首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
P. Giese  C. Morelli  L. Steinmetz   《Tectonophysics》1973,20(1-4):367-379
During the past two decades deep seismic sounding measurements have been carried out in western and southern Europe, mainly using the refraction method. These investigations were performed partly on a national basis but as well within international cooperative programs under the sponsorship of the European Seismological Commission.

In France, a systematic study has been executed to determine the main feature of deep structures under the Central Massif and the Paris Basin. In the Forez and Margeride regions, the sub-crustal velocity is lower (7.2 km/sec) than the normal value (8.0 km/sec) observed in the adjacent areas.

The central and southern part of Western Germany is covered by an extensive network of refraction profiles. The crustal thickness varies, similarly to France, from 25 to 35 km. A great amount of deep reflection data was obtained by commercial and special reflection work. The crust beneath the Rhinegraben area shows the typical “rift system” structure with a low subcrustal velocity (7.4–7.7 km/sec).

Very intensive refraction work has been carried out in the Alpine area. The maximum crustal thickness found near the axis of the negative gravity anomaly is about 55–60 km. Furthermore, a clear lowvelocity layer at a depth between 10 and 30 km has been detected. A key position with regard to the geotectonic structure of the Alps is held by the zone of Ivrea characterized by a pronounced gravity high. From the refraction work it may be concluded that there material of the lower crust and the upper mantle (7.2–7.5 km/sec) is overlying a layer of extremely low velocity (5.0 km/sec) which is interpreted as sialic crust.

Three years ago, a systematic study of crustal structure of the Italian peninsula has been started. Reversed profiles were observed on Sicily, in Calabria, and in Puglia. On Sicily, the structure is very complicated; the crust of the western part looks like a transition between a continental and oceanic structure whereas the eastern side shows a continental-type crust. In Calabria and Puglia, the crustal thickness has been determined to be about 25–35 km.  相似文献   


2.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   

3.
The POLONAISE'97 (POlish Lithospheric ONset—An International Seismic Experiment, 1997) seismic experiment in Poland targeted the deep structure of the Trans-European Suture Zone (TESZ) and the complex series of upper crustal features around the Polish Basin. One of the seismic profiles was the 300-km-long profile P2 in northwestern Poland across the TESZ. Results of 2D modelling show that the crustal thickness varies considerably along the profile: 29 km below the Palaeozoic Platform; 35–47 km at the crustal keel at the Teisseyre–Tornquist Zone (TTZ), slightly displaced to the northeast of the geologic inversion zone; and 42 km below the Precambrian Craton. In the Polish Basin and further to the south, the depth down to the consolidated basement is 6–14 km, as characterised by a velocity of 5.8–5.9 km/s. The low basement velocities, less than 6.0 km/s, extend to a depth of 16–22 km. In the middle crust, with a thickness of ca. 4–14 km, the velocity changes from 6.2 km/s in the southwestern to 6.8 km/s in the northeastern parts of the profile. The lower crust also differs between the southwestern and northeastern parts of the profile: from 8 km thickness, with a velocity of 6.8–7.0 km/s at a depth of 22 km, to ca.12 km thickness with a velocity of 7.0–7.2 km/s at a depth of 30 km. In the lowermost crust, a body with a velocity of 7.20–7.25 km/s was found above Moho at a depth of 33–45 km in the central part of the profile. Sub-Moho velocities are 8.2–8.3 km/s beneath the Palaeozoic Platform and TTZ, and about 8.1 km/s beneath the Precambrian Platform. Seismic reflectors in the upper mantle were interpreted at 45-km depth beneath the Palaeozoic Platform and 55-km depth beneath the TTZ.

The Polish Basin is an up to 14-km-thick asymmetric graben feature. The basement beneath the Palaeozoic Platform in the southwest is similar to other areas that were subject to Caledonian deformation (Avalonia) such that the Variscan basement has only been imaged at a shallow depth along the profile. At northeastern end of the profile, the velocity structure is comparable to the crustal structure found in other portions of the East European Craton (EEC). The crustal keel may be related to the geologic inversion processes or to magmatic underplating during the Carboniferous–Permian extension and volcanic activity.  相似文献   


