首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
<正>The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion of the Indochina block during and subsequent to the Indian-Eurasian collision.Diancang Shan(DCS) high-grade metamorphic complex,located at the northwest extension along the Ailao Shan-Red River(ASRR) shear zone,is a representative metamorphic complex of the ASRR tectonic belt.Structural and microstructural analysis of sheared rocks in the high-grade metamorphic rocks reveals that they are coherent with solid-state high-temperature ductile deformation,which is attributed to left-lateral shearing along the ASRR shear zone.New LA-ICP-MS zircon U-Pb geochronological and microstructural studies of the post-kinematic granitic plutons provide a straightforward time constraint on the termination ductile left-lateral shearing and exhumation of the metamorphic massif in the ASRR shear zone.It is suggested that the left-lateral shearing along the ASRR shear zone ended at ca.21 Ma at relative lower-temperature or decreasing temperature conditions.During or after the emplacement of the young dikes at ca.21 Ma,rapid brittle deformation event occurred,which makes the DCS massif start fast uplift/exhumation and cooling to a shallow crustal level.  相似文献   

2.
ABSTRACT

The Yao Shan complex, a massif near the southern segment of the Ailao Shan–Red River (ASRR) shear zone, bears important information on the structural framework of the massif and the kinematics of ductile shearing along the ASRR shear zone. In this contribution, structural, microstructural, quartz c-axis fabric, magnetic fabric, and geochronologic data are used to determine the structural framework of the Yao Shan massif and its tectonic implications for the ASRR shear zone. The Yao Shan complex is characterized by an overall linear A-type antiform that contains a core of high-grade metamorphic rocks with Palaeoproterozoic to Mesozoic protoliths and a mantle of Permo-Triassic low-grade rocks. Both the high-grade metamorphic core and low-grade Permo-Triassic rocks have experienced progressive ductile shearing. Anisotropy of magnetic susceptibility (AMS) results from 17 samples collected along the Xinjie–Pingbian section across the complex show that magnetic lineation (Kmax) and foliation (KmaxKint) are generally subparallel to the corresponding structural elements in the sheared rocks. The shape parameter E values of the magnetic ellipsoids are indicative of dominantly oblate and plane strain, but vary with protolith type and degree of strain among the various rock types. In agreement with the field and microstructural observations, the corrected degree of anisotropy (Pj) values reflect high shear strain in the core rocks and relatively low shear strain in the low-grade strata. A kinematic analysis based on structural and magnetic fabric data shows that both left- and right-lateral shear occurred during the deformation of the Yao Shan complex. Therefore, instead of being an element of the ASRR shear zone, the Yao Shan complex constitutes a crustal-scale inharmonic A-type fold with a fold axis parallel to the stretching lineation. Geochronologic data reveal that the folding occurred coevally with ductile shearing of the middle to lower crust between ca. 30 and 21 Ma.  相似文献   

3.
As the boundary between the Indochina and the South China blocks, the Ailao Shan-Red River (ASRR) shear zone underwent a sinistral strike-slip shearing which is characterized by ductile deformation structures along the Ailao Shan range. The timing issue of left-lateral shearing along the ASRR shear zone is of first-order importance in constraining the nature and regional significance of the shear zone. It has been, therefore, focused on by many previous studies, but debates still exist on the age of initiation and termination of shearing along the shear zone. In this paper, we dated 5 samples of granitic plutons (dykes) along the Ailao Shan shear zone. Zircon U–Pb ages of four sheared or partly sheared granitic rocks give ages of 30.9 ± 0.7, 36.6 ± 0.1, 25.9 ± 1.0 and 27.2 ± 0.2 Ma, respectively. An undeformed granitic dyke intruding mylonitic foliation gives crystallization age of 21.8 ± 1 Ma. The Th/U ratios of zircon grains from these rocks fall into two populations (0.17–1.01 and 0.07–0.08), reflecting magmatic and metamorphic origins of the zircons. Detailed structural and microstructural analysis reveals that the granitic intrusions are ascribed to pre-, syn- and post-shearing magmatisms. The zircon U–Pb ages of these granites provide constraints on timing of the initiation (later than 31 Ma from pre-shearing granitic plutons, but earlier than 27 Ma from syn-shearing granitic dykes) and termination (ca. 21 Ma from the post-shearing granitic dykes) of strong ductile left-lateral shearing, which is consistent with previous results on the Diancang Shan and Day Nui Con Voi massifs in the literature. We also conclude that the left-lateral shearing along the ASRR shear zone is the result of southeastward extrusion of the Indochina block during the Indian–Eurasian plate collision. Furthermore, the left-lateral shearing was accompanied by the ridge jump, postdating the opening, of the South China Sea.  相似文献   

