + H2O
  5. calcite + epidote + chlorite + quartz = pumpellyite + actinolite + H2O + CO2
  6. pumpellyite + chlorite + quartz = epidote + actinolite + H2O
  相似文献   

8.
An undated high-pressure low-temperature tectonic mélange in the Elekda area (central Pontides, N Turkey) comprises blocks of MORB-derived lawsonite eclogite within a sheared serpentinite matrix. In their outer shells, some of the eclogite blocks contain large (up to 6 cm) tourmaline crystals. Prograde inclusions in poikiloblastic garnet from a well-preserved eclogite block are lawsonite, epidote/clinozoisite, omphacite, rutile, glaucophane, chlorite, Ba-bearing phengite, minor actinolite, winchite and quartz. In addition, glaucophane, lawsonite and rutile occur as inclusions in omphacite. These inclusion assemblages document the transition from a garnet-lawsonite-epidote-bearing blueschist to a lawsonite eclogite with the peak assemblage garnet + omphacite I + lawsonite + rutile. Peak metamorphic conditions are not well-constrained but are estimated approximately 400–430°C and >1.35 GPa, based on Fe–Mg exchange between garnet and omphacite and the coexistence of lawsonite + omphacite + rutile. During exhumation of the eclogite–serpentinite mélange in the hanging wall of a subduction system, infiltration of B-rich aqueous fluids into the rims of eclogite blocks caused retrogressive formation of abundant chlorite, titanite and albite, followed by growth of tourmaline at the expense of chlorite. At the same time, omphacite I (XJd=0.24–0.44) became unstable and partially replaced by omphacite II characterized by higher XJd (0.35–0.48), suggesting a relatively low silica activity in the infiltrating fluid. Apart from Fe-rich rims developed at the contact to chlorite, tourmaline crystals are nearly homogeneous. Their compositions correspond to Na-rich dravite, perhaps with a small amount of excess (tetrahedral) boron (~5.90 Si and 3.10 B cations per 31 anions). 11 B values range from –2.2 to +1.7. The infiltrating fluids were most probably derived from subducting altered oceanic crust and sediments.  相似文献   

9.
10.
A nappe of amphibolite-facies metamorphic rocks of pre-Permian age in the southern Vanoise massif (the Arpont schist) has been affected by an Alpine HP/LT metamorphism. The first mesoscopically recognizable deformation (D1) post-dated the high-pressure peak (jadeitic pyroxene + quartz, glaucophane + ?lawsonite), and was associated with glaucophane + epidote. D1 produced a flat-lying schistosity and a NW-trending glaucophane lineation, and was probably associated with nappe displacement involving NW-directed subhorizontal shear. D2 formed small-scale folds and a foliation associated with chlorite + albite. The changing parageneses during the period pre-D1 to D1 to D2 suggest decreasing pressure, so that the deformation appears to have been related to the uplift history, rather than to the process of tectonic burial. D2 was followed by a static metamorphism (green biotite + chlorite + albite), possibly of Lepontine age. SE-directed backthrusting and folding (D3), and later differential uplift along steep faults, took place under low-grade conditions.  相似文献   

11.
Abstract The garnet blueschists from the Ile de Groix (Armorican Massif, France) contain millimetre‐ to centimetre‐sized pseudomorphs consisting of an aggregate of chlorite, epidote and paragonite. The pseudomorphed phase developed at a late stage of the deformation history, because it overgrows a glaucophane–epidote–titanite foliation. Garnet growth occurred earlier than the beginning of the ductile deformation, and thus garnet is also included in the pseudomorphs. Microprobe analyses show that garnet is strongly zoned, with decreasing spessartine and increasing almandine and pyrope contents from core to rim. Grossular content is higher in garnet cores (about 35 mole%) compared to garnet rims (about 30 mole%). Blue amphibole has glaucophane compositions with a low Fe3+ content and become more magnesian when inclusions in garnet (XMg = 0.62–0.65) are compared with matrix grains (XMg = 0.67–0.70). Matrix epidote has a pistacite content of about 50 mole%. On the basis of their shape and the nature of the breakdown products, the pseudomorphs are attributed to lawsonite. A numerical model (using Thermocalc ) has been developed in order to understand the reactions controlling both the growth and the breakdown of lawsonite. Lawsonite growth could have taken place through the continuous hydration reaction Chl + Ep + Pg + Qtz + Vap = Gln + Lws, followed by the fluid‐absent reaction Chl + Ep + Pg = Grt + Gln + Lws. Peak P–T conditions are estimated at about 18–20 kbar, 450 °C. This indicates that lawsonite growth took place at increasing P and T, hence can be used as a geobarometer in the buffering assemblage garnet–glaucophane–epidote. The final part of the history is recorded by lawsonite breakdown, after cessation of the ductile deformation, and recording the earliest stages of the exhumation.  相似文献   

