首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near-field strong ground motions are useful for engineering seismology studies and seismic design, but dense observation networks of damaging earthquakes are still rare. In this study, based on the strong-motion data from the M w 6.6 Lushan earthquake, the ground motion parameters in different spatial regions are systematically analyzed, and the contributions from different effects, like the hanging-wall effect, directivity effect, and attenuation effect are separated to the extent possible. Different engineering parameters from the observed ground motions are compared with the local design response spectra and a new attenuation relation of Western China. General results indicate that the high frequency ground motion, like the peak ground acceleration, on two sides of the fault plane is sensitive to the hanging-wall effect, whereas the low frequency ground motion, like the long period spectral acceleration, in the rupture propagation direction is affected by the directivity effect. Moreover, although the M w 6.6 Lushan earthquake is not a large magnitude event, the spatial difference of ground motion is still obvious; thus, for a thrust faulting earthquake, in addition to the hanging effect, the directivity effect should also be considered.  相似文献   

2.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

3.
Recent studies have shown that the vertical component of ground motion can be quite destructive on a variety of structural systems. Development of response spectrum for design of buildings subjected to vertical component of earthquake needs ground motion prediction equations (GMPEs). The existing GMPEs for northern Iranian plateau are proposed for the horizontal component of earthquake, and there is not any specified GMPE for the vertical component of earthquake in this region. Determination of GMPEs is mostly based on regression analyses on earthquake parameters such as magnitude, site class, distance, and spectral amplitudes. In this study, 325 three-component records of 55 earthquakes with magnitude ranging from M w 4.1 to M w 7.3 are used for estimation on the regression coefficients. Records with distances less than 300 km are selected for analyses in the database. The regression analyses on earthquake parameters results in determination of GMPEs for peak ground acceleration and spectral acceleration for both horizontal and vertical components of the ground motion. The correlation between the models for vertical and horizontal GMPEs is studied in details. These models are later compared with some other available GMPEs. According to the result of this investigation, the proposed GMPEs are in agreement with the other relationships that were developed based on the local and regional data.  相似文献   

4.
We present the seismic source zoning of the tectonically active Greater Kashmir territory of the Northwestern Himalaya and seismicity analysis (Gutenberg-Richter parameters) and maximum credible earthquake (m max) estimation of each zone. The earthquake catalogue used in the analysis is an extensive one compiled from various sources which spans from 1907 to 2012. Five seismogenic zones were delineated, viz. Hazara-Kashmir Syntaxis, Karakorum Seismic Zone, Kohistan Seismic Zone, Nanga Parbat Syntaxis, and SE-Kashmir Seismic Zone. Then, the seismicity analysis and maximum credible earthquake estimation were carried out for each zone. The low b value (<1.0) indicates a higher stress regime in all the zones except Nanga Parbat Syntaxis Seismic Zone and SE-Kashmir Seismic Zone. The m max was estimated following three different methodologies, the fault parameter approach, convergence rates using geodetic measurements, and the probabilistic approach using the earthquake catalogue and is estimated to be M w 7.7, M w 8.5, and M w 8.1, respectively. The maximum credible earthquake (m max) estimated for each zone shows that Hazara Kashmir Syntaxis Seismic Zone has the highest m max of M w 8.1 (±0.36), which is espoused by the historical 1555 Kashmir earthquake of M w 7.6 as well as the recent 8 October 2005 Kashmir earthquake of M w 7.6. The variation in the estimated m max by the above discussed methodologies is obvious, as the definition and interpretation of the m max change with the method. Interestingly, historical archives (~900 years) do not speak of a great earthquake in this region, which is attributed to the complex and unique tectonic and geologic setup of the Kashmir Himalaya. The convergence is this part of the Himalaya is distributed not only along the main boundary faults but also along the various active out-of-sequence faults as compared to the Central Himalaya, where it is mainly adjusted along the main boundary fault.  相似文献   

