首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mean sea surface height (MSSH) refers to the average of the long-term sea height. The quasi-sea surface topography (QSST) is usually defined as the height difference between the MSSH and the geoid. As to 100 years of time yardstick of geodesy, the time that satellite altimetry data sets spanned is relatively shorter, in this paper, the QSST refers to the residual sea surface height (RSSH) that shows the height dif-ference between MSSH derived from altimetry and the geoid[1]. As w…  相似文献   

2.
Shear- and convection-driven turbulence coexists with wind-generated surface gravity waves in the upper ocean. The turbulent Reynolds stresses in the oceanic mixed layer can therefore interact with the shear of the wave-generated Stokes drift velocity to extract energy from the surface waves and inject it into turbulence, thus augmenting the mean shear-driven turbulence. Stokes production of turbulence kinetic energy (TKE) is difficult to measure in the field, since it requires simultaneous measurement of the turbulent stress and the Stokes drift profiles in the water column. However, it is readily inferred using second moment closure models of the oceanic mixed layer provided: (1) wave properties are available, along with the usual water mass properties, and radiative and air–sea fluxes needed to drive the mixed layer model and (2) the model skill can be assessed by comparing the model results against the observed dissipation rates of TKE. Comprehensive measurements made during the Reynolds 2002 campaign in the Baltic Sea have made the estimation of Stokes production possible, and in this paper, we report on the effort and the conclusions reached. Measurements of air–sea exchange parameters and water mass properties during the campaign allowed a mixed layer model to be run and the turbulent stress in the water column to be inferred. Simultaneous wave spectrum measurements enabled Stokes drift profile to be deduced and wave breaking to be included in the model run, and the Stokes production of TKE in the water column estimated. Direct measurements of the TKE dissipation rate from an upward traversing microstructure profiler were used to assure that the model could reproduce the turbulent dissipation rate in the water column. The model results indicate that the Stokes production of TKE in the mixed layer is of the same order of magnitude as the shear production and must therefore be included in mixed layer models.  相似文献   

3.
We analyze far-field Rayleigh and tsunami waves generated by the 1998 Papua New Guinea (PNG) earthquake. Using the normal mode theory and Thomson-Haskell matrix formalism we calculate synthetic mareograms of oceanic surface waves excited by finite-dimensional line source and propagated in a flat, multilayered oceanic structure. Assuming that the source of destructive sea waves was the main shock of the PNG event and based on the expression for seismic wave displacement in the far-field zone, we compute the energy of the seismic and tsunami waves and the Ez /Ets ratio. The results of our modeling are generally consistent with those obtained empirically for events with magnitude 7. Also, treating the results of a submarine slide as a single solitary wave and using the theoretical arguments of Striem and Miloh (1976) we estimate the energy of the tsunami induced by a landslide. The difference between the energy of the seismic tsunami and of the aseismic one is about one order of magnitude.The results of our theoretical modeling show that surface sea waves in the far-field zone account well for seismic origin, although additional tsunami energy from a landslide source could be required to explain the local massive tsunami in the Sissano Lagoon.  相似文献   

4.
A sea spray generation function(SSGF)for bubble-derived droplets that takes into account the impact of wave state on whitecap coverage was presented in this study.By combining the new SSGF with a previous wave-state-dependent SSGF for spume droplets,an SSGF applicable to both bubble-derived and spume droplets that includes the impacts of wave state was obtained.The produced SSGF varies with surface wind as well as with wave development.As sea surface wind increases,more sea spray droplets are produced,resulting in larger SSGFs and volume fluxes.Meanwhile,under the same wind conditions,the SSGF is mediated by wave state,with larger SSGFs corresponding to older waves and larger windsea Reynolds numbers.The impact of wave state on sea spray heat flux was then estimated by applying this SSGF while considering the thermodynamic feedback process.Under given atmospheric and oceanic conditions,the estimated sea spray heat flux increases with wind speed,wave age,and windsea Reynolds number.  相似文献   