4.
Claus Prodehl 《Tectonophysics》1981,80(1-4):255-269
The crustal structure of the central European rift system has been investigated by seismic methods with varying success. Only a few investigations deal with the upper-mantle structure. Beneath the Rhinegraben the Moho is elevated, with a minimum depth of 25 km. Below the flanks it is a first-order discontinuity, while within the graben it is replaced by a transition zone with the strongest velocity gradient at 20–22 km depth. An anomalously high velocity of up to 8.6 km/s seems to exist within the underlying upper mantle at 40–50 km depth. A similar structure is also found beneath the Limagnegraben and the young volcanic zones within the Massif Central of France, but the velocity within the upper mantle at 40–50 km depth seems to be slightly lower. Here, the total crustal thickness reaches only 25 km. The crystalline crust becomes extremely thin beneath the southern Rhônegraben, where the sediments reach a thickness of about 10 km while the Moho is found at 24 km depth. The pronounced crustal thinning does not continue along the entire graben system. North of the Rhinegraben in particular the typical graben structure is interrupted by the Rhenohercynian zone with a “normal” West-European crust of 30 km thickness evident beneath the north-trending Hessische Senke. A single-ended profile again indicates a graben-like crustal structure west of the Leinegraben north of the Rhenohercynian zone. No details are available for the North German Plain where the central European rift system disappears beneath a sedimentary sequence of more than 10 km thickness.  相似文献   

5.
In 1976, the Institute of Physics of the Earth and the Institute of Oceanology, the U.S.S.R. Academy of Sciences, carried out deep seismic soundings in the Barents Sea along a profile 700 km long northeast of Murmansk. A system of reversed and overlapping traveltime curves from 200 to 400 km long has been obtained. The wave correlation was effected by several independent approaches, which identified on the records the refracted and reflected waves from boundaries in the Earth's crust and the upper mantle. Different methods were applied for the solution of the inverse problem: the isochrone method, the intercept-time method, and the iteration method.The use of these different methods gives an indication of the general applicability of the interpretation and of the most reliable elements in the seismic model.All the interpretations and representations of the section positively establish an essentially horizontal inhomogeneity of the Earth's crust in the Barents Sea. On the whole the structure is similar to that of deep sedimentary basins of the East European platform. The thickness of the sedimentary layer varies from 8 to 17 km, the average crustal thickness is about 35–40 km; the velocities in the upper part of the consolidated crust are 5.8–6.4 km/s; in the lower crust they are 6.8–7.0 km/s and higher.  相似文献   

6.
During 1973–1977, as part of the International Geodynamic Project, some seismic investigations of the Earth's crust have been carried out by geotraverses of the Tien Shan—Pamirs—Karakorum—Himalayas. The seismic data obtained together with other geophysical information, allow the construction and interpretation of the lithospheric section through the Pamirs-Himalayas structure. This section includes thick crust with complex layering, supra-asthenospheric and asthenospheric layers of the upper mantle. The thickness of the Earth's crust increases from 50–55 km in the north, in the Ferghana depression (Tien Shan), to 70–75 km in the south, near the Karakul Lake (Northern Pamir). It varies within 60–65 km for the Central and Southern Pamir, Karakorum and the Inner Himalayas. Its thickness is least (35–37 km) in the south, under the outer margin of the Himalayan foredeep. Extreme gravity minima and depressions on the geoid surface correspond to the regions with maximum thickness of the Earth's crust. The centers of the disturbing masses on the geoid surface are located in the vicinity of the asthenosphere's upper layer; this determines the effect of the whole lithospheric layer, including its asthenospheric layer, at intense changes of gravity anomalies. The asthenospheric upper layer is recorded at a depth of about 120 km, its base at a depth of 200 km, in the northern and southern regions, and 300 km in its central part (Southern Pamir, Karakorum). In the middle asthenospheric layer, wave velocities decrease to 7.5 km/sec, under the base they increase to 8.4 km/sec and reach 9.4 km/sec at a depth of about 400 km. In the supra-asthenospheric layer of the upper mantle, longitudinal and shear wave-velocities slightly increase (by less than 0.1 km/sec) towards its base.  相似文献   

