首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
首都圈数字地震台网对微弱爆破信号的检测能力   总被引:3,自引:0,他引:3       下载免费PDF全文
利用首都圈数字地震台网接收人工地震信号,进行地下结构研究具有重要意义.但人工震源释放的能量小,激发的地震波以短周期为主,因此本文较全面地研究了地震台网对短周期微弱信号(1~20 Hz)的检测能力:(1) 分析了台网的背景噪声,结果表明基岩台址的地震台噪声比沉积盖层台址的地震台噪声低约13 dB,这相当于近1个震级的检测阈值;夜间的噪声比白天低约5 dB;噪声有逐年增高的趋势,2006年比2001年噪声提高约4 dB.(2 )分析了在台网内进行的药量为25 kg的陆地井下爆破实验,一次爆破相当于0.69级(ML)的天然地震,有18个地震台可辨认爆炸产生的Pg、Pm或Pc波;离爆破点218 km的基岩台,仍可以接收到振幅只有1.6 nm 的Pm波,这个结果可为地震勘探实际工作提供参考.(3) 研究了台网外核爆试验的信号特征,2006年发生在朝鲜的地下核试验是一次检验台网检测微弱信号能力的好机会.波形记录经1~5Hz滤波后,台网中噪声小的18个基岩台可以清晰辨认核爆破产生的P波或Lg波,P波平均振幅为16 nm,计算的平均震级为mb4.3,和NEIC给出的震级相同;分析还表明背景噪声是影响台站信号检测能力的主要因素之一.  相似文献   

2.
短周期密集台阵的高频背景噪声互相关函数(NCF)是探查地球浅层精细结构的重要数据.然而高频背景噪声成分复杂且容易分布不均,分析其对NCF信号提取的影响,有助于获取可靠成像结果.本文基于布设于川滇地区盐源盆地的209个短周期台站组成的盐源台阵,利用密集台阵的噪声水平评估以及基于NCF的相干噪声分析两种方法,分析了其记录到的噪声波场特征及其对NCF的影响.结果表明,盐源台阵的整体噪声水平呈现北低南高的不均匀分布,高频噪声水平的强弱受控于当地的人类活动,亦受到浅部松散沉积层的影响.台阵垂直分量NCF中主要信号为基阶Rayleigh波,且产生该信号的相干噪声源的优势方位在不同频带具有较大区别:0.3~0.5Hz的噪声源强度较强且随时间变化较为稳定,主要能量来自台阵的南侧;0.5~1Hz的相干噪声源强度较低,有两个优势方向,其中较强的一个来自于台阵南侧,可能与0.3~0.5 Hz的噪声同源,较弱的一个来自于台阵北偏东方向;1~1.5Hz的背景噪声有四个较弱的优势方向,在台阵的不同区域有不同的优势方向,可能受到不同的局部噪声源的控制.垂向NCF中Rayleigh波的信噪比主要受控于波场的复杂程度,台阵南部受人文活动及沉积层影响,噪声水平较高,且由于盆山边缘复杂的反射、散射作用,其NCF波形复杂,信噪比偏低.受高频噪声源分布不均与及复杂地质结构的共同影响,盐源台阵的高频NCF中的信号复杂,后续对面波频散特征的提取应充分考虑噪声源对NCF的影响以获取可靠结果.  相似文献   

3.
The data recorded during the site survey in the Zhangzhou area in Fujian Province between October 23, 2007 and December 3, 2007 was analyzed. The main methods adopted for the noise level of this area are the noise root mean square (RMS), noise power spectrum density and noise coherency function. The results indicate that the noise levels of the survey sites are higher in the 1s-10s periods, which is the main frequency band of preliminary microseism, and also, two main noise sources were found in 1.5Hz and around 5Hz. According to arithmetic, the direction and frequency band of the noise source were analyzed and academic proofs were presented. At last, we found that the noise source in 1.5Hz was made by the water wave aroused by the wind in the reservoir region and the noise source around 5Hz was made by the power station in the northeast direction.  相似文献   