5.
We have developed a new, unified modeling technique for the total simulation of seismic waves, ocean acoustic waves, and tsunamis resulting from earthquakes, based on a finite difference method simulation of the 3D equations of motion. Using the equilibrium between the pressure gradient and gravity in these equations, tsunami propagation is naturally incorporated in the simulation based on the equations of motion. The performance of the parallel computation for the newly developed tsunami-coupled equations using a domain partitioning procedure shows a high efficiency coefficient with a large number of CPU cores. The simulation results show how the near-field term associated with seismic waves produced by shallow earthquakes leads to a permanent coseismic deformation of the ground surface, which gives rise to the initial tsunami on the sea surface. Propagation of the tsunami along the sea surface as a gravity wave, and ocean acoustic waves in seawater with high-frequency multiple P-wave reflections between the free surface and sea bottom, are also clearly demonstrated by the present simulations. We find a good agreement in the tsunami waveform between our results and those obtained by other simulations based on an analytical model and the Navier–Stokes equations, demonstrating the effectiveness of the tsunami-coupling simulation model. Based on this simulation, we show that the ratio of the amplitude of ocean acoustic waves to the height of the tsunami, both of which are produced by the earthquake, strongly depends on the rise time of the earthquake rupture. This ratio can be used to obtain a more detailed understanding of the source rupture processes of subduction zone earthquakes, and for implementing an improved tsunami alert system for slow tsunami earthquakes.  相似文献   

6.
海域流动点外部扰动引力无奇异计算模型   总被引:3,自引:0,他引:3       下载免费PDF全文
针对海域重力场变化特征和远程飞行器机动发射保障应用需求,本文分析研究了地球外部空间扰动引力三类传统计算模型的技术特点及其适用性,指出了采用表层法作为海域流动点扰动引力计算模型的合理性及需要解决的关键问题,分析论证了空中扰动引力计算对地面观测数据的分辨率和精度要求,提出通过引入局部积分域恒等式变换、局域泰勒级数展开和非网格点内插方法,消除表层法计算模型积分奇异性固有缺陷的研究思路,进而推出了适合于海域流动点应用的扰动引力无奇异计算模型,较好地满足了全海域和全高度段对局部扰动重力场快速赋值的实际需求.以超高阶全球位模型EGM2008作为标准场,通过数值计算验证了无奇异计算模型的可行性和有效性,在重力场变化比较剧烈的海沟区,该模型的计算精度优于2×10-5m·s-2.  相似文献   

7.
The horizontal earthquake induced hydrodynamic pressure acting on the surface of axisymmetric offshore and coastal structures is explored. A semi-analytical and semi-numerical approach based on the use of a complete and non-singular set of Trefftz functions is developed. Using this method, one can model accurately the compressibility of the sea water and gravity waves on the water surface. The proposed method shows a relatively simple and efficient approach. This is because the number of degrees of freedom in the matrix equation depends only on the number of selected Trefftz functions and because the discretization of the fluid domain into boundary elements is restricted to the structural surface only. This method is also easy to apply in engineering analysis of hydrodynamic pressure induced by an actual earthquake acceleration. Numerical examples are presented to illustrate the results obtained from this method. Several special interesting topics, such as the effects of the water compressibility, the gravity waves on the water surface and the geometrical shape of the structural surface, are also discussed.  相似文献   

8.
Scattering and Diffraction of elastic in-plane P- and SV- waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong-motion seismologists for over forty years. The case of out-of-plane SH waves on the same elastic canyon that is semi-circular in shape on the half-space surface is the first such problem that was solved by analytic closed form solutions over forty years ago by Trifunac. The corresponding case of in-plane P- and SV-waves on the same circular canyon is a much more complicated problem because, the in-plane P- and SV- scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by the author in the work of Lee and Liu. This paper uses the technique of Lee and Liu of defining these stress-free scattered waves to solve the problem of the scattered and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape.  相似文献   