7.
Events induced by deep gold-mining activity on the edge of the Witwatersrand basin dominate the seismicity of South Africa. The deployment of 54 broad-band seismic stations at 84 separate locations across southern Africa between April 1997 and April 1999 (Kaapvaal network) enabled the seismicity of South Africa to be better defined over a 2-year period. Seismic events located by the South African national network, and by localized seismic networks deployed in mines or across gold-mining areas, were used to evaluate earthquake location procedures and to show that the Kaapvaal network locates mining-induced tremors with an average error of 1.56±0.10 km compared with 9.50±0.36 km for the South African network. Travel times of seismic events from the mines recorded at the Kaapvaal network indicate regional variations in the thickness of the crust but no clearly resolved variations in seismic wavespeeds in the uppermost mantle. Greater average crustal thicknesses (48–50 km compared with 41–43 km) are observed in the northern parts of the Kaapvaal craton that were affected by the Bushveld magmatism at 2.05 Ga. Estimates of average crustal thickness for the southern part of the Kaapvaal craton from receiver functions (38 km) agree well with those from refracted arrivals from mining-induced earthquakes if the crustal thicknesses below the sources are assumed to be 40–43 km. In contrast, the average crustal thickness inferred from refracted arrivals for the northern part of the Kaapvaal craton is larger by about 7 km (51 km) than that inferred from receiver functions (44 km), suggesting a thick mafic lower crust of variable seismic properties due to variations in composition and metamorphic grade. Pn wavespeeds are high (8.3–8.4 km/s), indicating the presence of highly depleted magnesium-rich peridotite throughout the uppermost mantle of the craton. Seismic Pg and Sg phases indicate that the upper crust around the Witwatersrand basin is comparatively uniform in composition when averaged over several kilometres.  相似文献   

8.
Crustal structure of mainland China from deep seismic sounding data   总被引:18,自引:0,他引:18  
Since 1958, about ninety seismic refraction/wide angle reflection profiles, with a cumulative length of more than sixty thousand kilometers, have been completed in mainland China. We summarize the results in the form of (1) a new contour map of crustal thickness, (2) fourteen representative crustal seismic velocity–depth columns for various tectonic units, and, (3) a Pn velocity map. We found a north–south-trending belt with a strong lateral gradient in crustal thickness in central China. This belt divides China into an eastern region, with a crustal thickness of 30–45 km, and a western region, with a thickness of 45–75 km. The crust in these two regions has experienced different evolutionary processes, and currently lies within distinct tectonic stress fields. Our compilation finds that there is a high-velocity (7.1–7.4 km/s) layer in the lower crust of the stable Tarim basin and Ordos plateau. However, in young orogenic belts, including parts of eastern China, the Tianshan and the Tibetan plateau, this layer is often absent. One exception is southern Tibet, where the presence of a high-velocity layer is related to the northward injection of the cold Indian plate. This high-velocity layer is absent in northern Tibet. In orogenic belts, there usually is a low-velocity layer (LVL) in the crust, but in stable regions this layer seldom exists. The Pn velocities in eastern China generally range from 7.9 to 8.1 km/s and tend to be isotropic. Pn velocities in western China are more variable, ranging from 7.7 to 8.2 km/s, and may display azimuthal anisotropy.  相似文献   

9.
Deep Crustal Electrical Signatures of Eastern Dharwar Craton, India   总被引:1,自引:0,他引:1  
Wide band magnetotelluric (MT) investigations were carried out along a profile from Kavali in the east to Anantapur towards west across the Eastern Ghat Granulite Terrain (EGGT), Eastern Dhanvar Craton (EDC) and a Proterozoic Cuddapah Basin. This 300 km long profile was covered with 20 stations at an interval of 12–18 km. The MT data is subjected to robust processing, decomposition and static shift correction before deriving a 2-D model. The model shows a resistive crust (−10,000–30,000 ohm-m) to a depth of 8–10 km towards west of the Cuddapah basin. The mid crust is less resistive (about 500 ohm-m) and the lower crust with a slight increase in resistivity (about 1,500 ohm-m) in the depth range of 20–22 km. The resistivity picture to the east of the Cuddapah basin also showed a different deep crustal structure. The resistivity of upper crust is about 5,000 ohm-m and about 200 ohm-m for mid and lower crust. The sediment resistivity of Cuddapah basin is of the order of 15–20 ohm-m. MT model has shown good correlation with results from other geophysical studies like deep seismic sounding (DSS), gravity and magnetics. The results indicate that the lower crustal layers are of intermediate type showing hydrous composition in Eastern Dhanvar Craton.  相似文献   

