首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Large-eddy Simulations of Flow Over Forested Ridges   总被引:4,自引:4,他引:0  
Large-eddy simulations (LES) of flow over a series of small forested ridges are performed, and compared with numerical simulations using a one-and-a-half order mixing length closure scheme. The qualitative and quantitative similarity between these results provides some confidence in the results of recent analytical and numerical studies of flow over forested hills using first-order mixing length schemes. Time series of model velocities at various locations within the canopy allow the application of various experimental techniques to study the turbulence in the LES. The application of conditional analysis shows that the structure of the turbulence over a forested hill is broadly similar to that over flat ground, with sweeps and ejections dominating. Differences are seen across the hill, particularly associated with regions of mean flow separation and recirculation near the summit and in the lee of the hill. Detailed comparison of derived mixing lengths from the LES with the assumed values used in mixing-length closure schemes show that the mixing length varies with location across the hill and with height in the canopy. This is consistent with previous wind-tunnel measurements, and demonstrates that a constant mixing-length assumption is not strictly valid within the canopy. Despite this, the first-order mixing-length schemes do give similar results both for the mean flow and the turbulence in such situations.  相似文献   

2.
3.
This paper compares a number of one-dimensional closure models for the planetary boundary layer (PBL) that are currently in use in large-scale atmospheric models. Using the results of a large-eddy simulation (LES) model as the standard of comparison, the PBL models are evaluated over a range of stratifications from free convective to neutral and a range of surface shear stresses. Capping inversion strengths for the convective cases range from weakly to strongly capped. Six prototypical PBL models are evaluated in this study, which focuses on the accuracy of the boundary-layer fluxes of momentum, heat, and two passive scalars. One scalar mimics humidity and the other is a top-down scalar entrained into the boundary layer from above. A set of measures based on the layer-averaged differences of these fluxes from the LES solutions is developed. In addition to the methodological framework and suite of LES solutions, the main result of the evaluation is the recognition that all of the examined PBL parameterizations have difficulty reproducing the entrainment at the top of the PBL, as given by the LES, in most parameter regimes. Some of the PBL models are relatively accurate in their entrainment flux in a subset of parameter regimes. The sensitivity of the PBL models to vertical resolution is explored, and substantive differences are observed in the performance of the PBL models, relative to LES, at low resolution typical of large scale atmospheric models.  相似文献   

4.
Numerical experiments have shown that large-eddy-simulation models (LES) are able to reproduce the common features of convective boundary layers (CBL) quite well. Models which cannot resolve the convective motions due to their grid structure (1D-models or models with coarse horizontal and/or vertical resolution) have to take into account the effects of large eddies within their subgrid diffusion terms. Turbulent fluxes are frequently parameterized through first-order-closure methods (K-theory). Recently, non-local closure schemes have also been developed. In this paper we compare 1D-and 2D-models using different local and non-local first-order closure methods. The analysis is carried out for the case of an idealized cold air outbreak (CAO). One of the non-local closures is based on the so-called transilient turbulence theory. The reference states are given by a bulk-model and a 2D-model which resolves the large eddies explicitly. A comparison of the results is presented for characteristic quantities such as evolution of boundary-layer height and surface heat flux as well as mean wind and temperature profiles. It is found that simple local first-order closure does not give good agreement with the reference models. The results of the transilient turbulence model shows that a non-local closure is able to parameterize the effects of the large eddies. Comparable results are produced by a local closure where eddy diffusivities are parameterized by dimensionless gradient-functions.  相似文献   

5.
Recently Frech and Mahrt proposed a closure scheme which includes alarge-scale stress term to represent the effects of non-local momentummixing in the convective boundary layer. Here large-eddy simulation (LES)datasets are used to evaluate the performance of this scheme across a rangeof stabilities between neutral and highly convective conditions, and as afunction of baroclinity. Generally the inclusion of the non-local term inthe closure model leads to results in better agreement with LES, althoughsome modifications to the model formulation are suggested.  相似文献   