9.
Long period Rayleigh wave and Love wave dispersion data, particularly for oceanic areas, have not been simultaneously satisfied by an isotropic structure. In this paper available phase and group velocity data are inverted by a procedure which includes the effects of transverse anisotropy, anelastic dispersion, sphericity, and gravity. We assume that the surface wave data represents an azimuthal average of actual velocities. Thus, we can treat the mantle as transversely isotropic. The resulting models for average Earth, average ocean, and oceanic regions divided according to the age of the ocean floor, are quite different from previous results which ignore the above effects. The models show a low-velocity zone with age dependent anisotropy and velocities higher than derived in previous surface wave studies. The correspondence between the anisotropy variation with age and a physical model based on flow aligned olivine is suggestive. For most of the Earth SH > SV in the vicinity of the low-velocity zone. Neat the East Pacific Rise, however, SV > SH at depth, consistent with ascending flow. Anisotropy is as important as temperature in causing radial and lateral variations in velocity. The models have a high velocity nearly isotropic layer at the top of the mantle that thickens with age. This layer defines the LID, or seismic lithosphere. In the Pacific, the LID thickens with age to a maximum thickness of ~50 km. This thickness is comparable to the thickness of the elastic lithosphere. The LID thickness is thinner than derived using isotropic or pseudo-isotropic procedures. A new model for average Earth is obtained which includes a thin LID. This model extends the fit of a PREM, type model to shorter period surface waves.  相似文献   

10.
《Journal of Geodynamics》2010,49(3-5):182-188
We investigate the contribution of atmospheric and its induced non-tidal oceanic loading effects on surface time-varying gravity and tilt measurements for several stations in Western Europe. The ocean response to pressure forcing can be modelled accordingly to the inverted barometer, i.e. assuming that air pressure variations are fully compensated by static sea height changes, or using ocean general circulation models. We validate two runs of the HUGO-m barotropic ocean model by comparing predicted sea surface height variations with hundred tide-gauge measurements along the European coasts. We then show that global surface pressure field, as well as a barotropic high-resolution ocean model forced by air pressure and winds allow in most cases a significant reduction of the variance of gravity residuals and, to a smaller extends tilt residuals.We finally show that precise gravity measurements with superconducting gravimeters allow the observation of large storm surges, occurring in the North Sea, even for inland stations. However, we also confirm that the continental hydrology contribution cannot be neglected. Thanks to their specific sensitivity feature, only tiltmeters closest to the coast can clearly detect the loading due to these storm surges.  相似文献   

11.
Powerful VHF radars are capable of almost continuously monitoring the threedimensional velocity vector and the distribution of turbulence in the middle atmosphere, i.e. the stratosphere and mesosphere. Methods of radar investigations of the middle atmosphere are outlined and the basic parameters, mean and fluctuating velocities as well as reflectivity and persistency of atmospheric structures, are defined. Results of radar investigations are described which show that the tropopause level as well as a criterion on the stability of the lower stratosphere can be deduced. Besides mean wind velocities, VHF radars can measure instantaneous velocities due to acoustic gravity waves. The interaction of gravity waves with the background wind is discussed, and it is shown that cumulus convection is an effective source of gravity waves in the lower stratosphere. The vertical microstructure of the stratosphere, manifesting itself in thin stratified sheets in which temperature steps occur, is investigated by applying knowledge from investigations of the oceanic thermocline. Possible origins, like shear generation and lateral convection of the microstructure of the stratosphere, are discussed. Observations of gravity waves in the mesosphere are reviewed and their connection with turbulence structures is pointed out. Finally, some open questions which could be answered by further VHF radar investigations are summarized.  相似文献   