5.
The deep-focus Sea of Okhotsk earthquake that occurred on May 24, 2013 (h = 630 km, M w = 8.3) was accompanied by anomalous effects that were unknown previously. A combined analysis of published data concerning the source rupture evolution and some features of the deep structure provided an explanation of some anomalous effects, such as the large number of aftershocks and the low level of ground shaking in the epicentral area. However, GPS observations revealed high coseismic vertical displacements in the area. The seafloor uplift in the Sea of Okhotsk and the adjacent coasts was 3–12 mm, peaking at the approximate center of the sea, while Kamchatka and the North Kuril Islands subsided by 3–18 mm, peaking at the Apacha station 190 km east of the earthquake epicenter. These maximum estimates are 1.2–1.8 times the analogous values (10 mm) for the Chile mega-earthquake of May 20, 1960 (M w ~ 9.5). It is known that the large distances at which ground shaking is felt during deep-focus earthquakes are due to the fact that the body waves travel through the high-Q lower mantle. However, this does not explain the paradox of the present earthquake in the Sea of Okhotsk, viz., a constant intensity of shaking (two grades) in the range of epicentral distances between 1300 and 9500 km. The explanation requires consideration of the earth’s free oscillations excited by the earthquake.  相似文献   

6.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

7.
The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.  相似文献   

8.
In this paper, we analyzed the strong ground motion from the November 12, 2017, Kermanshah earthquake in western Iran with moment magnitude (M) of 7.3. Nonlinear and linear amplification of ground motion amplitudes were observed at stations with soft soil condition at hypocentral distances below and above 100 km, respectively. Observation of large ground motion amplitudes dominated with long-period pulses on the strike-normal component of the velocity time series suggests a right-lateral component of movement and propagation of rupture towards southeast. Comparison of the horizontal peak ground acceleration (PGA) from the M 7.3 earthquake with global PGA values showed a similar decay in ground motion amplitudes, although it seems that PGA from the M 7.3 Kermanshah earthquake is higher than global values for NEHRP site class B. We also found that the bracketed duration (Db) was higher in the velocity domain than in the acceleration domain for the same modified Mercalli intensity (MMI) threshold. For example, Db reached ~?30 s at the maximum PGA while it was ~?50 s at the maximum peak ground velocity above the threshold of MMI?=?5. Although the standard design spectrum from Iranian Code of Practice for Seismic Resistant Design of Buildings (standard No. 2800) seems to include appropriate values for the design of structures with fundamental period of 1 s and higher, it is underestimated for near-field ground motions at lower periods.  相似文献   

9.
In this study, pre-seismic and post-seismic total electron content (TEC) anomalies of 63 Mw?≥?5.0 earthquakes in Turkey (36°–42°N, 26°–45°E) were statistically investigated. The largest earthquake that occurred in Turkey during 2003–2016 is the Mw 7.1 Van earthquake on October 23, 2011. The TEC data of epicenters is obtained from CODE-GIM using a simple 4-point bivariate interpolation. The anomalies of TEC variations were determined by using a quartile-based running median process. In order to validate GIM results, we used the GPS-TEC data of available four IGS stations within the size of the Van earthquake preparation area. The anomalies that are detected by GIM and GPS-TEC show a similar pattern. Accordingly, the results obtained with CODE-GIM are reliable. The statistical results show that there are not prominent earthquake precursors for Mw?≤?6.0 earthquakes in Turkey.  相似文献   

10.
An important task in seismic hazard assessment is estimation of the intensity and frequency of extremely strong earthquake effects, in particular, peak ground velocities (PGV). Earlier, a method was proposed to evaluate PGV values based on the magnitude of displacements of rock blocks (Rodkin et al., 2012). In this study, this method is used to analyze field data on the source zones of the August 19, 1992, MS = 7.3 Susamyr earthquake and the January 3, 1911, Mw = 7.9 Kemin earthquake, and estimate maximum ground shaking at the upper construction site of the Upper Naryn series of hydropower plants, Kyrgyz Republic. It is shown that the resulting estimates are consistent with data obtained through other techniques. Therefore, the new approach can be recommended to estimate earthquake effects.  相似文献   

