首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of simple scaling formulas related to ice sheet evolution is derived from the dynamic and thermodynamic equations for ice and is used to consider two common situations: (a) when we wish to estimate potential ice sheet characteristics given the prescribed net snow accumulation over an area; and (b) when we wish to reconstruct net snow accumulation and vertical temperature difference within the ice sheet given empirical data only concerning ice sheet area and volume. The scaling formulas are applied to the present day Antarctic and Greenland ice sheets, as well as to some ancient ice sheets, and are used to estimate the potential global sea level change due to greenhouse warming.  相似文献   

2.
A previous GCM study concerning the formation and maintenance of Antarctic glaciation is expanded to include the joining of Australia to Antarctica; the two continents were physically connected prior to about 40 million years ago. It has been proposed that the increased continentality resulting from the enlarged landmass inhibited glaciation by increasing the degree of summer heating. However, simulations with the NCAR CCM1 suggest little change in the net Antarctic snow accumulation when Australia is joined to Antarctica, even under extreme variations in SST and topography. If anything, there is a slight increase in the net accumulation with the larger landmass. The climate of Australia does change markedly, consistent with the roughly 30° poleward shift in latitude. These results may not be inconsistent with paleoclimatic data from the early Cenozoic and the Cretaceous, with temperate flora and fauna along the coast, and large ice sheets inland.  相似文献   

3.
Summary Meteorological and glaciological analyses are integrated to examine the precipitation trends during the last three decades over the ice sheets covering Antarctica and Greenland. For Antarctica, the best data source is provided by glaciologically-measured trends of snow accumulation, and for limited sectors of East Antarctica consistency with precipitation amounts calculated from the atmospheric water balance equation is obtained. For Greenland, precipitation rates parameterized from atmospheric analyses yield the only comprehensive depiction. The precipitation rate over Antarctica appears to have increased by about 5% over a time period spanning the accumulation means for the 1955–65 to 1965–75 periods, while over Greenland it has decreased by about 15% since 1983 with a secondary increase over the southern part of the ice sheet starting in 1977. At the end of the 10-year overlapping period, the global sea-level impact of the precipitation changes over Antarctica dominates that for Greenland and yields a net ice-sheet precipitation contribution of roughly 0.02 mm yr–1. These changes are likely due to marked variations in the cyclonic forcing affecting the ice sheets, but are only weakly reflected in the temperature regime, consistent with the episodic nature of cyclonic precipitation. These conclusions are not founded on high quality data bases. The importance of such changes for understanding global sea-level variations argues for a modest research effort to collect simultaneous meteorological and glaciological observations in order to describe and understand the current precipitation variations over both ice sheets. Some suggestions are offered for steps that could be taken.With 8 Figures  相似文献   

4.
Response of the Antarctic ice sheet to future greenhouse warming   总被引:2,自引:0,他引:2  
Possible future changes in land ice volume are mentioned frequently as an important aspect of the greenhouse problem. This paper deals with the response of the Antarctic ice sheet and presents a tentative projection of changes in global sea level for the next few hundred years, due to changes in its surface mass balance. We imposed a temperature scenario, in which surface air temperature rises to 4.2° C in the year 2100 AD and is kept constant afterwards. As GCM studies seem to indicate a higher temperature increase in polar latitudes, the response to a more extreme scenario (warming doubled) has also been investigated. The mass balance model, driven by these temperature perturbations, consists of two parts: the accumulation rate is derived from present observed values and is consequently perturbed in proportion to the saturated vapour pressure at the temperature above the inversion layer. The ablation model is based on the degree-day method. It accounts for the daily temperature cycle, uses a different degree-day factor for snow and ice melting and treats refreezing of melt water in a simple way. According to this mass balance model, the amount of accumulation over the entire ice sheet is presently 24.06 × 1011 m3 of ice, and no runoff takes place. A 1°C uniform warming is then calculated to increase the overall mass balance by an amount of 1.43 × 1011 m3 of ice, corresponding to a lowering of global sea level with 0.36 mm/yr. A temperature increase of 5.3°C is needed for the increase in ablation to become more important than the increase in accumulation and the temperature would have to rise by as much as 11.4°C to produce a zero surface mass balance. Imposing the Bellagio-scenario and accumulating changes in mass balance forward in time (static response) would then lower global sea level by 9 cm by 2100 AD. In a subsequent run with a high-resolution 3-D thermomechanic model of the ice sheet, it turns out that the dynamic response of the ice sheet (as compared to the direct effect of the changes in surface mass balance) becomes significant after 100 years or so. Ice-discharge across the grounding-line increases, and eventually leads to grounding-line retreat. This is particularly evident in the extreme case scenario and is important along the Antarctic Peninsula and the overdeepened outlet glaciers along the East Antarctic coast. Grounding-line retreat in the Ross and Ronne-Filchner ice shelves, on the other hand, is small or absent.  相似文献   

