首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Abstract

In many of the world’s river basins, the water resources are over-allocated and/or highly modified, access to good quality water is limited or competitive and aquatic ecosystems are degraded. The decline in aquatic ecosystems can impact on human well-being by reducing the ecosystem services provided by healthy rivers, wetlands and floodplains. Basin water resources management requires the determination of water allocation among competing stakeholders including the environment, social needs and economic development. Traditionally, this determination occurred on a volumetric basis to meet basin productivity goals. However, it is difficult to address environmental goals in such a framework, because environmental condition is rarely considered in productivity goals, and short-term variations in river flow may be the most important driver of aquatic ecosystem health. Manipulation of flows to achieve desired outcomes for public supply, food and energy has been implemented for many years. More recently, manipulating flows to achieve ecological outcomes has been proposed. However, the complexity of determining the required flow regimes and the interdependencies between stakeholder outcomes has restricted the implementation of environmental flows as a core component of Integrated Water Resources Management (IWRM). We demonstrate through case studies of the Rhône and Thames river basins in Europe, the Colorado River basin in North America and the Murray-Darling basin in Australia the limitations of traditional environmental flow strategies in integrated water resources management. An alternative ecosystem approach can provide a framework for implementation of environmental flows in basin water resources management, as demonstrated by management of the Pangani River basin in Africa. An ecosystem approach in IWRM leads to management for agreed triple-bottom-line outcomes, rather than productivity or ecological outcomes alone. We recommend that environmental flow management should take on the principles of an ecosystem approach and form an integral part of IWRM.

Editor D. Koutsoyiannis

Citation Overton, I.C., Smith, D.M., Dalton J., Barchiesi S., Acreman M.C., Stromberg, J.C., and Kirby, J.M., 2014. Implementing environmental flows in integrated water resources management and the ecosystem approach. Hydrological Sciences Journal, 59 (3–4), 860–877.  相似文献   

2.
Abstract

Equatorial rivers of East Africa exhibit unusually complex seasonal and inter-annual flow regimes, and aquatic and adjacent terrestrial organisms have adapted to cope with this flow variability. This study examined the annual flow regime over the past 40 years for three gauging stations on the Mara River in Kenya and Tanzania, which is of international importance because it is the only perennial river traversing the Mara-Serengeti ecoregion. Select environmental flow components were quantified and converted to ecologically relevant hydraulic variables. Vegetation, macroinvertebrates, and fish were collected and identified at target study sites during low and high flows. The results were compared with available knowledge of the life histories and flow sensitivities of the riverine communities to infer flow–ecology relationships. Management implications are discussed, including the need to preserve a dynamic environmental flow regime to protect ecosystems in the region. The results for the Mara may serve as a useful model for river basins of the wider equatorial East Africa region.
Editor Z.W. Kundzewicz; Guest editor M. Acreman  相似文献   

3.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

4.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

Environmental flow standards are a management tool that can help to protect the ecosystem services sustained by rivers. Although environmental flow requirements can be assessed using a variety of methods, most of these methods require establishing relationships between flow and habitat of species of concern. Here, we conducted a synthesis of past flow–ecology studies in the southeast USA. For each state or interstate river basin, we used the published data to determine the flow metrics that resulted in the greatest changes in ecological metrics, and the ecological metrics that were most sensitive to hydrologic alteration. The flow metrics that were most important in preserving ecological metrics were high-flow duration and frequency, 3-day maximum and minimum, and number of reversals. The ecological metrics most sensitive to hydrologic alteration were mostly related to presence or absence of key indicator species.  相似文献   

6.
Abstract

The hydrology of water-dependent ecosystems around the world has been altered as a result of flow regulation and extraction for a variety of purposes including agricultural and urban water supply. The flow regime of the Murray-Darling Basin in Australia is no exception, with attendant impacts on the health of the environment. Restoration of parts of the flow regime is a key feature of environmental flow delivery. However, environmental flow delivery in a system that is managed primarily to provide a secure and stable supply for irrigation presents challenges for managers seeking to return more natural flow variability in line with ecosystem requirements. The institutional arrangements governing releases of water from storage can influence the ability of managers to respond to natural cues, such as naturally rising flows in a river. As such, the legal and governance aspects of environmental flow delivery are likely to be important influences on the outcomes achieved.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Banks, S.A. and Docker, B.B., 2014. Delivering environmental flows in the Murray-Darling Basin (Australia)—legal and governance aspects. Hydrological Sciences Journal, 59 (3–4), 688–699.  相似文献   