11.
A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Code-compatible suites of seismic motions are provided being, at the same time, prequalified through a multi-criterion approach to induce response parameters with reduced variability. The latter is imperative to increase the reliability of the average response values, normally required for the code-prescribed design verification of structures. Structural attributes like the dynamic characteristics as well as criteria related to variability of seismic motions and their compliance with a target spectrum are quantified through a newly introduced index, δ svsc , which aims to prioritize motions suites for response history analysis. To demonstrate the applicability of the procedure presented, the structural model of a multi-story building was subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δ svsc ) and the conventional one (δ conv ), that is commonly used for earthquake records selection and scaling. The findings from numerous linear response history analyses reveal the superiority of the proposed multi-criterion approach, as it extensively reduces the intra-suite structural response variability and consequently, increases the reliability of the design values. The relation between the target reliability in assessing structural response and the size of the suite of motions selected was also investigated, further demonstrating the efficiency of the proposed selection procedure to achieve higher response reliability levels with smaller samples of ground motion.  相似文献   

12.
Predictive equations based on the stochastic approach are developed for earthquake ground motions from Garhwal Himalayan earthquakes of 3.5≤Mw≤6.8 at a distance of 10≤R≤250 km. The predicted ground motion parameters are response spectral values at frequencies from 0.25 to 20 Hz, and peak ground acceleration (PGA). The ground motion prediction equations (GMPEs) are derived from an empirically based stochastic ground motion model. The GMPEs show a fair agreement with the empirically developed ground motion equations from Himalaya as well as the NGA equation. The proposed relations also reasonably predict the observed ground motion of two major Himalayan earthquakes from Garhwal Himalayan region. For high magnitudes, there is insufficient data to satisfactorily judge the relationship; however it reasonably predicts the 1991 Uttarkashi earthquake (Mw=6.8) and 1999 Chamoli earthquake (Mw=6.4) from Garhwal Himalaya region.  相似文献   

13.
The damping modification factor (DMF) has been extensively used in earthquake engineering to describe the variation of structural responses due to varied damping ratios. It is known that DMFs are dependent not only on structural dynamic properties but also on characteristics of ground motions. DMFs regulated in current seismic codes are generally developed based on far-fault ground motions and are inappropriately used in structural design where pulse-like near-fault ground motions are involved. In this paper, statistical investigation of the DMF is performed based on 50 carefully selected pulse-like near-fault ground motions. It is observed that DMFs for pulse-like ground motions exhibit significant dependence on the pulse period T p in a specific period range. If the period of the structure in response is close to the pulse period, the DMF attains the same level as that derived from far-fault ground motions; as the period of the structure is considerably larger or smaller than the pulse period T p , the response reduction effect by the increased damping ratio is generally small, except for large earthquakes with long pulse periods, which exhibit significant reduction of response for structures with periods smaller than T p . Based on the statistical results of DMFs, the empirical formulas for estimating DMFs for displacement, velocity and acceleration spectra are proposed, the effect of structural period, pulse period and damping ratio are considered in the formulas, and the formulas are designed to satisfy the specific reliability requirement in the period range of 0.1 < T/T p  < 1, which is of engineering interest.  相似文献   