4.
The existence and development of the quasi-2-day oscillations in the plasma frequency variations of the F region at northern middle latitudes are investigated. A new approach to study the quasi-2-day oscillations is presented, using a methodology that allows us to do such a study at fixed heights. The hourly values of plasma frequency at fixed heights, from 170 km to 220 km at 10 km step, obtained at the Observatori de lEbre station (40.8°N, 0.5°E) during 1995 are used for analysis. It is found that quasi-2-day oscillations exist and persisted in the ionospheric plasma frequency variations over the entire year 1995 for all altitudes investigated. The dominant period of oscillation ranges from 42 to 56 h. The amplitude of oscillation is from 0.1 MHz to 1 MHz. The activity of the quasi-2-day oscillation is better expressed during the summer half year when several enhancements, about 15–30 days in duration, were observed. The largest enhancements of the oscillation occurred during early June, July and early August; i. e., near and after the summer solstice when the 2-day wave in the middle neutral atmosphere typically displays its largest activity in the Northern Hemisphere. The results obtained may help us understand better the possible influencing mechanisms between the 2-day wave in the middle neutral atmosphere and the ionospheric quasi-2-day oscillations.  相似文献   

5.
We present a new approach to polarization analysis of seismic noise recorded by three-component seismometers.It is based on statistical analysis of frequency-dependent particle motion properties determined from a large number of time windows via eigenanalysis of the 3-by-3,Hermitian,spectral covariance matrix.We applied the algorithm to continuous data recorded in 2009 by the seismic station SLM,located in central North America.A rich variety of noise sources was observed.At low frequencies (0.05 Hz) we observed a tilt-related signal that showed some elliptical motion in the horizontal plane.In the microseism band of 0.05-0.25 Hz,we observed Rayleigh energy arriving from the northeast,but with three distinct peaks instead of the classic single and double frequency peaks.At intermediate frequencies of 0.5-2.0 Hz,the noise was dominated by non-fundamental-mode Rayleigh energy,most likely P and Lg waves.At the highest frequencies (3 Hz),Rayleigh-type energy was again dominant in the form of Rg waves created by nearby cultural activities.Analysis of the time dependence of noise power shows that a frequency range of at least 0.02-1.0 Hz (much larger than the microseism band) is sensitive to annual,meteorologically induced sources of noise.  相似文献   

6.
Results of the observations of the ionospheric effects of two solar flares in April 2004 performed using partial reflections are presented. The studies were carried out at the measuring facilities located in different latitudinal regions: at Vasil’sursk station in the Nizhni Novgorod region and at Tumannyi station in the Murmansk region. The quantitative estimates of the electron density in the polar and midlatitude D region under quiet conditions and during solar flares were obtained. The correlation between rapid variations in electron concentration at heights of about 80 km at these stations was found and it was shown that during solar flares the electron density at heights of 60–70 km corresponds to the intensity of the X-ray flux in the range of 0.5–3 Å, which points to the action of the linear law of recombination in the ionospheric D region.  相似文献   