4.
In this paper, cataclastic shear zones along the northern margin of the Mino Belt, central Japan are described, and the significance of the shearing in the tectonic evolution of SW Japan is examined. The Mino Belt in SW Japan is composed of accretionary complexes of Jurassic to Early Cretaceous age. Field investigation revealed that remarkable cataclastic shear zones trending east to northeast run along the northern margin of the Mino Belt. Closely spaced cleavage is developed in these shear zones. Lineation on the cleavage plunges at shallow to moderate angles. Deformation structures (e.g. composite planar fabric and asymmetric structure of clasts) in the sheared rocks clearly indicate a sinistral sense of shear. The shearing ceased by latest Cretaceous time, because the sheared rocks are overlain by unsheared Upper Cretaceous volcanic rocks. The sinistral shearing may be closely related to Cretaceous sinistral movement along the eastern margin of Asia. Sinistral shearing along the northern margin of the Mino Belt can be considered as a key for re-examining the tectonic development of SW Japan.  相似文献   

5.
The uplift of the Ailao Shan-Diancang Shan(ASDS) along the Ailao Shan-Red River(ASRR) shear zone is an important geological event in the southeastern margin of Qinghai-Tibet Plateau tectonic domain in the Late Cenozoic,and it preserves important information on the structures,exhumational history and tectonic evolution of the ASRR shear zone.The uplift structural mode and uplift timing of the ASDS is currently an important scientific topic for understanding the ASDS formation and late stage movements and evolution of the ASRR shear zone.The formation of the ASDS has been widely considered to be the consequence of the strike-slip movements of the ASRR shear zone.However,the shaping of geomorphic units is generally direct results of the latest tectonic activities.In this study,we investigated the timing and uplift structural mechanism of the ASDS and provided the following lines of supportive evidence.Firstly,the primary tectonic foliation of the ASDS shows significant characteristic variations,with steeply dipping tectonic foliation developed on the east side of the ASDS and the relatively horizontal foliation on the west side.Secondly,from northeast to southwest direction,the deformation and metamorphism gradually weakened and this zone can be further divided into three different metamorphic degree belts.Thirdly,the contact relationship between the ASDS and the Chuxiong basin-Erhai lake is a normal fault contact which can be found on the east side of the ASDS.40Ar/39 Argeochronology suggests that the Diancang Shan had experienced a fast cooling event during 3–4 Ma.The apatite fission track testing method gives the age of 6.6–10.7 Ma in the Diancang Shan and 4.6–8.4 Ma in the Ailao Shan,respectively.Therefore the uplift of the ASDS can be explained by tilted block mode in which the east side was uplifted much higher than the west side,and it is not main reason of the shearing movements of the ASRR shear zone.The most recent uplift stages of the ASDS happened in the Pliocene(3–4 Ma) and Late Miocene(6–10 Ma).  相似文献   

6.
The left-lateral strike-slip shearing along the Ailao Shan–Red River (ASRR) shear zone in the Southeastern Tibet, China, has been widely advocated to be a result of the Indian–Eurasian plate collision and post-collisional processes. The Diancang Shan (DCS) massif, which occurs at the northwestern extension of the Ailao Shan massif, is a typical high-grade metamorphic complex aligned along the ASRR tectonic belt. Structural and microstructural analysis of the plutonic intrusions in the DCS revealed different types of granitic intrusions spatially confined to the shear zone and temporally related to the left-lateral shearing along the ASRR shear zone in the DCS massif. The combined structural and geochronological results of SHRIMP-II and LA-ICP-MS zircon U/Pb isotopic dating have revealed successive magmatic intrusions and crystallization related to the Oligo-Miocene shearing in the DCS massif. The pre-, early- and syn-kinematic emplacements are linked to regional high-temperature deformation (lower amphibolite facies) at relatively deep crustal levels. The zircon U/Pb geochronological results suggest that the left-lateral ductile shearing along the ASRR shear zone was initiated at ca. 31 Ma, culminated between ca. 27 and 21 Ma resulting in high-temperature metamorphic conditions and slowed down at ca. 20 Ma at relatively low-temperatures.  相似文献   