6.
Large-eddy simulations (LES) of the continuously turbulent quasi-equilibrium stable boundary layer (SBL) are conducted with grid lengths in the range of 12.5 m to 2 m, in order to explore resolution sensitivity, and determine at what point grid convergence occurs. The structure of the mean potential temperature, winds, and turbulent fluxes varies significantly over this resolution range. The highest resolution simulations show a significant degree of convergence. The dimensionless momentum diffusivity asymptotes to a value of 0.06, corresponding to a limiting flux Richardson number of 0.15.Using the converged simulations, some scaling hypotheses underpinning first-order and second-order closure models are revisited. The effective Richardson number stability functions of the LES are compared with the forms often used in numerical weather prediction (NWP). The mixing implied by the LES is less than that used in NWP. The commonly used similarity profiles for heat and momentum fluxes, and the scalings for dissipation and pressure covariances are compared with the LES. This information could provide guidance for the next generation of SBL parametrization schemes.  相似文献   

7.
With a focus towards developing multiscale capabilities in numerical weather prediction models, the specific problem of the transition from the mesoscale to the microscale is investigated. For that purpose, idealized one-way nested mesoscale to large-eddy simulation (LES) experiments were carried out using the Weather Research and Forecasting model framework. It is demonstrated that switching from one-dimensional turbulent diffusion in the mesoscale model to three-dimensional LES mixing does not necessarily result in an instantaneous development of turbulence in the LES domain. On the contrary, very large fetches are needed for the natural transition to turbulence to occur. The computational burden imposed by these long fetches necessitates the development of methods to accelerate the generation of turbulence on a nested LES domain forced by a smooth mesoscale inflow. To that end, four new methods based upon finite amplitude perturbations of the potential temperature field along the LES inflow boundaries are developed, and investigated under convective conditions. Each method accelerated the development of turbulence within the LES domain, with two of the methods resulting in a rapid generation of production and inertial range energy content associated to microscales that is consistent with non-nested simulations using periodic boundary conditions. The cell perturbation approach, the simplest and most efficient of the best performing methods, was investigated further under neutral and stable conditions. Successful results were obtained in all the regimes, where satisfactory agreement of mean velocity, variances and turbulent fluxes, as well as velocity and temperature spectra, was achieved with reference non-nested simulations. In contrast, the non-perturbed LES solution exhibited important energy deficits associated to a delayed establishment of fully-developed turbulence. The cell perturbation method has negligible computational cost, significantly accelerates the generation of realistic turbulence, and requires minimal parameter tuning, with the necessary information relatable to mean inflow conditions provided by the mesoscale solution.  相似文献   

8.
On the basis of data constructed with large-eddy simulation (LES), an attempt is made to improve the Mellor–Yamada (M–Y) turbulence closure model. Firstly, stably-stratified and convective planetary boundary layers without moisture are simulated by a LES model to obtain a database for the improvement. Secondly, based on the LES data, closure constants are re-evaluated and a new diagnostic equation for the master length scale L is proposed. The new equation is characterized by allowing L in the surface layer to vary with stability instead of constant kz, where k is the von Kármán constant, and z is height.The non-dimensional eddy-diffusivity coefficients calculated from the modifiedM–Y model are in satisfactory agreement with those from the LES data. It isfound that the modified M–Y model improves the original one largely, and thatthe improvement is achieved by considering buoyancy effects on the pressurecovariances andby using the newly proposed equation for L.  相似文献   