7.
Abstract

Environmental flows have scarcely been considered in river water management in Bangladesh. This study attempts to assess the environmental flow requirements in the Halda River, Bangladesh. Thus, the objectives are to estimate the Halda River flow with different return periods/probabilities, which was done using the log-Pearson Type III distribution (LPIII), and to mitigate the environmental problems in the Halda River using the building block method. The LPIII distribution was used to estimate the expected extreme and satisfactory flows for fish habitat at Panchpukuria station and the expected extreme water levels at Panchpukuria, Narayanhat, Telpari and Enayethat stations. It was found that floods are likely to occur at least once in 2.1, 1.02, 1.75 and 1.25 years at Panchpukuria, Narayanhat, Telpari and Enayethat stations, respectively. The results of flow and water quality analyses suggest that environmental flow requirements cannot be achieved in this river throughout the year. The environmental flow requirements and conservation of fish resources can be achieved by implementing the suggestions provided in conjunction with a comprehensive awareness programme, investigations and trade-off analyses being among the suggestions.

Editor Z.W. Kundzewicz; Associate editor B. Sivakumar

Citation Akter, A. and Ali, Md. H., 2012. Environmental flow requirements assessment in the Halda River, Bangladesh. Hydrological Sciences Journal, 57 (2), 326–343.  相似文献   

8.
ABSTRACT

Somalia has frequently been affected by droughts, famines and water-related humanitarian crises. Water is scarce and the only perennial streams, the Juba and Shabelle rivers, are trans-boundary with river flows mainly originating from the Ethiopian highlands. In both riparian countries water demands are projected to increase. This paper reveals the impact of rising regional water abstractions on stream flows by illustrating sectoral demands and joining them into scenarios of medium and high population and economic growth. These scenarios are associated to the time horizons of 2035 and 2055, respectively. The scenarios disclose alarming trends especially for the Shabelle River: in the medium and high growth scenarios, water demands surpass the available river flows by 200 and 3500 hm3, respectively. The calculated deficits partly derive from conflicting assumptions about river flows by the two main riparian countries, an obstacle to any integrated planning efforts and sustained regional development.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR F. Hattermann  相似文献   

9.
Abstract

The aim of this article is to assess the impact of four scenarios combining possible changes in climate, atmospheric carbon dioxide, land use and water use by 2050, on the specific set of ecologically relevant flow regime indicators that define environmental flow requirements in a semi-natural river basin in Poland. This aim is presented through a modelling case study using the Soil and Water Assessment Tool (SWAT). Indicators show both positive and negative responses to future changes. Warm projections from the IPSL-CM4 global climate model combined with sustainable land- and water-use projections (SuE) produce the most negative changes, while warm and wet projections from the MIROC3.2 model combined with market-driven projections (EcF) gave the most positive changes. Climate change overshadows land- and water-use change in terms of the magnitude of projected flow alterations. The future of environmental water quantity is brighter under the market-driven rather than the sustainability-driven scenario, which shows that sustainability for terrestrial ecosystems (e.g. more forests and grasslands) can be at variance with sustainability for riverine and riparian ecosystems (requiring sufficient amount and proper timing of river flows).
Editor D. Koutsoyiannis

Citation Piniewski, M., Okruszko, T., and Acreman, M.C., 2014. Environmental water quantity projections under market-driven and sustainability-driven future scenarios in the Narew basin, Poland. Hydrological Sciences Journal, 59 (3–4), 916–934.  相似文献   

10.
Abstract

River managers worldwide are increasingly addressing flow needs for ecosystem processes and services in their management plans for dams and reservoirs. However, while planning and scientific assessments have advanced substantially, successful re-operation of infrastructure to achieve environmental benefits has been more limited. The Sustainable Rivers Project (SRP) was formalized in 2002, as a national partnership between the United States Army Corps of Engineers and The Nature Conservancy to define and implement environmental flows through adaptive reservoir management. The project has focused on eight demonstration basins containing 36 Corps dams, but is designed to direct the collective experience from these sites to help guide agency-wide operational changes for as many as 600 dams to benefit up to 80 000 river kilometres and tens of thousands of hectares of related floodplain and estuarine habitat. This article summarizes the progress to date on defining and implementing environmental flows through the SRP, and evaluates the technical, social, legal, and institutional factors that act as dominant enabling conditions and constraints to implementation.
Editor Z.W. Kundzewicz; Guest editor M. Acreman  相似文献   