5.
The total mass budget of the Antarctic ice sheet is studied with a simple axi-symmetrical model. The ice-sheet has a parabolic profile resting on a bed that slopes linearly downwards from the centre of the ice sheet into the ocean. The mean ice velocity at the grounding line is assumed to be proportional to the water depth. The accumulation rate is a linear function of the distance to the centre. Setting the total mass budget to zero yields a quadratic equation for the steady-state ice-sheet radius R. Analysis of the equilibrium states sheds light on the sensitivity of the ice-sheet radius to changes in sea level (S) and precipitation with respect to the present state (Prel). For model parameters obtained by matching the analytical model to the present state of the Antarctic ice sheet, the sensitivity values are dR/dS = -2400 and dR/dPrel = 4000 m/%. The model can also be used to study transient behaviour of the ice sheet. The characteristic relaxation time (e-folding time scale) is about 3500 years. Forcing the model with a sea-level and accumulation history over the past few hundred thousands of years yields Antarctic ice-volume curves that are similar to those obtained by comprehensive numerical modelling. The current imbalance predicted by the model corresponds to a sea-level rise of 0.25 mm yr-1.  相似文献   

6.
On the longer climatic time scales, changes in the elevation and extent of the Antarctic ice sheet have an important role in modulating global atmospheric and oceanographic processes, and contribute significantly to world-wide sea levels. In this paper, a 3-D time-dependent thermomechanical model for the entire ice sheet is presented, that is subsequently used to examine the effects of glacial-interglacial shifts in environmental boundary conditions on its geometry. The model takes into account a coupled ice shelf, grounding-line dynamics, basal sliding and isostatic bed adjustment and considers the fully coupled velocity and temperature fields. Ice flow is calculated on a fine mesh (40 km horizontal grid size and 10 layers in the vertical) for grounded and floating ice and a stress transition zone in between at the grounding line, where all stress components contribute in the effective stress in the flow law. There is free interaction between ice sheet and ice shelf, so that the entire geometry is internally generated. A simulation of the present ice sheet reveals that the model is able to yield realistic results. A series of sensitivity experiments are then performed, in which lower temperatures, reduced accumulation rates and lower global sea level stands are imposed, either singly or in combination. By comparing results of pairs of experiments, the effects of each of these environmental changes can be determined. In agreement with glacial-geological evidence, we found that the most pronounced changes show up in the West Antarctic ice sheet configuration. They appear to be essentially controlled by variations in eustatic sea level, whereas typical glacial-interglacial changes in temperature and ice deposition rates tend to balance one another. These findings support the hypothesis that the Antarctic ice sheet basically follows glacial episodes in the northern hemisphere by means of sea-level teleconnections. Grounding occurs more readily in the Weddell sea than in the Ross sea and long time scales appear to be involved: it may take up to 30–40000 years for these continental shelf areas to become completely grounded after an initial stepwise perturbation in boundary conditions. According to these reconstructions, a steady state Antarctic ice sheet may contribute some 16 m to global sea level lowering at maximum glaciation.  相似文献   