12.
The exchange equilibrium between plagioclase and amphibole, 2 albite+tschermakite=2 anorthite+glaucophane, has been calibrated empirically using data from natural amphibolites. The partition coefficient, K D, for the exchange reaction is (X an/X ab)plag ·(Na, M4/Ca, M4)amph.. Partitioning is systematic between plagioclase and amphibole in suites collected from single exposures, but the solid solutions are highly non-ideal: values of In K D range from –3.0 at X an=0.30 to –1.0 at X an=0.90 in samples from a single roadcut. Changes in both K D and the topology of the ternary reciprocal exchange diagram occur with increasing metamorphic grade. Temperature dependence of In K D is moderate with ¯H35 to 47 kcal at X an=0.25; pressure dependence is small with ¯V –0.24 cal/bar. Usefulness of this exchange equilibrium as a geothermometer is restricted by uncertainties in the calculation of the amphibole formula from a microprobe analysis, especially with regard to Na, M4 in amphibole, to approximately ±50 ° C.  相似文献   

13.
Detailed laboratory study has been made on pre-Tertiary coarse-grainedglaucophane schist, garnet-epidote amphibolite, and epidoteamphibolite in the eastern slope of the Central Mountain Range,Taiwan. These petrotectonic assemblages are considered to beexotic tectonic blocks emplaced within the feebly metamorphosedin situ graphite and quartzose schists of the Yuli belt. Thinlenses of Mn-rich metamorphosed tuff are intercalated withinthe metabasaltic rocks. Such high MnO (2 wt. per cent) and lowMgO (3–4 wt. per cent) tuffaceous rocks are similar inbulk composition to some volcanic clays collected in deep oceanbasins. They consist of the characteristic assemblage Mn-bearinggarnet (5–7 wt. per cent MnO and 30 volume per cent inthe rock)+muscovite+epidote+hornblende+quartz+ albite+rutile?pyrite. Successive stages of conversion of garnet-epidote amphiboliteto blueschist assemblages were noticed. The most recrystallizedschists display abundant Mn-bearing garnet, zoned amphibole,phengite, zoned epidote, stilpnomelane, chlorite, quartz, minoralbite, magnetite, and sphene. The recrystallization processis nearly isochemical except the glaucophane schists appearto be more oxidized and contain more Na2O than the relict amphibolites.Intimately associated amphibolites of basaltic composition,in contrast, contain the assemblage hornblende+paragonite+epidote+chlorite+quartz+albite+rutile. Microprobe analyses of the coexisting minerals in glaucophaneschists, garnet-epidote amphibolites and epidote amphibolitesyield the following results: (1) garnets, consisting of almandine,spessartine, and grossular components, are less Mn and Mg-richcompared to those in in situ metabasalts of the Franciscan;(2) rim epidotes of the glaucophane schists are more pistastic(XFe=0?27–0?30) than that of the garnet-epidote amphibolite(0?2–0?22) implying higher fO2 values for the glaucophanization;(3) phengitic micas of the glaucophane schist have less Al2O3content (29 wt. per cent) than those of the garnet-epidote amphibolite(32 wt. per cent) whereas micas of epidote amphibolites areparagonites with K/(K+Na) ratio of 0?04; (4) the zoned amphibolesshow glaucophane occurring marginal to cores of calcic amphibole.Sodic amphiboles with Al2O3 of 6-? to 10?4 wt. per cent arecrossite-glaucophane whereas all calcic amphiboles analyzedare barroisite-pargasite (Al2O3 greater than 10 wt. per cent). The garnet-epidote-rutile bearing glaucophane schist of Taiwanprobably recrystallized at temperatures above 350 ?C (the epidotezone) whereas the lawsonite-sphene glaucophane schists of theFranciscan equilibrated below 350 ?C (the lawsonite zone). TheMn-rich basaltic tuffs and their associated flows appear tohave been metamorphosed at profound depths and at the relativelyhigh temperatures of the epidote amphibolite facies, succeededlater by glaucophane schist facies metamorphism at lower temperatures.  相似文献   