10.
The kimberlite fields scattered across the NE part of the Siberian Craton have been used to map the subcontinental lithospheric mantle (SCLM), as it existed during Devonian to Late Jurassic time, along a 1000-km traverse NE–SW across the Archean Magan and Anabar provinces and into the Proterozoic Olenek Province. 4100 garnets and 260 chromites from 65 kimberlites have been analysed by electron probe (major elements) and proton microprobe (trace elements). These data, and radiometric ages on the kimberlites, have been used to estimate the position of the local (paleo)geotherm and the thickness of the lithosphere, and to map the detailed distribution of specific rock types and mantle processes in space and time. A low geotherm, corresponding approximately to the 35 mW/m2 conductive model of Pollack and Chapman [Tectonophysics 38, 279–296, 1977], characterised the Devonian lithosphere beneath the Magan and Anabar crustal provinces. The Devonian geotherm beneath the northern part of the area was higher, rising to near a 40 mW/m2 conductive model. Areas intruded by Mesozoic kimberlites are generally characterised by this higher, but still ‘cratonic' geotherm. Lithosphere thickness at the time of kimberlite intrusion varied from ca. 190 to ca. 240 km beneath the Archean Magan and Anabar provinces, but was less (150–180 km) beneath the Proterozoic Olenek Province already in Devonian time. Thinner Devonian lithosphere (140 km) in parts of this area may be related to Riphean rifting. Near the northern end of the traverse, differences in geotherm, lithosphere thickness and composition between the Devonian Toluopka area and the nearby Mesozoic kimberlite fields suggest thinning of the lithosphere by ca. 50–60 km, related to Devonian rifting and Triassic magmatism. A major conclusion of this study is that the crustal terrane boundaries defined by geological mapping and geophysical data (extended from outcrops in the Anabar Shield) represent major lithospheric sutures, which continue through the upper mantle and juxtapose lithospheric domains that differ significantly in composition and rock-type distribution between 100 and 250 km depth. The presence of significant proportions of harzburgitic and depleted lherzolitic garnets beneath the Magan and Anabar provinces is concordant with their Archean surface geology. The lack of harzburgitic garnets, and the chemistry of the lherzolitic garnets, beneath most of the other fields are consistent with the Proterozoic surface rocks. Mantle sections for different terranes within the Archean portion of the craton show pronounced differences in bulk composition, rock-type distribution, metasomatic overprint and lithospheric thickness. These observations suggest that individual crustal terranes, of both Archean and Proterozoic age, had developed their own lithospheric roots, and that these differences were preserved during the Proterozoic assembly of the craton. Data from kimberlite fields near the main Archean–Proterozoic suture (the Billyakh Shear Zone) suggest that reworking and mixing of Archean and Proterozoic mantle was limited to a zone less than 100 km wide.  相似文献   

11.
This paper reports the results of 3-D tomographic modelling of crustal structure in the Trans European Suture Zone region (TESZ) of Poland, eastern Germany and Lithuania. The data are the product of a large-scale seismic experiment POLONAISE'97, which was carried out in 1997. This experiment was designed to provide some 3-D coverage. The TESZ forms the boundary between the Precambrian crustal terranes of the East European Craton (EEC) and the younger Phanerozoic terranes to the southwest. The 3-D results generally confirm the earth models derived by earlier 2-D analyses, but also add some important details as well as a 3-D perspective on the structure. The velocity model obtained shows substantial horizontal variations of crustal structure across the study area. Seismic modelling shows low (<6.1 km/s) velocities suggesting the presence of sedimentary rocks down to a depth of about 20 km in the Polish basin. The shape of the basin in the vicinity of the profile P4 shows significant asymmetry. Three-dimensional modelling also allowed tracing of horizontal irregularities of the basin shape as well as variations of the Moho depth not only along profiles, but also between them. The slice between P2 and P4 profiles shows about 10-km variations of the Moho over a 100-km interval. The crustal thickness varies from about 30 km in SW, beneath the Palaeozoic platform, to about 42 km beneath East European Craton in NE. High seismic velocities of about 6.6 km/s were found in the depth range 2–10 km, which coincides with K trzyn anorthosite massif. The results of this 3-D seismic modelling of the POLONAISE'97 data will ultimately be supplemented by inversion of seismic data from previous experiments.  相似文献   