7.
Quartz microfabrics and associated microstructures have been studied on a crustal shear zone—the Main Central Thrust (MCT) of the Himalaya. Sampling has been done along six traverses across the MCT zone in the Kumaun and Garhwal sectors of the Indian Himalaya. The MCT is a moderately north-dipping shear zone formed as a result of the southward emplacement of a part of the deeply rooted crust (that now constitutes the Central Crystalline Zone of the Higher Himalaya) over the less metamorphosed sedimentary belt of the Lesser Himalaya. On the basis of quartz c- and a-axis fabric patterns, supported by the relevant microstructures within the MCT zone, two major kinematic domains have been distinguished. A noncoaxial deformation domain is indicated by the intensely deformed rocks in the vicinity of the MCT plane. This domain includes ductilely deformed and fine-grained mylonitic rocks which contain a strong stretching lineation and are composed of low-grade mineral assemblages (muscovite, chlorite and quartz). These rocks are characterized by highly asymmetric structures/microstructures and quartz c- and a-axis fabrics that indicate a top-to-the-south sense that is compatible with south-directed thrusting for the MCT zone. An apparently coaxial deformation domain, on the other hand, is indicated by the rocks occurring in a rather narrow belt fringing, and structurally above, the noncoaxial deformation domain. The rocks are highly feldspathic and coarse-grained gneisses and do not possess any common lineation trend and the effects of simple shear deformation are weak. The quartz c-axis fabrics are symmetrical with respect to foliation and lineation. Moreover, these rocks contain conjugate and mutually interfering shear bands, feldspar/quartz porphyroclasts with long axes parallel to the macrosopic foliation and the related structures/microstructures, suggesting deformation under an approximate coaxial strain path.On moving towards the MCT, the quartz c- and a-axis fabrics become progressively stronger. The c-axis fabric gradually changes from random to orthorhombic and then to monoclinic. In addition, the coaxial strain path gradually changes to the noncoaxial strain path. All this progressive evolution of quartz fabrics suggests more activation of the basal, rhomb and a slip systems at all structural levels across the MCT.  相似文献   

8.
The tectonic evolution of South Qinling,which is a main part of the Qinling orogenic belt,is still in dispute and deformation history of South Qinling is poorly studied.In this paper,detailed structural,microstructural,quartz c-axis fabric analysis,and geochronology results for the Madao gneiss in South Qinling are presented to characterize the deformation history.Results show that rocks in the northern part(Tiefodian-Laozhanggou) experience general shearing and deform at relative low temperature.The shear sense generally is south to north.In contrast,rocks in the southern part(Laozhanggou-Panjiahe) are weakly sheared with pure shear features and evidence of hightemperature deformation.Based on the analyses,we conclude that there exist two distinct deformation geometries in the Madao gneiss and accordingly we can divide the deformation into two stages.The early stage is represented by regional shortening,while the late stage features northward thrust shearing and evidence shows that it was a progressive process between them.LA-ICP MS U-Pb dating of zircons from pre-deformational migmatite veins yields age of 198.5 ± 2.0 Ma.This result,in combination with the age of post-deformational granite,indicates that the northward thrust shearing of the Madao gneiss occurred in the Late Triassic.In view of these results and other reported data in South Qinling,we propose that deformation in Madao gneiss may result from the initial collision and subsequent northward accretion in Late Triassic.  相似文献   

9.
The Tianshan range could have been built by both late Early Paleozoic accretion and Late Paleozoic collision events. The late Early Paleozoic Aqqikkudug-Weiya suture is marked by Ordovician ophiolitic melange and a Silurian flysch sequence, high-pressure metamorphic relics, and mylonitized rocks. The Central Tianshan belt could principally be an Ordovician volcanic arc; whereas the South Tianshan belt, a back-arc basin. Macro- and microstructures, along with unconformities, provide some kinematic and chronological constraints on 2-phase ductile deformation. The earlier ductile deformation occurring at ca. 400 Ma was marked by north-verging ductile shearing, yielding granulite-bearing ophiolitic melange blocks and garnet-pyroxene-facies ductile deformation, and the later deformation, a dextral strike-slip tectonic process, occurred during the Late Carboniferous-Early Permian. Early Carboniferous molasses were deposited unconformably on pre-Carboniferous metamorphic and ductilely sheared rocks, implying t  相似文献   