14.
In the metabasites of Val Chiusella, metamorphic assemblages are present, corresponding to the glaucophane schist facies, i.e. garnet glaucophanites to omphacite-garnet glaucophanites, as well as to the eclogite facies, i.e., glaucophane eclogites, eclogites, and omphacite felses. Both groups of assemblages are divided by the critical reaction 1 zoisite +1 glaucophane 1.2 omphacite+0.8 garnet+0.7 paragonite +1.4 quartz+0.8 H2O. From textural evidence it is clear that in the investigated area this reaction proceeded to the right according to a prograde metamorphism. Correspondingly, K garn-cpx D(Fe/Mg) values of coexisting garnet-omphacite pairs in the glaucophane schist facies assemblages are higher than in the eclogite facies assemblages and reflect a temperature increase from about 450 ° C to about 550 ° C at minimum water vapour pressures of 12 to 16 kb.  相似文献   

15.
In this study, we have deduced the thermal history of the subducting Neotethys from its eastern margin, using a suite of partially hydrated metabasalts from a segment of the Nagaland Ophiolite Complex (NOC), India. Located along the eastern extension of the Indus‐Tsangpo suture zone (ITSZ), the N–S‐trending NOC lies between the Indian and Burmese plates. The metabasalts, encased within a serpentinitic mélange, preserve a tectonically disturbed metamorphic sequence, which from west to east is greenschist (GS), pumpellyite–diopside (PD) and blueschist (BS) facies. Metabasalts in all the three metamorphic facies record prograde metamorphic overprints directly on primary igneous textures and igneous augite. In the BS facies unit, the metabasalts interbedded with marble show centimetre‐ to metre‐scale interlayering of lawsonite blueschist (LBS) and epidote blueschist (EBS). Prograde HP/LT metamorphism stabilized lawsonite + omphacite (XJd = 0.50–0.56 to 0.26–0.37) + jadeite (XJd = 0.67–0.79) + augite + ferroglaucophane + high‐Si phengite (Si = 3.6–3.65 atoms per formula unit, a.p.f.u.) + chlorite + titanite + quartz in LBS and lawsonite + glaucophane/ferroglaucophane ± epidote ± omphacite (XJd = 0.34) + chlorite + phengite (Si = 3.5 a.p.f.u.) + titanite + quartz in EBS at the metamorphic peak. Retrograde alteration, which was pervasive in the EBS, produced a sequence of mineral assemblages from omphacite and lawsonite‐absent, epidote + glaucophane/ferroglaucophane + chlorite + phengite + titanite + quartz through albite + chlorite + glaucophane to lawsonite + albite + high‐Si phengite (Si = 3.6–3.7 a.p.f.u.) + glaucophane + epidote + quartz. In the PD facies metabasalts, the peak mineral assemblage, pumpellyite + chlorite + titanite + phengitic white mica (Si = 3.4–3.5 a.p.f.u.) + diopside appeared in the basaltic groundmass from reacting titaniferous augite and low‐Si phengite, with prehnite additionally producing pumpellyite in early vein domains. In the GS facies metabasalts, incomplete hydration of augite produced albite + epidote + actinolite + chlorite + titanite + phengite + augite mineral assemblage. Based on calculated TM(H2O), T–M(O2) (where M represents oxide mol.%) and PT pseudosections, peak PT conditions of LBS are estimated at ~11.5 kbar and ~340 °C, EBS at ~10 kbar, 325 °C and PD facies at ~6 kbar, 335 °C. Reconstructed metamorphic reaction pathways integrated with the results of PT pseudosection modelling define a near‐complete, hairpin, clockwise PT loop for the BS and a prograde PT path with a steep dP/dT for the PD facies rocks. Apparent low thermal gradient of 8 °C km?1 corresponding to a maximum burial depth of 40 km and the hairpin PT trajectory together suggest a cold and mature stage of an intra‐oceanic subduction zone setting for the Nagaland blueschists. The metamorphic constraints established above when combined with petrological findings from the ophiolitic massifs along the whole ITSZ suggest that intra‐oceanic subduction systems within the Neotethys between India and the Lhasa terrane/the Karakoram microcontinent were also active towards east between Indian and Burmese plates.  相似文献   