11.
Abstract

The Okavango River system flows through Angola, Namibia and Botswana. It is in near-natural condition and supports globally iconic wetlands and wildlife. The basin’s people are poor and development is inevitable: the next decade is critical. The river could become an example of responsible planning that resolutely addresses the three pillars of sustainable development. Recognizing this, the Member States completed a transboundary diagnostic analysis (TDA) in 2010 funded by the three governments and the Global Environment Facility. A central feature of the TDA was a basin-wide environmental flow assessment using the DRIFT (Downstream Response to Imposed Flow Transformation) holistic approach. This produced scenarios of increasing water resource use that spelled out the costs and benefits in terms of the health of the river ecosystem, associated social structures and local and national economies. The results were used to help create a transboundary strategic action programme, which the Member States are now beginning to act on. This article describes the DRIFT application, the findings and how these could be used to help achieve sustainable development.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation King, J., Beuster, H., Brown, C., and Joubert, A., 2014. Pro-active management: the role of environmental flows in transboundary cooperative planning for the Okavango River system. Hydrological Sciences Journal, 59 (3–4), 786–800.  相似文献   

12.
引调水是改善平原河网地区水环境的重要方法之一,通过构建太湖流域走马塘东南片平原河网区一维水动力水质数学模型,研究不同引调水方案对区域水环境改善效果,确定引调水过程中的异质性因子.从决策目标、水质指标、空间指标3个层面综合考虑,构建环境效益与经济效益结合的多目标函数及评价体系,对引调水方案进行评估优选.结果表明:引调水流量较大时,能够在一定程度上改善区域水环境状况,规划方案下引调水5 d后,高锰酸盐指数、氨氮、总磷的平均改善率分别为30.7%、22.2%、26.4%;引调水时,区域河网中不同空间点位、不同水质指标之间的水质改善过程与效果都存在一定异质性;引调水水量、调度模式及污染源分布都会对调水后的河网区水质产生差异性影响;本研究建立的多目标评价体系较现有方法能够有效涵盖引调水中存在的异质性因子,从多个目标层面优选引调水方案,实现水量水质综合优化调控,为平原河网地区水环境长效管理与科学决策提供理论参考.  相似文献   

13.
Abstract

This paper introduces a reference hydrometric network for Ireland and examines the derived flow archive for evidence of climate-driven trends in mean and high river flows. The Mann-Kendall and Theil-Sen tests are applied to eight hydroclimatic indicators for fixed and variable (start and end date) records. Spatial coherence and similarities of trends with rainfall suggest they are climate driven; however, large temporal variability makes it difficult to discern widely-expected anthropogenic climate change signals at this point in time. Trends in summer mean flows and recent winter means are at odds with those expected for anthropogenic climate change. High-flow indicators show strong and persistent positive trends, are less affected by variability and may provide earlier climate change signals than mean flows. The results highlight the caution required in using fixed periods of record for trend analysis, recognizing the trade-off between record length, network density and geographic coverage.

Editor Z.W. Kundzewicz; Associate editor H. Lins

Citation Murphy, C., Harrigan, S., Hall, J., and Wilby, R.L., 2013. Climate-driven trends in mean and high flows from a network of reference stations in Ireland. Hydrological Sciences Journal, 58 (4), 755–772.  相似文献   

14.
Abstract

The term “environmental flows” is now widely used to reflect the hydrological regime required to sustain freshwater and estuarine ecosystems, and the human livelihoods and well-being that depend on them. The definition suggests a central role for ecohydrological science to help determine a required flow regime for a target ecosystem condition. Indeed, many countries have established laws and policies to implement environmental flows with the expectation that science can deliver the answers. This article provides an overview of recent developments and applications of environmental flows on six continents to explore the changing role of ecohydrological sciences, recognizing its limitations and the emerging needs of society, water resource managers and policy makers. Science has responded with new methods to link hydrology to ecosystem status, but these have also raised fundamental questions that go beyond ecohydrology, such as who decides on the target condition of the ecosystem? Some environmental flow methods are based on the natural flow paradigm, which assumes the desired regime is the natural “unmodified” condition. However, this may be unrealistic where flow regimes have been altered for many centuries and are likely to change with future climate change. Ecosystems are dynamic, so the adoption of environmental flows needs to have a similar dynamic basis. Furthermore, methodological developments have been made in two directions: first, broad-scale hydrological analysis of flow regimes (assuming ecological relevance of hydrograph components) and, second, analysis of ecological impacts of more than one stressor (e.g. flow, morphology, water quality). All methods retain a degree of uncertainty, which translates into risks, and raises questions regarding trust between scientists and the public. Communication between scientists, social scientists, practitioners, policy makers and the public is thus becoming as important as the quality of the science.
Editor Z.W. Kundzewicz