9.
Given incident logarithmic profiles of wind and pollutant concentration above a rough, absorbing surface, the three-dimensional distribution of pollutant concentration over a hill of gentle slope is determined from a linearized model. The model is applied in neutrally stratified flow, without chemistry, and is integrated using spectral methods in the horizontal and a finite-difference scheme in the vertical. This approach allows for flexibility in choosing a closure scheme and a variety of surface boundary conditions. This was not possible in the analytic approach of Padro (1987) who added pollutant concentration and flux to the MS3DJH/1 model of Walmsley et al. (1980). The present model requires as input the turbulent kinetic energy, E, dissipation, , and the perturbation vertical velocity, w, from the three-dimensional boundary-layer flow model of Beljaars et al. (1987), hereinafter referred to as MSFD, The latter model also supplies wind velocity perturbations at the upper boundary, as input to upper boundary conditions on the pollutant flux perturbations.The present study describes applications of the model to idealized terrain features: isolated two- and three-dimensional hills and ridges and an infinite series of ridges. (Application to real terrain, however, presents no difficulties.) Comparisons were made with different (though uniform) surface roughnesses. Tests were performed to examine the effect of upstream terrain features in the periodic domain and to illustrate the importance of the vertical resolution of the output for interpreting results from the sinusoidal terrain case.  相似文献   

10.
We perform large-eddy simulation (LES) of a moderately convective atmospheric boundary layer (ABL) using a prognostic subfilter-scale (SFS) model obtained by truncating the full conservation equations for the SFS stresses and fluxes. The truncated conservation equations contain production mechanisms that are absent in eddy-diffusivity closures and, thus, have the potential to better parametrize the SFS stresses and fluxes. To study the performance of the conservation-equation-based SFS closure, we compare LES results from the surface layer with observations from the Horizontal Array Turbulence Study (HATS) experiment. For comparison, we also show LES results obtained using an eddy-diffusivity closure. Following past studies, we plot various statistics versus the non-dimensional parameter, Λ w /Δ, where Λ w is the wavelength corresponding to the peak in the vertical velocity spectrum and Δ is the filter width. The LES runs are designed using different domain sizes, filter widths and surface fluxes, in order to replicate partly the conditions in the HATS experiment. Our results show that statistics from the different LES runs collapse reasonably and exhibit clear trends when plotted against Λ w /Δ. The trends exhibited by the production terms in the modelled SFS conservation equations are qualitatively similar to those seen in the HATS data with the exception of SFS buoyant production, which is underpredicted. The dominant production terms in the modelled SFS stress and flux budgets obtained from LES are found to approach asymptotically constant values at low Λ w /Δ. For the SFS stress budgets, we show that several of these asymptotes are in good agreement with their corresponding theoretical values in the limit Λ w /Δ → 0. The modelled SFS conservation equations yield trends in the mean values and fluctuations of the SFS stresses and fluxes that agree better with the HATS data than do those obtained using an eddy-diffusivity closure. They, however, underpredict considerably the level of SFS anisotropy near the wall when compared to observations, which could be a consequence of the shortcomings in the model used for the pressure destruction terms. Finally, we address the computational cost incurred due to the use of additional prognostic equations.  相似文献   

11.
The applicability of the one-way nesting technique for numerical simulations of the heterogeneous atmospheric boundary layer using the large-eddy simulation (LES) framework of the Weather Research and Forecasting model is investigated. The focus of this study is on LES of offshore convective boundary layers. Simulations were carried out using two subgrid-scale models (linear and non-linear) with two different closures [diagnostic and prognostic subgrid-scale turbulent kinetic energy (TKE) equations]. We found that the non-linear backscatter and anisotropy model with a prognostic subgrid-scale TKE equation is capable of providing similar results when performing one-way nested LES to a stand-alone domain having the same grid resolution but using periodic lateral boundary conditions. A good agreement is obtained in terms of velocity shear and turbulent fluxes, while velocity variances are overestimated. A streamwise fetch of 14 km is needed following each domain transition in order for the solution to reach quasi-stationary results and for the velocity spectra to generate proper energy content at high wavelengths, however, a pile-up of energy is observed at the low-wavelength portion of the spectrum on the first nested domain. The inclusion of a second nest with higher resolution allows the solution to reach effective grid spacing well within the Kolmogorov inertial subrange of turbulence and develop an appropriate energy cascade that eliminates most of the pile-up of energy at low wavelengths. Consequently, the overestimation of velocity variances is substantially reduced and a considerably better agreement with respect to the stand-alone domain results is achieved.  相似文献   