12.
The tropical Pacific experienced a sustained warm sea surface condition that started in 2014 and a very strong El Nio event in 2015. One striking feature of this event was the horseshoe-like pattern of positive subsurface thermal anomalies that was sustained in the western-central equatorial Pacific throughout 2014–2015. Observational data and an intermediate ocean model are used to describe the sea surface temperature(SST) evolution during 2014–2015. Emphasis is placed on the processes involved in the 2015 El Nio event and their relationships with SST anomalies, including remote effects associated with the propagation and reflection of oceanic equatorial waves(as indicated in sea level(SL) signals) at the boundaries and local effects of the positive subsurface thermal anomalies. It is demonstrated that the positive subsurface thermal anomaly pattern that was sustained throughout 2014–2015 played an important role in maintaining warm SST anomalies in the equatorial Pacific. Further analyses of the SST budget revealed the dominant processes contributing to SST anomalies during 2014–2015. These analyses provide an improved understanding of the extent to which processes associated with the 2015 El Nio event are consistent with current El Nio and Southern Oscillation theories.  相似文献   

13.
IntroductionThe purpose of the studies on the tidal gravity observations on the Earth(s surface is to investigate the properties of the deformation and the tidal gravity variations of the Earth under the action of the luni-solar tidal force. These variations relate to the internal structure, shape and the medium(s rheology properties of the Earth (Wahr, 1981; Dehant, 1987). The theoretical studies and observations indicated that the amplitudes and the tidal parameters, including the amplitud…  相似文献   

14.
The spherical harmonic expansion up to order n = 1440 of the oceanic tidal heights is derived for the waves of the CSR3.0 model. On the basis of the load Love numbers for the PREM model, the oceanic load effect in gravity is calculated. It is shown that the results provided by the spherical expansion technique and the method utilizing the Green’s function satisfactorily agree even at the order of the expansion n = 720. The obtained model predictions are compared to the oceanic load effect measured by the Global Geodynamics Project (GGP) network of superconducting gravimeters.  相似文献   

15.
海洋岩石圈板块有效弹性厚度研究   总被引:5,自引:3,他引:2       下载免费PDF全文
苏达权 《地球物理学报》2012,55(10):3259-3265
本文在前人研究大陆岩石圈板块有效弹性厚度的基础上,建立研究海洋岩石圈板块有效弹性厚度的理论模型,推导出与大陆岩石圈不同的海洋岩石圈板块响应函数 Z(k,Te) 理论计算公式.并分析海洋岩石圈板块响应函数 Z(k,Te) 的特点.文中对实际的海洋测量数据的响应函数 Z(k,Te) 进行计算和分析,估算我国南海南沙海域和南海中央海盆岩石圈板块有效弹性厚度分别约为10 km和6~7 km.  相似文献   

16.
Based on the merged satellite altimeter data and in-situ observations,as well as a diagnosis of linear baroclinic Rossby wave solutions,this study analyzed the rapidly rise of sea level/sea surface height(SSH)in the tropical Pacific and Indian Oceans during recent two decades.Results show that the sea level rise signals in the tropical west Pacific and the southeast Indian Ocean are closely linked to each other through the pathways of oceanic waveguide within the Indonesian Seas in the form of thermocline adjustment.The sea level changes in the southeast Indian Ocean are strongly influenced by the low-frequency westward-propagating waves originated in the tropical Pacific,whereas those in the southwest Indian Ocean respond mainly to the local wind forcing.Analyses of the lead-lag correlation further reveal the different origins of interannual and interdecadal variabilities in the tropical Pacific.The interannual wave signals are dominated by the wind variability along the equatorial Pacific,which is associated with the El Ni?o-Southern Oscillation;whereas the interdecadal signals are driven mainly by the wind curl off the equatorial Pacific,which is closely related to the Pacific Decadal Oscillation.  相似文献   

17.
从低纬的海气耦合的浅水模式方程组出发 ,运用正交模和特殊函数的方法进一步讨论地球自转速率变化对海气耦合系统的影响 .研究表明 :地球自转速率的变化通过海气耦合一方面使大气和海洋的Kelvin波和Rossby波的移动及稳定性发生变化 ,另一方面使纬向风、洋流和海表温度发生变化 .特别是在地球自转减慢时 ,通过海气耦合 ,出现纬向风和洋流异常和大洋东部海表温度增加 ,从而导致引起全球气候异常的ElNi no现象  相似文献   