12.
Seismic investigations to determine the crustal structure in the southwestern part of the Iberian Peninsula have been initiated in 1970. First experiments were carried out during July 1970, when a series of ten shots was fired off Cabo de Sines (Portugal) in shallow water and recorded up to distances of 185 km along a SE-profile towards Huelva (Spain). The profile was reversed in December 1970, when a series of twelve shots was fired off the south coast near Fuzeta (east of Faro) and recorded up to distances of about 260 km along a NW-profile towards Cabo da Roca west of Lisboa. A considerable increase in the seismic efficiency of the explosions could be achieved by generating standing waves in the water.

The structure deduced exhibits some peculiar features. Below the Palaeozoic sediments a fairly high velocity of 6.4 km/sec is found for the dome-shaped basement in that area. The lower crust, which is separated from the upper crust by a distinct velocity inversion (with a minimum velocity of about 5.3–5.6 km/sec), is characterized by a velocity of 7.1 km/sec. From the geological evidence and the sequence of seismic velocities it must be concluded that the upper crustal block in the southwestern part of the Iberian Peninsula has been uplifted by about 2–5 km since Permo-Triassic time, thus emphasizing the significance of vertical movement in tectonic activity.

The top of the upper mantle (8.15 km/sec) was detected at a depth of 30 km close to the Atlantic coast in the west, while near the Algarve coast in the south the depth to the M-discontinuity is about 34–35 km. This result in conjunction with studies of earthquake focal mechanisms confirms the suggestion that the Iberian block is being underthrust under the African plate.  相似文献   


13.
In order to study the lithospheric structure in Romania a 450 km long WNW–ESE trending seismic refraction project was carried out in August/September 2001. It runs from the Transylvanian Basin across the East Carpathian Orogen and the Vrancea seismic region to the foreland areas with the very deep Neogene Focsani Basin and the North Dobrogea Orogen on the Black Sea. A total of ten shots with charge sizes 300–1500 kg were recorded by over 700 geophones. The data quality of the experiment was variable, depending primarily on charge size but also on local geological conditions. The data interpretation indicates a multi-layered structure with variable thicknesses and velocities. The sedimentary stack comprises up to 7 layers with seismic velocities of 2.0–5.9 km/s. It reaches a maximum thickness of about 22 km within the Focsani Basin area. The sedimentary succession is composed of (1) the Carpathian nappe pile, (2) the post-collisional Neogene Transylvanian Basin, which covers the local Late Cretaceous to Paleogene Tarnava Basin, (3) the Neogene Focsani Basin in the foredeep area, which covers autochthonous Mesozoic and Palaeozoic sedimentary rocks as well as a probably Permo-Triassic graben structure of the Moesian Platform, and (4) the Palaeozoic and Mesozoic rocks of the North Dobrogea Orogen. The underlying crystalline crust shows considerable thickness variations in total as well as in its individual subdivisions, which correlate well with the Tisza-Dacia, Moesian and North Dobrogea crustal blocks. The lateral velocity structure of these blocks along the seismic line remains constant with about 6.0 km/s along the basement top and 7.0 km/s above the Moho. The Tisza-Dacia block is about 33 to 37 km thick and shows low velocity zones in its uppermost 15 km, which are presumably due to basement thrusts imbricated with sedimentary successions related to the Carpathian Orogen. The crystalline crust of Moesia does not exceed 25 km and is covered by up to 22 km of sedimentary rocks. The North Dobrogea crust reaches a thickness of about 44 km and is probably composed of thick Eastern European crust overthrusted by a thin 1–2 km thick wedge of the North Dobrogea Orogen.  相似文献   

14.
Since the early 1960s, deep seismic sounding experiments have been carried out on the Baltic Shield. In this study, we will mainly concentrate on the results obtained from two international profiles. Sveka and Baltic, carried out in Finland in 1981 and 1982. Results from these profiles are shown and discussed, and compared with those obtained from the FENNOLORA and from the other recent refraction profiles of the Baltic Shield in Fennoscandia. According to the results from Sveka and Baltic, and average crustal velocity is 6.6–6.7 km/s, which is rather high. Several distinct reflection boundaries have been found within the crust. In the lower part of the crust, a high-velocity layer with a P-wave velocity of 7.0–7.5 km/s has been found in some cases. In addition, the results indicate that the crustal structure has a clear block-like character, different blocks being separated from each other by deep fractures. The crustal thickness in the Baltic Shield is about 45 km on average, whereas around the Ladoga-Bothnian Bay zone in Central Finland, it is about 10 km thicker than this. Thus, there is a large-scale depression in the Moho boundary in the central part of the Baltic Shield.  相似文献   