7.
Sea-level records show large glacial-interglacial changes over the past million years, which on these time scales are related to changes of ice volume on land. During the Pleistocene, sea-level changes induced by ice volume are largely caused by the waxing and waning of the large ice sheets in the Northern Hemisphere. However, the individual contributions of ice in the Northern and Southern Hemisphere are poorly constrained. In this study, for the first time a fully coupled system of four 3-D ice-sheet models is used, simulating glaciations on Eurasia, North America, Greenland and Antarctica. The ice-sheet models use a combination of the shallow ice and shelf approximations to determine sheet, shelf and sliding velocities. The framework consists of an inverse forward modelling approach to derive a self-consistent record of temperature and ice volume from deep-sea benthic δ18O data over the past 1 million years, a proxy for ice volume and temperature. It is shown that for both eustatic sea level and sea water δ18O changes, the Eurasian and North American ice sheets are responsible for the largest part of the variability. The combined contribution of the Antarctic and Greenland ice sheets is about 10 % for sea level and about 20 % for sea water δ18O during glacial maxima. However, changes in interglacials are mainly caused by melt of the Greenland and Antarctic ice sheets, with an average time lag of 4 kyr between melt and temperature. Furthermore, we have tested the separate response to changes in temperature and sea level for each ice sheet, indicating that ice volume can be significantly influenced by changes in eustatic sea level alone. Hence, showing the importance of a simultaneous simulation of all four ice sheets. This paper describes the first complete simulation of global ice-volume variations over the late Pleistocene with the possibility to model changes above and below present-day ice volume, constrained by observations of benthic δ18O proxy data.  相似文献   

8.
This paper focuses on the rôle of accumulation and cloudiness changes in the response of the Greenland ice sheet to global warming. Changes in accumulation or cloudiness were often neglected, or coupled to temperature changes. We used model output on temperature, precipitation and cloudiness from a GCM (ECHAM4 T106). The GCM output was used to drive the Greenland model that exists of a vertically averaged ice flow model, coupled to a 1D surface energy balance model that calculates the ablation. Variables are temperature, accumulation and cloudiness. Sensitivity experiments with this model show that changes in accumulation are very important for the ice sheet mass balance, whereas cloudiness is of secondary importance. If the Greenland model is forced by the GCM output, the Greenland model is found to contribute 70% less to sea level rise after 70 years than is indicated by the results presented in the IPCC report. This large discrepancy is mainly due to the fact that the enhanced ablation is strongly compensated by increased accumulation. Comparing the result obtained here with changes in mass balance derived directly from the same general circulation model, indicates a 20% larger contribution to sea level. This increase is due to changes in ice flow, and a different method for the ablation calculation.  相似文献   

9.
 Recent observational and numerical studies of the maritime snow cover in the Antarctic suggest that snow on top of sea ice plays a major role in shaping the seasonal growth and decay of the ice pack in the Southern Ocean. Here, we make a quantitative assessment of the importance of snow accumulation in controlling the seasonal cycle of the ice cover with a coupled snow–sea-ice–upper-ocean model. The model takes into account snow and ice sublimation and snow deposition by condensation. A parametrisation of the formation of snow ice (ice resulting from the freezing of a mixture of snow and seawater produced by flooding of the ice floes) is also included. Experiments on the sensitivity of the snow–sea-ice system to variations in the sublimation/condensation rate, the precipitation rate, and the amount of snowfall transported by the wind into leads are discussed. Although we focus on the model response in the Southern Hemisphere, results for the Arctic are also discussed in some cases to highlight the relative importance of the processes under study in both hemispheres. It is found that the snow loss by sublimation can account for the removal of 0.45 m of snow per year in the Antarctic and that this loss significantly affects the total volume of snow ice. A precipitation decrease of 50% is conducive to large reductions in the Antarctic snow and snow-ice volumes, but it leads only to an 8% decrease in the annual mean ice volume. The Southern Ocean ice pack is more sensitive to increases in precipitation. For precipitation rates 1.5 times larger than the control ones, the annual mean snow, ice, and snow-ice volumes augment by 30, 20, and 180%, respectively. It is also found that the transfer to the ocean of as much as 50% of the precipitating snow as a result of wind transport has almost negligible effects on the total ice volume. All the experiments exhibit a marked geographical contrast in the ice-cover response, with a much larger sensitivity in the western sector of the Southern Ocean than in the eastern sector. Our results suggest that snow-related processes are of secondary importance for determining the sensitivity of the Arctic sea ice to environmental changes but that these processes could have an important part to play in the response of the Antarctic sea-ice cover to future, or current, climatic changes. Received: 30 June 1997/Accepted: 2 October 1998  相似文献   