7.
Concurrent observations of waves at the base of a southern California coastal cliff and seismic cliff motion were used to explore wave–cliff interaction and test proxies for wave forcing on coastal cliffs. Time series of waves and sand levels at the cliff base were extracted from pressure sensor observations programmatically and used to compute various wave impact metrics (e.g. significant cliff base wave height). Wave–cliff interaction was controlled by tide, incident waves, and beach sand levels, and varied from low tides with no wave–cliff impacts, to high tides with continuous wave–cliff interaction. Observed cliff base wave heights differed from standard Normal and Rayleigh distributions. Cliff base wave spectra levels were elevated at sea swell and infragravity frequencies. Coastal cliff top response to wave impacts was characterized using microseismic shaking in a frequency band (20–45 Hz) sensitive to wave breaking and cliff impacts. Response in the 20–45 Hz band was well correlated with wave–cliff impact metrics including cliff base significant wave height and hourly maximum water depth at the cliff base (r2 = 0.75). With site‐specific calibration relating wave impacts and shaking, and acceptable anthropogenic (traffic) noise levels, cliff top seismic observations are a viable proxy for cliff base wave conditions. The methods presented here are applicable to other coastal settings and can provide coastal managers with real time coastal conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The analysis of seismic ambient noise acquired during temporary or permanent microseismic monitoring campaigns (e.g., improved/enhanced oil recovery monitoring, surveillance of induced seismicity) is potentially well suited for time‐lapse studies based on seismic interferometry. No additional data acquisition required, ambient noise processing can be automatized to a high degree, and seismic interferometry is very sensitive to small medium changes. Thus there is an opportunity for detection and monitoring of velocity variations in a reservoir at negligible additional cost and effort. Data and results are presented from an ambient noise interferometry study applied to two wells in a producing oil field in Romania. Borehole microseismic monitoring on three component geophones was performed for four weeks, concurrent with a water‐flooding phase for improved oil recovery from a reservoir in ca. 1 km depth. Both low‐frequency (2 Hz–50 Hz) P‐ and S‐waves propagating through the vertical borehole arrays were reconstructed from ambient noise by the virtual source method. The obtained interferograms clearly indicate an origin of the ambient seismic energy from above the arrays, thus suggesting surface activities as sources. It is shown that ambient noise from time periods as short as 30 seconds is sufficient to obtain robust interferograms. Sonic log data confirm that the vertical and horizontal components comprise first arrivals of P‐wave and S‐waves, respectively. The consistency and high quality of the interferograms throughout the entire observation period further indicate that the high‐frequency part (up to 100 Hz) represents the scattered wave field. The temporal variation of apparent velocities based on first‐arrival times partly correlates with the water injection rate and occurrence of microseismic events. It is concluded that borehole ambient noise interferometry in production settings is a potentially useful method for permanent reservoir monitoring due to its high sensitivity and robustness.  相似文献   

9.
Most studies of seismic noise cross-correlation (NCC) have focused on regional/continental scale imaging using empirical surface-wave Green’s functions extracted from primary (0.05–0.08 Hz) and secondary (0.1–0.16 Hz) microseisms. In this work, we present the NCC results at higher frequencies (>0.5 Hz) from 6 months seismic noise recorded by a local array (~4 km aperture) deployed along the Calico fault in the Mojave Desert, California. Both fast and slow propagating waves are observed from the NCC record-sections. We compare the NCCs from sensor pairs that share a common sensor with the records of a borehole shot located very close to this common sensor. The result shows a good match of the slow surface-wave arrivals, indicating that the NCC method is able to recover unbiased surface-wave Green’s functions at local scales. The strong body-wave NCC component is caused by the P waves generated offshore California. Along a SW–NE profile across the fault, we observe apparent P-wave arrivals and their reflections, which can be explained by a low-velocity-zone (LVZ) along the Calico fault. We calculate the LVZ width to be ~ 2.3 km, and the P-wave velocity reduction within the LVZ to be ~35 %. These estimates are consistent with other evidence for a relatively wide LVZ along the Calico fault.  相似文献   