15.
A seismic experiment with six explosive sources and 391 seismic stations was conducted in August 2001 in the central Japan region. The crustal velocity structure for the central part of Japan and configuration of the subducting Philippine Sea plate were revealed. A large lateral variation of the thickness of the sedimentary layer was observed, and the P-wave velocity values below the sedimentary layer obtained were 5.3–5.8 km/s. P-wave velocity values for the lower part of upper crust and lower crust were estimated to be 6.0–6.4 and 6.6–6.8 km/s, respectively. The reflected wave from the upper boundary of the subducting Philippine Sea plate was observed on the record sections of several shots. The configuration of the subducting Philippine Sea slab was revealed for depths of 20–35 km. The dip angle of the Philippine Sea plate was estimated to be 26° for a depth range of about 20–26 km. Below this depth, the upper boundary of the subducting Philippine Sea plate is distorted over a depth range of 26–33 km. A large variation of the reflected-wave amplitude with depth along the subducting plate was observed. At a depth of about 20–26 km, the amplitude of the reflected wave is not large, and is explained by the reflected wave at the upper boundary of the subducting oceanic crust. However, the reflected wave from reflection points deeper than 26 km showed a large amplitude that cannot be explained by several reliable velocity models. Some unique seismic structures have to be considered to explain the observed data. Such unique structures will provide important information to know the mechanism of inter-plate earthquakes.  相似文献   

16.
Understanding deep continental structure and the seismotectonics of Deccan trap covered region has attained greater importance in recent years. For imaging the deep crustal structure, magnetotelluric (MT) investigations have been carried out along three long profiles viz. Guhagarh–Sangole (GS), Sangole–Partur (SP), Edlabad–Khandwa (EK) and one short profile along Nanasi–Mokhad (NM). The results of GS, SP and NM profiles show that the traps lie directly over high resistive basement with thin inter-trappean sediments, where large thickness of sediments, of the order of 1.5–2.0 km, has been delineated along EK profile across Narmada–Son–Lineament zone. The basement is intersected by faults/fractures, which are clearly delineated as narrow steep conducting features at a few locations. The conducting features delineated along SP profile are also seen from the results of aeromagnetic anomalies. Towards the southern part of the profile, these features are spatially correlated with Kurduwadi rift proposed earlier from gravity studies. Apart from the Kurduwadi rift extending to deep crustal levels, the present study indicates additional conductive features in the basement. The variation in the resistivity along GS profile can be attributed to crustal block structure in Koyna region. Similar block structure is also seen along NM profile.Deccan trap thickness, based on various geophysical methods, varies gradually from 1.8 km towards west to 0.3 km towards the east. While this is the general trend, a sharp variation in the thickness of trap is observed near Koyna. The resistivity of the trap is more (150–200 Ω m) towards the west as compared to the east (50–60 Ω m) indicating more compact or denser nature for the basalt towards west. The upper crust is highly resistive (5000–10,000 Ω m), and the lower crust is moderately resistive (500–1000 Ω m). In the present study, seismotectonics of the region is discussed based on the regional geoelectrical structure with lateral variation in the resistivity of the basement and presence of anomalous conductors in the crust.  相似文献   

17.
The compilation of statistical data for 269 seismic crustal sections (total length: 81,000 km) which are available in the U.S.S.R. has shown that the preliminary conclusions drawn on relations between the elevation of the surface relief and Bouguer anomalies on one hand and crustal thickness (depth to the M-discontinuity) on the other hand are not fulfilled for the continental part of the U.S.S.R. The level of isostatic compensation has been found to be much deeper than the base of the earth's crust due to density inhomogeneities of the crust and upper mantle down to a depth of 150 km.