12.
对流边界层大涡模式的改进及对夹卷速度的研究   总被引:9,自引:0,他引:9  
对已建的对流边界层(CBL)大涡模式进行了改进,将次网格闭合方案改为次网格能量闭合,并考虑了水汽的源汇项和水汽相变潜热的作用。通过对均匀下垫面上由热扰动发展的对流边界层的模拟及与实验结果的比较表明,模式较好地模拟了对流边界层的主要物理结构,较好地反映了各物理量之间的对应关系。本文在一定的对流理查森数(Ri*)范围内给出了一些算例,对无量纲夹卷速度(We/W*)进行了研究。结果表明,无量纲夹卷速度随地表热通量(Qs)的增大而增大,随对流边界层上部温度递减率(γ)的增大而减小。当9.06≤Ri*≤45.29时,无量纲夹卷速度We/W*可以拟合成A(Ri*)-1的形式,其中A=0.226。并且与我们的对流槽实验结果,Sullivan等人的大涡模拟结果以及Deardorff等人的对流槽实验结果作了比较,四者吻合较好。  相似文献   

13.
The Bolund Experiment,Part II: Blind Comparison of Microscale Flow Models   总被引:3,自引:3,他引:0  
Bolund measurements were used for a blind comparison of microscale flow models. Fifty-seven models ranging from numerical to physical were used, including large-eddy simulation (LES) models, Reynolds-averaged Navier–Stokes (RANS) models, and linearized models, in addition to wind-tunnel and water-channel experiments. Many assumptions of linearized models were violated when simulating the flow around Bolund. As expected, these models showed large errors. Expectations were higher for LES models. However, of the submitted LES results, all had difficulties in applying the specified boundary conditions and all had large speed-up errors. In contrast, the physical models both managed to apply undisturbed ‘free wind’ boundary conditions and achieve good speed-up results. The most successful models were RANS with two-equation closures. These models gave the lowest errors with respect to speed-up and turbulent kinetic energy (TKE) prediction.  相似文献   

14.
Conditions for separation of a cross flow over a two-dimensional periodic valley are derived from linearized laminar and turbulent boundary-layer models. The results are compared with the predictions of numerical computations and from published laboratory data. Some results for isolated valleys are also discussed.  相似文献   

15.
An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer   总被引:2,自引:27,他引:2  
Results are presented from the first intercomparison of large-eddy simulation (LES) models for the stable boundary layer (SBL), as part of the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study initiative. A moderately stable case is used, based on Arctic observations. All models produce successful simulations, in as much as they generate resolved turbulence and reflect many of the results from local scaling theory and observations. Simulations performed at 1-m and 2-m resolution show only small changes in the mean profiles compared to coarser resolutions. Also, sensitivity to subgrid models for individual models highlights their importance in SBL simulation at moderate resolution (6.25 m). Stability functions are derived from the LES using typical mixing lengths used in numerical weather prediction (NWP) and climate models. The functions have smaller values than those used in NWP. There is also support for the use of K-profile similarity in parametrizations. Thus, the results provide improved understanding and motivate future developments of the parametrization of the SBL.  相似文献   

16.
Measurements and Computations of Flow in an Urban Street System   总被引:1,自引:1,他引:0  
We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.  相似文献   

17.
This paper describes a nonhydrostatic and incompressible mesoscale model formulation using a terrain-following coordinate system. A tensor transformation procedure is used to derive a diagnostic equation for the nonhydrostatic pressure field. The model features a simplified second-order turbulence closure scheme. The two-dimensional version of the nonhydrostatic model, as well as the corresponding hydrostatic model, are applied to simulate stably stratified airflow over mesoscale bell-shaped mountain ridges. The results show that the nonhydrostatic model is capable of simulating nonhydrostatic dynamics of mesoscale lee wave systems such as the trapped wave phenomenon.  相似文献   