16.
A petrological and mineralogical study, using an electron microprobe, of a blue-amphibole eclogite occurring near Nantes (Massif Armoricain, France) has enabled us to characterize this amphibole as glaucophane resulting from a secondary reaction in the rock. This sodic amphibole was formed at the expense of primary eclogite paragenesis including omphacite, garnet and quartz, according to a sliding reaction which it was possible to study quantitatively: 3.24 omphacite+0.90 SiO2+0.76 garnet+1.08 H2O =1 glaucophane+0.55 grossular (S.S. in the garnet) +0.04 paragonite.This reaction is accompanied by a variation in the distribution of iron and magnesium between the amphibole, the garnet and the omphacite.The appearance of the glaucophane can be explained as the beginning of a retromorphic evolution from the stable physical conditions of the primary eclogite paragenesis (650±100° C; minimum pressure 15 Kb).  相似文献   

17.
The analysis of early stage rodingite from the ultramafic rocks of the Xialu Massif in the Xigaze Ophiolite, Tibet, in China shows that the rodingitization involved continuous changes in fluid composition during different stages of subduction. The early stage prehnite-bearing rodingite was produced at low pressures and temperatures along extensional fractures. Samples of rodingite were collected along a profile from the center to the margin of a rodingitized intrusive igneous rock (~10 m × 30 m), and they record wide variations in bulk composition, mineralogy, and texture. The mineral assemblages, from center to margin, vary from (1) relics of primary clinopyroxene (Cpxr) and primary amphibole (Ampr) + newly formed late amphibole (Act) + primary plagioclase (Plr) + clinozoisite + prehnite + albite + chlorite + titanite + ilmenite (R1 rodingite), through (2) relics of primary clinopyroxene (Cpxr) + newly formed late clinopyroxene (Cpxn) + primary and late amphiboles (Ampr + Act) + clinozoisite + prehnite + albite + chlorite + titanite (R2 rodingite), to (3) newly formed late clinopyroxene (Cpxn) and amphibole (Act) + clinozoisite + prehnite + albite + chlorite + titanite (R3 rodingite). As a result of the metasomatic process of rodingitization, the content of CaO in the whole rock chemical composition from R1 to R3 increases, SiO2 decreases, and Na2O + K2O is almost completely removed. Mass-balance diagrams show enrichments in large ion lithophile elements such as Rb, Cs, Ba, and Pb as well as Ni during rodingitization. The central part of the rodingitized intrusion (R1 rodingite) was only slightly affected by metasomatism. On the other hand, the contents of the rare earth elements (REEs), high field strength elements (HFSEs; e.g. Zr, Nb, Ta, Hf, and Y), and some highly compatible elements such as Cr and Sc decreased slightly during rodingitization. Thermodynamic modeling based on equilibrium mineral assemblages indicates that the rodingite of the Xialu Massif formed in an H2O-saturated, CO2-rich environment. The estimated conditions of metamorphism were ~281–323 °C and 0.4–3.9 kbar, representing the subgreenschist facies. In this environment, REEs and HFSEs were soluble in the fluids and partly removed. Moreover, these prehnite rodingites formed in a progressively reducing and less alkaline environment, as indicated by decreases in f(O2) and bulk-rock Fe3+/Fe2+ ratios, and the records of fluid ΔpH from the center to the margin of the studied rodingitized intrusion.  相似文献   