14.
To understand physical mechanisms of generation of abnormally high peak ground acceleration (PGA; >1g) during the Tohoku earthquake, models of nonlinear soil behavior in the strong motion were constructed for 27 KiK-net stations located in the near-fault zones to the south of FKSH17. The method of data processing used was developed by Pavlenko and Irikura, Pure Appl Geophys 160:2365–2379, 2003 and previously applied for studying soil behavior at vertical array sites during the 1995 Kobe (М w ?=?6.8) and 2000 Tottori (М w ?=?6.7) earthquakes. During the Tohoku earthquake, we did not observe a widespread nonlinearity of soft soils and reduction at the beginning of strong motion and recovery at the end of strong motion of shear moduli in soil layers, as usually observed during strong earthquakes. Manifestations of soil nonlinearity and reduction of shear moduli during strong motion were observed at sites located close to the source, in coastal areas. At remote sites, where abnormally high PGAs were recorded, shear moduli in soil layers increased and reached their maxima at the moments of the highest intensity of the strong motion, indicating soil hardening. Then, shear moduli reduced with decreasing the intensity of the strong motion. At soft-soil sites, the reduction of shear moduli was accompanied by a step-like decrease of the predominant frequencies of motion. Evidently, the observed soil hardening at the moments of the highest intensity of the strong motion contributed to the occurrence of abnormally high PGA, recorded during the Tohoku earthquake.  相似文献   

15.
Rapid magnitude estimation relations for earthquake early warning systems in the Alborz region have been developed based on the initial first seconds of the P-wave arrival. For this purpose, a total of 717 accelerograms recorded by the Building and Housing Research Center in the Alborz region with the magnitude (Mw) range of 4.8–6.5 in the period between 1995 and 2013 were employed. Average ground motion period (\( \tau_{\text{c}} \)) and peak displacement (\( P_{\text{d}} \)) in different time windows from the P-wave arrival were calculated, and their relation with magnitude was examined. Four earthquakes that were excluded from the analysis process were used to validate the results, and the estimated magnitudes were found to be in good agreement with the observed ones. The results show that using the proposed relations for the Alborz region, earthquake magnitude could be estimated with acceptable accuracy even after 1 s of the P-wave arrival.  相似文献   

16.
A method for determining medium quality factor is developed on the basis of analyzing the attenuation dispersion of the arrived first period P wave. In order to enhance signal to noise ratio, improve the resolution in measurement and reduce systematic error we applied the data resampling technique. The group velocity delay of P wave was derived by using an improved multi-filtering method. Based on a linear viscoelastic relaxation model we deduced the medium quality factor Q m, and associated error with 95% confidence level. Applying the method to the seismic record of the Xiuyan M=5.4 earthquake sequences we obtained the following result: (1) High Q m started to appear from Nov. 9, 1999. The events giving the deduced high Q m value clustered in a region with their epicenter distances being between 32 and 46 km to the Yingkou station. This Q m versus distance observation obviously deviates from the normal trend of Q m linearly increasing with distance. (2) The average Q m before the 29 Dec. 1999 M=5.4 earthquake is 460, while the average Q m between the M=5.4 event and the 12 Jan. 2000 M=5.1 earthquake is 391, and the average Q m after the M=5.1 event is 204.  相似文献   

17.
Temporal distribution of earthquakes with M w > 6 in the Dasht-e-Bayaz region, eastern Iran has been investigated using time-dependent models. Based on these types of models, it is assumed that the times between consecutive large earthquakes follow a certain statistical distribution. For this purpose, four time-dependent inter-event distributions including the Weibull, Gamma, Lognormal, and the Brownian Passage Time (BPT) are used in this study and the associated parameters are estimated using the method of maximum likelihood estimation. The suitable distribution is selected based on logarithm likelihood function and Bayesian Information Criterion. The probability of the occurrence of the next large earthquake during a specified interval of time was calculated for each model. Then, the concept of conditional probability has been applied to forecast the next major (M w > 6) earthquake in the site of our interest. The emphasis is on statistical methods which attempt to quantify the probability of an earthquake occurring within a specified time, space, and magnitude windows. According to obtained results, the probability of occurrence of an earthquake with M w > 6 in the near future is significantly high.  相似文献   