10.
滇西哀牢山构造带:结构与演化   总被引:19,自引:0,他引:19  
哀牢山构造带是藏东(东南亚)地区的一条重要线性构造,它分隔了扬子—华南地块与印支地块,并保存了多阶段复杂大地构造演化的记录。哀牢山构造带内由东向西依次发育了晚太古代—新元古代深变质岩系、新生代构造-岩浆活动带(剪切带)、金平—沱江晚二叠—早三叠世裂谷带残余和哀牢山早石炭世—早三叠世混杂岩带。具有不同特点的地质单元间被以新生代为主发育的断裂构造所间隔;而不同时期异地就位或混合岩化成因的花岗质岩石在构造带中普遍存在。哀牢山构造带在不同地质历史阶段具有多重大地构造属性,总体上经历了3个重要大地构造演化阶段:前特提斯演化、特提斯演化和新生代陆内演化阶段。前特提斯演化时期,主体部分(尤其是其东部带)具有亲扬子地块的属性,保留了自晚太古代到新元古代地壳演化的记录。一直到早古生代时期,哀牢山构造带的大地构造属性与扬子—华南地区依然具有密切的亲缘关系。自晚古生代—早中生代时期古特提斯洋打开之后,该带与华南-扬子板块之间分化成2个属性不同的构造域,始于早石炭世打开的哀牢山洋与始于早二叠世打开的金平—沱江洋依次消亡。特提斯洋的闭合,一方面形成了古哀牢山造山带,同时使得扬子—华南地块与印支地块回复到一个统一的陆内环境中;印度—欧亚板块之间的交互作用,对这一地区有着深刻的影响,相继形成了早新生代哀牢山造山带、晚渐新世—早中新世造山后区域性伸展与高钾碱性岩浆活动性和晚渐新世—早中新世印支地块的大规模南东向逃逸、哀牢山大型左行走滑剪切作用及伴生的钙碱性岩浆活动性。  相似文献   

11.
哀牢山-红河剪切带左行走滑作用起始时间约束   总被引:18,自引:1,他引:17  
位于哀牢山-红河剪切带NW延伸方向上的点苍山变质杂岩体遭受强烈的左行走滑剪切变形、变质作用改造,岩石中保存了典型的高温矿物组合以及由它们构成的宏观和微观高温变形构造特征,其中糜棱岩中具有极其发育的长石矿物拉伸线理而形成典型的L与LS型构造岩是其一个明显的特征。本文对点苍山地区高温糜棱岩主要矿物开展了显微构造与矿物变形、变形机制及组构分析,并对于遭受高温糜棱岩化改造的一个花岗质岩体开展了SHRIMP锆石U-Pb定年分析。结果表明岩石中长石、角闪石、石英等主要矿物具有典型的达角闪岩相条件下的高温晶质塑性变形和动态生长特征,它们也为走滑剪切变形活动提供了充分的微观构造证据。对于点苍山高温糜棱岩化改造的眼球状或似斑状二长花岗岩的显微构造分析结果表明,这套花岗质岩石从走滑剪切前期岩浆的侵位之后经历了早期强烈的岩浆期后交代作用—亚岩浆流动—高温固态塑性剪切变形的递进演化过程。由此可见,岩浆的上升与就位受左行走滑剪切作用的制约,岩体又遭受了强烈剪切变形改造。同时对这套构造前期就位花岗质岩石中的锆石进行定年分析,获得33.88±0.32Ma的岩浆结晶年龄,为此,我们有充分的理由认为,在点苍山地区哀牢山-红河剪切带左行走滑剪切作用的起始时间至少应该为早渐新世30.88±0.32Ma。  相似文献   

12.
CHARACTERISTICS AND METALLOGENIC EVOLUTION OF AILAOSHAN GOLD METALLOGENIC BELTS IN YUNNAN, CHINANNSFC(973Hi techProjects)andProjectofYunnanProvince ChineseAcademyofSciencescorporation(YK980 0 8 3)  相似文献   