18.
An attempt is made to compare results oflarge-eddy simulation (LES) in a convective boundarylayer using the model PALM with experimental data obtained from acoustic travel time tomography.This method provides two-dimensional data arrays, which are considered as more suitable forLES-validation than classical local orline-integrated measurements, because the tomographic data are area- or volume-averaged.For a quantitative comparison with experimental data in general, some prerequisites have to be considered: First of all, the initial and boundary conditions of the LES model have to be provided correctly by the experiment. Considering measurement errors, a sensitivity study was performed to investigate the influence of inaccurate initial and boundary conditions on the simulation results.This showed that for determining some boundary conditions, such as the surface temperature and the roughness length, high measurement accuracies are necessary, which are difficult to reach or which at least require considerable extra measurement efforts.The initial and boundary conditions provided by the Lindenberg experiment in 1999 turned out to be of insufficient accuracy to allow quantitative comparisons.However, a qualitative comparison was performed instead to investigate if the acoustic tomography method is a proper method for comparisons with LES models in general.It showed a good qualitative agreement with some quantitative differences. These differences can partly be explained by the sensitivity of the LES to initial and boundary conditions and by the limitations of the acoustic tomography.  相似文献   

19.
The influence of mesoscale circulations induced by urban-rural differential surface sensible heat flux and roughness on convective boundary-layer (CBL) flow statistics over an isolated urban area has been examined using large-eddy simulation (LES). Results are analyzed when the circulations influence the entire urban area under a zero background wind. For comparison, the CBL flow over an infinite urban area with identical urban surface characteristics under the same background meteorological conditions is generated as a control case (without circulations). The turbulent flow over the isolated urban area exhibits a mix of streaky structure and cellular pattern, while the cellular pattern dominates in the control case. The mixed-layer height varies significantly over the isolated urban area, and can be lower near the edge of the urban area than over the rural area. The vertical profiles of turbulence statistics over the isolated urban area vary horizontally and are dramatically different from the control case. The turbulent kinetic energy (TKE) sources include wind shear, convergence, and buoyancy productions, compared to only buoyancy production in the control case. The normalized vertical velocity variance is reduced compared to the control case except in the central urban area where it is little affected. The low-level flow convergence is mainly responsible for the enhanced horizontal velocity variance in the central urban area, while wind shear is responsible for the additional local maximum of the horizontal velocity variance near the middle of the CBL outside the central area. Parameterizations in the prognostic equation for TKE used in mesoscale models are evaluated against the LES results over the isolated urban area. We also discuss conditions under which the urban-induced circulations occur and when they may affect the entire urban area. Given that urban-induced circulations can influence the entire urban area within hours for an urban area of a realistic size, it is inappropriate to directly apply empirical relations of turbulence statistics derived under horizontally-homogenous flow conditions to an urban area.  相似文献   

20.
As part of the EUropean Cloud REsolving Modelling (EUCREM) model intercomparison project we compared the properties and development of stratocumulus as revealed by actual observations and as derived from two types of models, namely three-dimensional Large Eddy Simulations (LES) and one-dimensional Single Column Models (SCMs). The turbulence, microphysical and radiation properties were obtained from observations made in solid stratocumulus during the third flight of the first 'Lagrangian' experiment of the Atlantic Stratocumulus Transition Experiment (ASTEX). The goal of the intercomparison was to study the turbulence and microphysical properties of a stratocumulus layer with specified initial and boundary conditions.The LES models predict an entrainment velocity which is significantly larger than estimated from observations. Because the observed value contains a large experimental uncertainty no definitive conclusions can be drawn from this. The LES modelled buoyancy flux agrees rather well with the observed values, which indicates that the intensity of the convection is modelled correctly. From LES it was concluded that the inclusion of drizzle had a small influence (about 10%) on the buoyancy flux. All SCMs predict a solid stratocumulus layer with the correct liquid water profile. However, the buoyancy flux profile is poorly represented in these models. From the comparison with observations it is clear that there is considerable uncertainty in the parametrization of drizzle in both SCM and LES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号