Citation Acreman, M.C., Overton, I.C., King, J., Wood, P., Cowx, I.G., Dunbar, M.J., Kendy, E., and Young, W., 2014. The changing role of ecohydrological science in guiding environmental flows. Hydrological Sciences Journal, 59 (3–4), 433–450  相似文献   

15.
Abstract

A MIKE SHE model of the Mekong, calibrated and validated for 12 gauging stations, is used to simulate climate change scenarios associated with a 2°C increase in global mean temperature projected by seven general circulation models (GCMs). Impacts of each scenario on the river ecosystem and, hence, uncertainty associated with different GCMs are assessed through an environmental flow method based on the range of variability approach. Ecologically relevant hydrological indicators are evaluated for the baseline and each scenario. Baseline-to-scenario change is assessed against thresholds that define likely risk of ecological impact. They are aggregated into single scores for high and low flows. The results demonstrate considerable inter-GCM differences in risk of change. Uncertainty is larger for low flows, with some GCMs projecting high and medium risk at the majority of locations, and others suggesting widespread no or low risk. Inter-GCM differences occur along the main Mekong, as well as within major tributaries.
Editor Z.W. Kundzewicz

Citation Thompson, J.R., Laizé, C.L.R., Green, A.J., Acreman, M.C., and Kingston, D.G., 2014. Climate change uncertainty in environmental flows for the Mekong River. Hydrological Sciences Journal, 59 (3–4), 935–954.  相似文献   

16.
Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to compare estimates of ET specifically at 3 native vegetation restoration sites during 2014 planned flow events, and MODIS data were used to evaluate long‐term (2002–2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0–10 mm d?1 across sites, and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS‐derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.  相似文献   

17.
Large wood (LW) is an ecosystem engineer and keystone structure in river ecosystems, influencing a range of hydromorphological and ecological processes and contributing to habitat heterogeneity and ecosystem condition. LW is increasingly being used in catchment restoration, but restored LW jams have been observed to differ in physical structure to naturally occurring jams, with potential implications for restoration outcomes. This article examines the structural complexity and ecosystem engineering effects of LW jams at four sites with varying management intensity incorporating natural and restored wood. Our results reveal: (i) structural complexity and volume of jams was highest in the site with natural jams and low intensity riparian management, and lowest in the suburban site with simple restored jams; and (ii) that structural complexity influences the ecosystem engineering role of LW, with more complex jams generating the greatest effects on flow hydraulics (flow concentration, into bed flows) and sediment characteristics (D50, organic content, fine sediment retention) and the simplest flow deflector-style restored jams having the least pronounced effects. We present a conceptual model describing a continuum of increasing jam structural complexity and associated hydromorphological effects that can be used as a basis for positioning and evaluating other sites along the management intensity spectrum to help inform restoration design and best practice.  相似文献   

18.
Low flow hydrology: a review   总被引:67,自引:0,他引:67  
  相似文献   

19.
Abstract

An important characteristic of a river flow regime type is the time of year when high and low flows are likely to occur. How likely is it, however, to observe an identified seasonal pattern each individual year? Stability is an often neglected property of a flow regime, though shifts in the seasonal behaviour of flows affect both environmental and economic activities. An approach to characterize objectively the stability of a flow regime type, based on the concept of entropy, is presented. The stabilities of river flow maxima and minima are studied separately to investigate their respective contributions to the stability character of a particular regime type. A quantitative “instability index” permits a study of the development of a flow regime's stability in time, especially important in the context of a possible climate change. The method is presented using the example of a quantitative flow regime classification developed for Scandinavia and western Europe.  相似文献   

20.
Abstract

Hydrologic metrics have been used widely to quantify flow-ecology relationships; however, there are several challenges associated with their use, including the selection from a large number of available metrics and the limitation that metrics are a synthetic measure of a multi-dimensional flow regime. Using two case studies of fish species density and community composition, we illustrate the use of functional linear models to provide new insights into flow–ecology relationships and predict the expected impact of environmental flow scenarios, without relying on hydrologic metrics. The models identified statistically significant relationships to river flow over the 12 months prior to sampling (r2 range 36–67%) and an environmental flow scenario that may enhance native species’ densities while controlling a non-native species. Hydrologic metrics continue to play an important role in ecohydrology and environmental flow management; however, functional linear models provide an approach that overcomes some of the limitations associated with their use.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Stewart-Koster, B., Olden, J.D., and Gido, K.B., 2014. Quantifying flow–ecology relationships with functional linear models. Hydrological Sciences Journal, 59 (3–4), 629–644.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号