18.
The Crossite Content of Ca-Amphibole as a Guide to Pressure of Metamorphism   总被引:10,自引:0,他引:10  
A correlation between the crossite component (NaM4) in Ca-amphiboleand pressure of metamorphism has long been recognized (Shido& Miyashiro, 1959), but only recently has the reaction beenidentified which buffers this aspect of amphibole composition(Brown, 1974): Ca-amphibole+iron oxide+albite+chloriteI+H2O (±stilp,qtz) = crossite+epidote (±muscovite, qtz). The exact stoichiometry of the reaction depends on compositionalvariables in the minerals, especially Fe2+/Mg and Fe3+/Al. Ca-amphiboleshould have fixed NaM4, at any given T and P, where it coexistswith iron oxide, albite, and chlorite. Comparison of Ca-amphibole composition with mineral assemblage,in rocks from Otago, N.Z., and elsewhere, supports this hypothesis.In any terrane NaM4 is nearly constant at a particular metamorphicgrade where amphibole exists in the buffering assemblage, butvaries widely outside of this assemblage. Variations in Fe2+/Mgand Fe3+/Al in the amphibole have relatively little effect onNaM4, but in high pressure amphiboles NaM4 varies inverselywith Aliv. Ca-amphiboles from high pressure areas have substantially moreNaM4 (Otago, 0.6 of 2.0) than those from lower pressure areas(Sierra contact aureoles, 0.1). These relations suggest thatin the buffering assemblage, the NaM4 content of Ca-amphiboleshould be a useful relative barometer for low to medium grademetamorphic rocks.  相似文献   

19.
Chloritoid–glaucophane‐bearing rocks are widespread in the high‐pressure belt of the north Qilian orogen, NW China. They are interbedded and cofacial with felsic schists originated from greywackes, mafic garnet blueschists and low‐T eclogites. Two representative chloritoid–glaucophane‐bearing assemblages are chloritoid + glaucophane + garnet + talc + quartz (sample Q5‐49) and chloritoid + glaucophane + garnet + phengite + epidote + quartz (sample Q5‐12). Garnet in sample Q5‐49 is coarse‐, medium‐ and fine‐grained and shows two types of zonation patterns. In pattern I, Xgrs is constant as Xpy rises, and in pattern II Xgrs decreases as Xpy rises. Phase equilibrium modelling in the NC(K)MnFMASH system with Thermocalc 3.25 indicates that pattern I can be formed during progressive metamorphism in lawsonite‐stable assemblages, while pattern II zonation can be formed with further heating after lawsonite has been consumed. Garnet growth in Q5‐49 is consistent with a continuous progressive metamorphic process from ~14.5 kbar at 470 °C to ~22.5 kbar at 560 °C. Garnet in sample Q5‐12 develops with pattern I zonation, which is consistent with a progressive metamorphic process from ~21 kbar at 540 °C to ~23.5 kbar at 580 °C with lawsonite present in the whole garnet growth. The latter sample shows the highest PT conditions of the reported chloritoid–glaucophane‐bearing assemblages. Phase equilibrium calculation in the NCKFMASH system with a recent mixing model of amphibole indicates that chloritoid + glaucophane paragenesis does not have a low‐pressure limit of 18–19 kbar as previously suggested, but has a much larger pressure range from 7–8 to 27–30 kbar, with the low‐pressure part being within the stability field of albite.  相似文献   

20.
Several petrologic experiments have demonstrated that in igneous and metamorphic reactions amphibole minerals can break down by a subsolidus dehydration reaction, but evidence for the reaction in natural rocks has been lacking. Evidence for the breakdown of an edenite-pargasite amphibole by a subsolidus dehydration reaction has now been found in an andesite flow from Garner Mountain, southern Cascase Range. The andesite contains one modal percent of crystal clots formed of crystallites of opx, cpx, plag, K-spar, opaque and quartz. The crystal clots retain the original amphibole morphology and intra-clot pyroxenes are aligned with crystallographic c parallel to c in the amphibole precursor; these conditions would not be duplicated by a melting reaction.Microprobe analyses of the bulk clot and the intra-clot minerals suggest the solid-state reaction: 100 amph+10 SiO2=>55 cpx+33 plag+22 opx+ 1 opq+1 ksparPyroxene thermometry of the andesite groundmass pyroxenes and the intra-clot pyroxenes demonstrates that the amphibole dehydration reaction occurred in the xenocrystic amphiboles as a result of heating by the near-solidus andesite magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号