10.
4D seismic is widely used to remotely monitor fluid movement in subsurface reservoirs. This technique is especially effective offshore where high survey repeatability can be achieved. It comes as no surprise that the first 4D seismic that successfully monitored the CO2 sequestration process was recorded offshore in the Sleipner field, North Sea. In the case of land projects, poor repeatability of the land seismic data due to low S/N ratio often obscures the time‐lapse seismic signal. Hence for a successful on shore monitoring program improving seismic repeatability is essential. Stage 2 of the CO2CRC Otway project involves an injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into a saline aquifer at a depth of approximately 1.5 km. Previous studies at this site showed that seismic repeatability is relatively low due to variations in weather conditions, near surface geology and farming activities. In order to improve time‐lapse seismic monitoring capabilities, a permanent receiver array can be utilised to improve signal to noise ratio and hence repeatability. A small‐scale trial of such an array was conducted at the Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1–12 m depth. In order to assess the gain in the signal‐to‐noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms. With such an amplified background noise level, we found that the noise level for buried geophones is on average 20 dB lower compared to the surface geophones. The levels of repeatability for borehole geophones estimated around direct wave, reflected wave and ground roll are twice as high as for the surface geophones. Both borehole and surface geophones produce the best repeatability in the 30–90 Hz frequency range. The influence of burying depth on S/N ratio and repeatability shows that significant improvement in repeatability can be reached at a depth of 3 m. The level of repeatability remains relatively constant between 3 and 12 m depths.  相似文献   

11.
Hydrophone measurements of acoustic noise levels in the Crater Lake of Mount Ruapehu, New Zealand were made on 18 January 1991 from an inflatable rubber boat on the lake. The greatest sound pressures were recorded in the 1–10 Hz band, with sound levels generally decreasing about 20 dB per decade from 10 Hz to 80 kHz. The low frequency noise did not have an obvious relationship to the tremor observed at a seismic station within 1 km of the lake. The comparatively low levels of middle and high frequency sound meant that at the time of measurement, direct steam input did not make a significant contribution to the heating of Crater Lake. This is consistent with the earlier conclusion that during the last decade a major part of the heat input of Crater Lake has come from lake water that was heated below the lake and recycled back into the lake.  相似文献   

12.
Assessing the detection threshold of seismic networks becomes of increased importance namely in the context of monitoring induced seismicity due to underground operations. Achieving the maximum possible sensitivity of industrial seismic monitoring is a precondition for successful control of technological procedures. Similarly, the lowest detection threshold is desirable when monitoring the natural seismic activity aimed to imaging the fault structures in 3D and to understanding the ongoing processes in the crust. We compare the application of two different methods to the data of the seismic network WEBNET that monitors the earthquake swarm activity of the West-Bohemia/Vogtland region. First, we evaluate the absolute noise level and its possible non-stationary character that results in hampering the detectability of the seismic network by producing false alarms. This is realized by the statistical analysis of the noise amplitudes using the ratio of 99 and 95 percentiles. Second, the magnitude of completeness is determined for each of the nine stations by analysing the automatic detections of an intensive swarm period from August 2011. The magnitude–frequency distributions of all detected events and events detected at individual stations are compared to determine the magnitude of completeness at a selected completeness level. The resulting magnitude of completeness M c of most of the stations varies between ?0.9 and ?0.5; an anomalous high M c of 0.0 is found at the most distant station, which is probably due to inadequate correction for attenuation. We find that while the absolute noise level has no significant influence to the station sensitivity, the noise stationarity correlates with station sensitivity expressed in low magnitude of completeness and vice versa. This qualifies the method of analysing the stationary character of seismic noise as an effective tool for site surveying during the seismic station deployment.  相似文献   

13.
大容量气枪震源及其波形特征   总被引:22,自引:5,他引:17       下载免费PDF全文
大容量低频组合气枪震源已成功应用于南海北部海陆联测实验及陆上水库实验,其信号传播最远距离可达255 km. 为了探讨气枪信号的波形特征, 从广东省地震台网数据中选择了台基相同、震级与震中距相近的珠海台的地震记录, 将气枪震源、天然地震和爆破三种震源的波形特征进行了对比分析,结果表明, 气枪信号特征明显, 信号主频4~8 Hz, 振幅±0.15 μm·s-1, 波形一般具有3~5个峰值, 并随时间有规律变化,易于准确识别. 实验探测结果说明, 这种能量强、重复性好、探测精度高、绿色环保的枪阵组合震源可广泛应用于海洋与陆地深部结构研究.  相似文献   