The results of seismic investigations have revealed a great diversity of relations between shallow geological and deep crustal structures:

Changes in the relief of the M-discontinuity have been found within the ancient platforms which are conformable with the Precambrian structures and which can exceed 20 km. In the North Caspian syneclise, extended areas devoid of the “granitic” layer have been discovered for the first time in continents. The crust was found to be thicker in the syneclises and anteclises of the Turanian EpiHercynian plate. In the West Siberian platforms these relations are reversed to a great extent.

Substantial differences in crustal structure and thickness were found in the crust of the Palaeo zoides and Mesozoides. Regions of substantial neotectonic activity in the Tien-Shan Palaeozoides do not greatly differ in crustal thickness if compared to the Kazakhstan Palaeozoides which were little active in Cenozoic time. The same is true for the South Siberian Palaeozoides.

The Alpides of the southern areas in the U.S.S.R. display a sharply differing surface relief and a strongly varying crustal structure. Mountains with roots (Greater Caucasus, Crimea) and without roots (Kopet-Dagh, Lesser Caucasus) were found there.

The Cenozoides of the Far East are characterized by a rugged topography of the M-discontinuity, a thinner crust and a less-pronounced “granitic” layer. A relatively small thickness of the crust was discovered in the Baikal rift zone.

The effective thickness of the magnetized domains of the crust as well as other calculations show that the temperature at the depth of the M-discontinuity (i.e., at depths of 40–50 km) is not higher than 300–400° C for most parts of the U.S.S.R.  相似文献   


18.
A three-component broadband seismograph is in operation since January 2007 at the Indian School of Mines (ISM) campus, Dhanbad. We have used the broadband (BB) seismograms of 17 teleseismic events (M ≥ 5.8) recorded by this single BB station during 2008–09 to estimate the crust and upper mantle discontinuities in Dhanbad area which falls in the peninsular India shield. The converted wave technique and the Receiver function analysis are used. A 1-D velocity model has been derived using inversion. The Mohorovicic (Moho) discontinuity (crustal thickness) below the ISM observatory is estimated to be ∼41 km, with an average Poisson ratio of ∼0.28, suggesting that the crust below the Dhanbad area is intermediate to mafic in nature. The single station BB data shed new light to the estimate of crustal thickness beneath the eastern India shield area, which was hitherto elusive. Further, it is observed that the global upper mantle discontinuity at 410 km is delayed by ∼0.6 sec compared to the IASP-91 global model; this may be explained by a slower/hotter upper mantle; while the 660 km discontinuity is within the noise level of data.  相似文献   

19.
Group velocity dispersion data of fundamental-mode Rayleigh and Love waves for 12 wave paths within southeastern China have been measured by applying the multiple-filter technique to the properly rotated three-component digital seismograms from two Seismic Research Observatory stations, TATO and CHTO. The generalized surface wave inversion technique was applied to these group velocity dispersion data to determine the S-wave velocity structures of the crust and upper mantle for various regions of southeastern China. The results clearly demonstrate that the crust and upper mantle under southeastern China are laterally heterogeneous. The southern China region south of 25°N and the eastern China region both have a crustal thickness of 30 km. The eastern Tibet plateau along the 100°E meridian has a crustal thickness of 60 km. Central China, consisting mainly of the Yangtze and Sino-Korean platforms, has a crustal thickness of 40 km. A distinct S-wave low-velocity layer at 10–20 km depth in the middle crust was found under wave paths in southeastern China. On the other hand, no such crustal low-velocity layer is evident under the eastern Tibet plateau. This low-velocity layer in the middle crust appears to reflect the presence of a sialic low-velocity layer perhaps consisting of intruded granitic laccoliths, or possibly the remnant of the source zone of widespread magmatic activities known to have taken place in these regions since the late Carboniferous.  相似文献   

20.
Recently completed investigations of the crustal structure on ancient shields of the East European platform carried out with the method of “deep seismic sounding” (D.S.S.) have drastically changed the previous notions about the deep structure of shields in general. In the upper crust, in the so-called “granitic” layer, complex anticlinal and synclinal structures as well as numerous faults, thrusts, etc., have been identified. A flattening of steeply dipping seismic interfaces with depth is observed. The crustal thickness in different tectonic zones ranges from 30 to 60 km. It is shown that the M-structure correlates with the sub-surface tectonics in the Ukrainian Shield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号