18.
By the end of 1981 the International Center of Earth Tides (ICET) had collected and evaluated a considerable amount of data from 180 stations, including those of the Trans-World Profile which ensure for the first time a world-wide distribution including the tropical areas and the southern hemisphere. In 1979–80, new oceanic cotidal maps of high quality, established by Schwiderski, became available. These maps fit “on-land” tidal-gravity measurements quite successfully. A new theoretical approach developed by Wahr in 1981 has resulted in a set of theoretical formulae establishing the latitude-dependence of the classical elastic amplitude factors for tidal deformations.We calculate here, for six tidal waves, the correlations between the observed gravity variations and those resulting from a calculation based upon the Schwiderski maps. These correlations are highly significant. After subtraction of these oceanic effects we calculate the latitude-dependences of the experimentally determined amplitude factors, which are found to fit Wahr's theoretical formulae. There remains, however, a serious discrepancy in the constant terms of the various formulae. The effects of heterogeneities in the lithosphere on tidal deformations are also clearly identified.  相似文献   

19.
We used a wavelet formulation of the classical spectral isostatic analysis to invert satellite-derived gravity and topography/bathymetry for elastic thickness (Te) over South America and its surrounding plates. To provide a homogeneous representation of the gravity field for this vast region, we corrected free-air anomalies derived from a combination of terrestrial/marine gravity data with data from the GRACE and CHAMP satellite missions (model EIGEN-CG03C) by a simple Bouguer slab using a smoothed representation of surface relief (wavelengths > 125 km). The resulting Bouguer anomaly compares well with terrestrial data acquired in the Central Andes and allows Te to be confidently estimated for values greater than 10 km. The Te map resolves regional-scale features that are well-correlated with known surface structures and shows maximum values of 100 ± 15 km over the Archean–Neoproterozoic core of the continent, decreasing to less than 30 km around continental margins. Several regions of the oceanic plates and continental margins have an elastic thickness less than 10 km. We performed a quantitative analysis by comparing the elastic thickness with the thermal structure predicted from the age of oceanic crust and igneous–metamorphic rocks. This demonstrates that oceanic plates have been weakened by thermal interaction with hotspots and locally by fracturing and hydration near the trench. We observe that only the nucleus of the continent has resisted the thermomechanical weakening induced by the rifting of Africa and South America along the passive margin and the Andean orogeny along the active margin. This latter region shows along-strike variations in Te that correlate with the geotectonic segmentation of the margin and with the pattern of crustal seismicity. Our results reveal that the rigidity structure follows the segmentation of the seismogenic zone along the subduction fault, suggesting a causal relationship that should be investigated in order to improve the understanding and predictability of great earthquakes and tsunamis.  相似文献   

20.
The 1D version of the Model for Applications at Regional Scale is used to parameterize the effects of sea surface waves in 2D in a horizontally homogeneous offshore zone of the Iroise sea. Here we present the first simulation of the Iroise sea including sea surface waves forcing, and more generally, the first study of a boundary layer including the Hasselmann force with a tidal wave. We use a single equation turbulence closure based on a non-local diagnosis for energetic and dissipation length scales. The turbulent energy flux at the surface due to whitecaps and the Hasselmann force induced by Stokes drift are assessed using the whole sea surface waves spectrum given by the Wave Watch Third generation model. The ability of the parameterization to reproduce surface currents over a period of 1 year (2007) is tested with high frequency radar using spectral and time-frequency analysis. One problem with 1D modelling, corresponding to overestimation of current oscillating at inertial frequency is illustrated by comparing 1D and 3D simulations. We found an overall improvement by including the Hasselmann force mainly within the bandwidth of less than one cycle per day to one cycle per day for surface currents. Turbulence is induced by whitecaps decaying rapidly below the ocean surface but the mixed layer below 40 m is deeper due to waves breaking on the sea surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号