14.
—?We attempt to detect temporal variations of seismic wave velocity before and after 1998 M6.1 Shizukuishi, northeastern Japan, earthquake by using waveform data from explosions and earthquake doublets spanning the period immediately before and after the earthquake. Direct P waves of the second explosion are delayed by ~20 ms at observation stations with epicentral distances less than 15 km. This tendency does not change if the analysis frequency band is changed. Our result suggests that the P-wave velocity decreased by at least 1% in the extremely shallow region of the hanging wall of the M6.1 thrust event after its occurrence. On the other hand, there was the frequency dependence of the coda wave delays for both artificial sources and for natural events. At 5–10 Hz, immediate sharp increases by more than 20 ms in time delays and lower coherency were observed at several stations. We estimated the region in which P-wave velocity might have decreased after the M6.1 earthquake. Maximum depth of the region is 13 km. The region includes the aftershock area of the M6.1 earthquake, but is eccentric to the earthquake in the west. Considering the frequency band analyzed (5–10 Hz), the scale of the spatial inhomogeneity which led to the coda wave delay is several hundreds meters. We investigated candidates for the cause of the direct P-wave and coda wave delay. Observed direct P-wave delay can be partly explained by the stress changes caused by coseismic fault slip. However, the coda wave delay cannot be explained by the stress changes that are limited to the superficial area. Crustal heterogeneity should have changed at coseismic time in the deeper area where aftershocks of the M6.1 earthquake occurred.  相似文献   

15.
The German Regional Seismic Network (GRSN) comprizes now 16 digital broadband stations equipped with Wieland-Streckeisen STS-2 seismometers, 24-bit dataloggers and a seismological data center at Erlangen. It covers the whole territory of Germany with station-spacings between 80 km to 240 km. The stations are sited in very different environments ranging from near shore at the Baltic Sea coast up to distances of about 700 km from the coast, both within cities and up to about 10 km away from any major settlement, industry or traffic roads. The underground varies from outcropping hard rocks in Hercynian mountain areas, sedimentary rocks in areas of Mesozoic platform cover to up to 1.5 km unconsolidated Quarternary and Tertiary subsoil. Accordingly, seismic background noise varies in a wide range between the upper and lower bounds of the new global noise model. The noise conditions at the GRSN have been investigated systematically by means of displacement power spectral analysis within the frequency range 10-2 5 for RUE and > 10 for BSEG have been confirmed for frequencies between about 0.6 Hz 3 Hz. Strong lateral velocity and impedance contrasts between the outcropping Triassic/Permian sedimentary rocks and the surrounding unconsolidated Quarternary/Tertiary sediments are shown to be the main cause for the strong noise reduction and signal-to-noise ratio improvement at RUE and can account for about 50% of the noise reduction at BSEG.  相似文献   

16.
The emission (or modulation) line, which manifests itself during high-speed (the speed of entry into the atmosphere is about 70 km/s) meteor showers (Perseids, Orionids, Leonids), has been detected in the fluctuation spectra of ionospheric plasma radio noise at λ = 2 m. The line frequency varies from 12 to 60 Hz depending on activity of ionospheric ionization sources and local characteristics of a meteor shower, time of day, etc. The line has a width of 2–3 Hz and can have satellites. The dusty plasma characteristics have been estimated on the assumption that ionospheric noise is modulated or emitted due to dusty plasma oscillations.  相似文献   