18.
The source mechanism of the ML 4.0 25 April 2016 Lacq earthquake (Aquitaine Basin, South-West France) is analyzed from the available public data and discussed with respect to the geometry of the nearby Lacq gas field. It is one of the biggest earthquakes in the area in the past few decades of gas extraction and the biggest after the end of gas exploitation in 2013. The routinely obtained location shows its hypocenter position inside the gas reservoir. We first analyze its focal mechanism through regional broad-band seismograms recorded in a radius of about 50 km epicentral distances and obtain EW running normal faulting above the reservoir. While the solution is stable using regional data only, we observe a large discrepancy between the recorded data on nearby station URDF and the forward modeling up to 1 Hz. We then look for the best epicenter position through performing wave propagation simulations and constraining the potential source area by the peak ground velocity (PGV). The resulting epicentral position is a few to several km away to the north or south direction with respect to station URDF such that the simulated particle motions are consistent with the observation. The initial motion of the seismograms shows that the epicenter position in the north from URDF is preferable, indicating the north-east of the Lacq reservoir. This study is an application of full waveform simulations and characterization of near-field ground motion in terms of an engineering factor such as PGV. The finally obtained solution gives a moment magnitude of Mw 3.9 and the best focal depth of 4 km, which corresponds to the crust above the reservoir rather than its interior. This position is consistent with the tendency of Coulomb stress change due to a compaction at 5 km depth in the crust. Therefore, this earthquake can be interpreted as a relaxation of the shallow crust due to a deeper gas reservoir compaction so that the occurrence of similar events cannot be excluded in the near future. It would be necessary to continue monitoring such local induced seismicity in order to better understand the reservoir/overburden behavior and better assess the local seismic hazard even after the end of gas exploitation.  相似文献   

19.
A novel ground motion selection and modifications method to perform response history analysis of structures is presented in this paper. Currently, the accessibility of ground motion information permits the analysis of structures using real ground motion data. Predicting the dynamic behavior of structures is a primary objective; therefore, the selection of a set of ground motions that shows a reduction in the variability of the structural response and accuracy in preserving the median demand is a challenging task. The new selection and scaling procedure emerges from comparing a set of horizontal ground motions at various ranges of frequency. In this study, the conditional mean spectrum and the design response spectrum are used as target spectra, and the records that give an applicable and compelling contribution to the hazard are considered. It is possible to obtain a set of ground motions with similar seismic severity by matching the target spectrum at the period of interest T ref , where the scaled spectrum should have an equivalent Housner intensity in the period range 0.2T ref –2T ref . The horizontal components for every band of frequency is obtained using a specific index that depends on the energy-frequency trend’s shape as well as on its scattering degree around the mean value. This allows obtaining a set of spectrum-compatible records with almost identical severity and low dispersion of the structural response parameters. The methodology has been tested showing a significant effectiveness in terms of low variability of parameters and accuracy in preserving the median demand for a given hazard scenario.  相似文献   

20.
To study the prospective areas of upcoming strong-to-major earthquakes, i.e., M w  ≥ 6.0, a catalog of seismicity in the vicinity of the Thailand-Laos-Myanmar border region was generated and then investigated statistically. Based on the successful investigations of previous works, the seismicity rate change (Z value) technique was applied in this study. According to the completeness earthquake dataset, eight available case studies of strong-to-major earthquakes were investigated retrospectively. After iterative tests of the characteristic parameters concerning the number of earthquakes (N) and time window (T w ), the values of 50 and 1.2 years, respectively, were found to reveal an anomalous high Z-value peak (seismic quiescence) prior to the occurrence of six out of the eight major earthquake events studied. In addition, the location of the Z-value anomalies conformed fairly well to the epicenters of those earthquakes. Based on the investigation of correlation coefficient and the stochastic test of the Z values, the parameters used here (N = 50 events and T w  = 1.2 years) were suitable to determine the precursory Z value and not random phenomena. The Z values of this study and the frequency-magnitude distribution b values of a previous work both highlighted the same prospective areas that might generate an upcoming major earthquake: (i) some areas in the northern part of Laos and (ii) the eastern part of Myanmar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号