13.
点苍山变质杂岩新生代变质-变形演化及其区域构造内涵   总被引:3,自引:2,他引:1  
点苍山变质杂岩体是哀牢山-红河韧性剪切带四个变质杂岩体之一,遭受了多期多阶段变质-变形作用改造。本文重点针对点苍山杂岩的新生代变质-变形作用,尤其是以富铝质高级变质岩即夕线石榴黑云片麻岩和侵位于其中的糜棱岩化细晶花岗质岩石开展了深入研究。对夕线石榴黑云片麻岩的显微构造分析与矿物共生组合研究,确定了高角闪岩相和低角闪岩相变质矿物共生组合,分别为:石榴石(Grt)+夕线石(Sil)+钾长石(Kfs)+黑云母(Bi)+斜长石(Pl)±石英(Q)和夕线石(Sil)+白云母(Ms)+黑云母(Bi)+石英(Q)。对其中的变质锆石进行SHRIMP U-Pb测试,获得了新生代三个阶段的变质作用年龄,即54.2±1.7Ma、31.5±1.5Ma和27.5±1.2Ma.本文还深入研究了侵位于高级变质岩中的一个花岗岩质糜棱岩的宏观与显微构造特点,其LA-ICP-MS年龄为24.4±0.89Ma,代表着同剪切就位花岗质岩浆侵位和结晶年龄。夕线石榴黑云片麻岩中变质锆石从2150~27Ma多期多阶段表观年龄的发育,表明点苍山变质杂岩体具有复杂的构造演化史。点苍山杂岩的多阶段新生代构造-热演化归咎于印度-欧亚板块会聚与碰撞作用(约54Ma)、造山后伸展作用(大约40~30Ma)和沿着哀牢山-红河剪切带大规模左行走滑变形作用(约27~21Ma)。  相似文献   

14.
康古尔韧性剪切带变形特征及控矿作用   总被引:2,自引:0,他引:2  
康古尔韧性剪切带具明显的遥感影像特征和区域重、磁异常变化特征。韧性剪切引起的变质作用表现为强应力下的岩石变质、变形,变质相序从绿片岩相到角闪岩相,变质岩石类型为千枚岩、片岩、变粒岩、糜棱岩及糜校岩化的岩石。韧性剪切变形和塑性流动形成的面理、线理、招皱、韧性断裂等构造形迹十分明显,构成一条东百长1000多千米,南北宽20~30km的狭长线形构造带(强应变带);它经历了多期次、多种构造作用交替叠加的变化过程,按性质分类属大型平移断裂系统。康古尔韧性剪切带控制着重要的金矿、铜镍矿床及稀有金属等矿产,是新疆东部有重要找矿意义的成矿带。  相似文献   

15.
夹皮沟剪切带与金矿床形成演化关系的模拟实验   总被引:4,自引:0,他引:4  
孙胜龙 《矿床地质》1995,14(1):73-81
夹皮沟金矿床,位于华北地台北缘东段,与剪切带形成,演化密切相关。剪切带发育在长英质片麻岩石中。金矿化主要发育在脆-韧性剪切作用阶段:早期形成了糜棱岩型金矿化;晚期则形成了黄铁矿-石英脉型金矿化(矿床)。不同地球化学图解以及模拟实验表明,两种金矿化(或矿床)是同一剪切带,不同发育阶段的表现形式。金矿化(矿床)是受剪切带中的剪应力、剪切带中循环流体与被剪岩石相互作用而形成的物理-化学场所控制。  相似文献   

16.
裴磊  刘俊来 《岩石学报》2016,32(9):2723-2738
云蒙山杂岩是华北克拉通内记载了晚中生代构造演化的重要构造单元之一。云蒙山地区区域构造格架主要由四合堂背斜推覆体、四合堂逆冲型韧性剪切带、云蒙山背形、河防口正断层及水峪伸展型韧性剪切带等组成。对于四合堂逆冲型剪切带的活动时限及其与水峪剪切带之间的关系,是长期争论的课题之一。在四合堂韧性剪切带中广泛发育有剪切演化各个阶段就位的花岗质岩脉。本文研究云蒙山四合堂地区剪切变形特征及广泛发育的岩脉与构造变形之间关系,将岩脉厘定为构造期前(剪切前)岩脉、同构造期(同剪切)岩脉和构造期后(剪切后)岩脉等6期。不同类型的同构造岩脉锆石U-Pb定年获得了岩脉结晶年龄为170~150Ma。从构造-岩浆关系分析角度考虑,本文认为四合堂剪切带韧性逆冲作用早期的活动始于约170Ma,并持续到约150Ma。  相似文献   

17.
郯庐剪切带的性质和意义   总被引:11,自引:0,他引:11  
沿郯庐断裂带从大别山东麓经山东中部至辽北吉南的新宾—桦甸地区,暴露的早前寒武纪结晶岩石中存在着一系列北北东走向的大型韧性剪切带,其最大宽度达20km,走向断续延伸近2000km,它们分别在大别、鲁西和新宾地区形成了巨大的弧形牵引构造。剪切带中不同尺度组构要素的几何学,指示其中曾经发生了一致的大幅度左行位移;变形岩石的显微构造和矿物组合特征,说明这一韧性剪切带早期形成于低角闪岩相条件下,并且在抬升和冷却过程中经历了绿片岩相条件下的递进变形。山东中部晚元古代以后的沉积不整合于韧性剪切带及其变形岩石之上,中生代未期脆性的郯庐断裂系统追踪并改造了基底岩石中的韧性剪切带。  相似文献   