17.
人类的生产生活产生的振动会以高频地震波的形式被地震台站所记录。2020年1月,新冠肺炎疫情爆发,为了应对此次疫情,各地政府分别启动应急响应,国内地震记录出现最长、最突出的人为地震降噪期。各地震台站背景噪声显著下降,在人口稠密及工业发达地区尤为明显。同时,静噪期为探测地下地震源的微弱信号提供了可能。静噪期内,佘山地震台2 Hz频点背景噪声功率谱密度值比平时降低10 dB,而大洋山地震台10 Hz频点背景噪声功率谱密度值较平时降低约5 dB;佘山地震台2—10 Hz以及大洋山地震台10 Hz以上频率的背景噪声受静噪期影响明显。结合地震台站所处位置分析,疫情期间佘山地震台附近人口流出较多,2—10 Hz频率的背景噪声变化明显;大洋山地震台背景噪声则受工厂、轮渡、高速汽车等影响较大,f ≥10 Hz的背景噪声变化显著,而频率在2—10 Hz则无明显变化,表明该台人口总数趋于平稳。地震噪声和人类活动之间的相关性表明,地震学研究可以提供实时人口动态估计。  相似文献   

18.
地震背景噪声特性及噪声源的分布研究逐渐成为深化背景噪声层析成像的关键问题.海岛地区由于特殊的地理位置,其背景噪声具有相对独特的特征.地脉动(约0.003~1 Hz)是地震背景噪声中能量最强的分量,其激发与特性被认为与海浪运动和固体地球之间的相互作用有关,但海岛地区地脉动特征与海洋波浪场之间的关系尚未被充分研究.本文利用西北太平洋海岛地震台站的连续记录数据、波浪浮标的实测数据以及WAVEWATCH-Ⅲ海浪模式的数值模拟结果,通过地震学和海洋学的交叉,分析海岛地区地脉动信号的时频特性及其与海洋波浪场之间的相关性,从海洋学角度对地脉动信号的特征及激发进行探讨与解释.结果表明,海岛地区地脉动信号相对于内陆地区更强,并具有明显且稳定的季节性变化特征:高频地脉动信号(0.12~0.32 Hz)在夏秋季节(5月-10月)相对较弱,而在冬春季节(11月-次年4月)相对较强,与北半球海洋活动季节性变化相一致.此外,海岛地区地脉动主要受周边海域波浪场影响,与周边海域波浪能功率密度及实测和数值模拟所得的有效波高均具有很好的互相关性.该研究结果同时表明可进一步发展利用地脉动观测数据反演海表波浪场的可能,为海洋科学研究中海表波浪场连续观测数据的获取提供地震学上的支持.  相似文献   

19.
The method of coda waves was applied to two different sets of data for the evaluation of the relative site response.The first set of data consists of low magnitude earthquakes with closely spaced locations, recorded at a small aperture array of velocimeters located in the Abruzzo region, central Italy. The second set of data is composed of events with epicentral distance ranging from 20 to 300 km, recorded at a seismological network with an aperture of about 100 km located in the Puglia region, southern Italy.Results show that the coda wave method furnishes stable estimates of the site effect. An amplification, relative to an arbitrary site, of a factor of about 2 occurs in the 1.7–6 Hz frequency band for two stations of the Abruzzo network, while an amplification factor of about 0.5 occurs in the whole frequency band (1–24 Hz) for one of the stations of the Puglia network. This station is located in an area which is correlated with a low macroseismic intensity anomaly.  相似文献   

20.
Variations in the amplitude of the ordinary wave from a received signal on a partial reflection radar at a short-wave range on the Kola Peninsula during the appearance of noctilucent clouds on August 12, 2016, are examined. Noctilucent clouds are registered by the all-sky camera located 100 km southward of the partial reflection radar. They extended over the entire celestial hemisphere observed by the all-sky camera; all of them moved in the southern direction, and the clouds had a tenuous structure and showed gravity waves with spatial periods of 15–100 km. During the presence of noctilucent clouds over the partial reflection radar, polar mesospheric summer echoes (PMSEs) were recorded at heights of 83–86 km. It was found that the presence of only noctilucent clouds in diagram of the antenna pattern of partial frequency radar is not sufficient for the appearance of PMSEs; noctilucent clouds must also have irregularities of several kilometers. The PMSE heights decreased with a velocity of 0.5 and 1.3 m/s. The issue of aerosols that cause the appearance of PMSEs and noctilucent clouds is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号