18.
New kinematic and structural data from the tectonic windows of eastern Crete and the Dodecanese Islands combined with strain and quartz fabric analysis have enabled us to determine a detailed structural evolution of the region and to present a plate tectonic scenario for the southeast Hellenides. During the Early Mesozoic, the southeastern part of Apulia was separated from North Africa and the adjacent microplates by WNW‐trending rift zones and NE‐trending transfer faults. Displacement along the transfer faults has locally reoriented these rift zones into an ENE–WSW direction. Finite strain and quartz fabric asymmetry data indicate that in Late Cenozoic time, NNW‐directed nappe movements caused a nearly coaxial deformation along the ENE–WSW trending rift segments and non coaxial top‐to‐the‐southeast shearing along the WNW‐trending rift segments, as well as along the pre‐existing NE‐trending transfer faults. Tectonic style along the margin varies in response to the obliquity of the principal shortening direction with respect to the margin. These variations could be due to the pre‐convergence geometry of the southern margin of Eurasia and to local strain partitioning effects. Furthermore, a tectonic model is presented in which syncompressional uplift and vertical buoyancy of the subducted crustal slice caused the rapid exhumation of metamorphic units in the south Hellenides. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The Norumbega fault system in the Northern Appalachians in eastern Maine experienced complex post-Acadian ductile and brittle deformation from middle through late Paleozoic times. Well-preserved epizonal ductile shear zones in Fredericton belt metasedimentary rocks and granitic batholiths that intrude them provide valuable information on the nature, geometry, and evolution of orogen-parallel strike-slip Norumbega faulting. Metasedimentary rocks were ductilely sheared into phyllonite schistose mylonite, whereas granite into mylonite within the ductile shear zones. Ductile shearing took place at conditions of the lower greenschist facies with peak temperatures on the order of 300–350° based on comparison of plastic quartz and brittle feldspar microstructures, confirming a shallow crustal environment during faulting.Ductile shear strain was partitioned into two major shear zones in easternmost Maine—the Waite and Kellyland zones—but these zones converge toward the southwest. Megascopic, mesoscopic, and microscopic kinematic indicators confirm that fault motion in both zones was dominantly dextral strike-slip. Detailed mapping, especially in the plutonic rocks, reveals a complex ductile deformation history in the area where the Waite and Kellyland zones converge. Shear strain is broadly distributed in the rocks between Kellyland and Waite zones, and increases toward their junction. Multiple dextral high-strain zones oblique to both zones resemble megascopic synthetic c′ shear bands. Together with the Kellyland and Waite master shear zones, these define a megascopic S–C′ structure system produced in a regional-scale dextral strike-slip shear duplex that developed in the transition zone between the deeper (south-central Maine) and shallower (eastern Maine) segments of the Norumbega fault system.Granite plutons caught within the strike-slip shear duplex were intensely sheared and progressively smeared into long and narrow slivers identified by this study. The western lobe of the Deblois pluton and the Lucerne pluton have been recognized as the sources, respectively of the Third Lake Ridge and Morrison Ridge granite slivers. Restoration of both granite slivers to their presumed original positions yields approximately 25 km of dextral strike-slip displacement along only the Kellyland and synthetic ductile shear zones.  相似文献   

20.
天山东段推覆构造研究   总被引:16,自引:1,他引:16       下载免费PDF全文
舒良树  孙家齐 《地质科学》1997,32(3):337-350
本文概括性总结了天山东段大型推覆构造的基本特征。根据地质证据和同位素年龄,东天山存在早古生代末,晚古生代晚期和新生代三期推覆构造;根据推覆构造分布规律及构造背景,在平面上划分为五大推覆带、9个大型韧剪带;根据出露岩石的矿物变形相将东天山推覆构造划分为深、中深和浅三个深度层次;通过韧剪变形组构的观察分析,确定了多期韧性变形性质与运动方向。糜棱岩中超微构造、古应力及小构造变形缩短率测量统计,证明东天山推覆变形具有显著的地壳缩短增厚作用。新生代板块碰撞导致本区中新生代盆地基底向造山带A型俯冲,造山带向盆地推覆,其结果就构成了今日看到的镶嵌状盆地-山脉构造地貌景观。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号