10.
Sensitivity experiments are conducted to test the influence of poorly known model parameters on the simulation of the Greenland ice sheet by means of a three dimensional numerical model including the mechanical and thermal processes within the ice. Two types of experiments are performed: steady-state climatic conditions and simulations over the last climatic cycle with a climatic forcing derived from the GRIP record. The experiments show that the maximum altitude of the ice sheet depends on the ice flow parameters (deformation and sliding law coefficients, geothermal flux) and that it is low when the ice flow is fast. On the other hand, the maximum altitude is not sensitive to the ablation strength and consequently during the climatic cycle it is driven by changes in accumulation rate. The ice sheet extension shows the opposite sensitivity: it is barely affected by ice flow velocity and the ice covered area is smaller for large ablation coefficients. For colder climates, when there is no ablation, the ice sheet extension depends on the sea level. An interesting result is that the variations with time of the altitude at the ice divide (Summit) do not depend on the parameters we tested. The present modelled ice sheets resulting from the climatic cycle experiments are compared with the present measured ice sheet in order to find the set of parameters that gives the best fit between modelled and measured geometry. It seems that, compared to the parameter set most commonly used, higher ablation rate coefficents must be used. Received: 19 September 1995 / Accepted: 30 May 1996  相似文献   

11.
A new, physically-based snow hydrology has been implemented into the NCAR CCM1. The snow albedo is based on snow depth, solar zenith angle, snow cover pollutants, cloudiness, and a new parameter, the snow grain size. Snow grain size in turn depends on temperature and snow age. An improved expression is used for fractional snow cover which relates it to surface roughness and to snow depth. Each component of the new snow hydrology was implemented separately and then combined to make a new control run integrated for ten seasonal cycles. With the new snow hydrology, springtime snow melt occurs more rapidly, leading to a more reasonable late spring and summer distribution of snow cover. Little impact is seen on winter snow cover, since the new hydrology affects snow melt directly, but snowfall only indirectly, if at all. The influence of the variable grain size appears more important when snow packs are relatively deep while variable fractional snow cover becomes increasingly important as the snow pack thins. Variable surface roughness affects the snow cover fraction directly, but shows little effect on the seasonal cycle of the snow line. As an applicaion of the new snow hydrology, we have rerun simulations involving Antarctic and Northern Hemisphere glaciation; these simulations were previously made with CCM1 and the old snow hydrology. Relatively little difference is seen for Antarctica, but a profound difference occurs for the Northern Hemisphere. In particular, ice sheets computed using net snow accumulations from the GCM are more numerous and larger in extent with the new snow hydrology. The new snow hydrology leads to a better simulation of the seasonal cycle of snow cover, however, our primary goal in implementing it into the GCM is to improve the predictive capabilities of the model. Since the snow hydrology is based on fundamental physical processes, and has well-defined parameters, it should enable model simulations of climatic change in which we have increased confidence.This paper was presented at the Second International Conference on Modelling of Global Climate Variability, held in Hamburg 7–11 September 1992 under the auspices of the Max Planck Institute for Meteorology. Guest Editor for these papers is L. Dümenil  相似文献   

12.
A one-dimensional, numerical model of time-evolving firn densification was used to simulate the response of the density profile through an ice sheet to changes in the temperature, density and accumulation rate at the surface. The equilibrium response of the model was compared with ice-core density profiles from Byrd, Antarctica and Site 2, Greenland, and the model predicted the density to within 10% of both cores. The response of the model to step-wise changes and random fluctuations in the surface boundary conditions was investigated. The standard deviation of elevation changes as a function of observation interval was computed. These changes were found to be small in comparison with the magnitude of present uncertainties in the mass balances of the Antarctic and Greenland Ice Sheets. It was concluded that, in the dry snow zones, natural variability in the densification will not prevent the geodetic determination of ice sheet mass balance from improving upon current estimates. Uncertainty in the constitutive equation for snow and firn is the dominant source of error in the calculations.  相似文献   

13.
The performance of a snow cover model in capturing the ablation on the Greenland ice sheet is evaluated. This model allows an explicit calculation of the formation of melt water, of the fraction of melt water which re-freezes, and of runoff in the ablation region. The input climate variables to the snowpack model come from two climate models. While the higher resolution general circulation model (ECHAM 4), is closest to observations in its estimate of accumulation, it fails to give accurate results in its predictions of runoff, primarily in the southern half of the ice sheet. The two-dimensional low-resolution climate model (MIT 2D LO) produces estimates of runoff from the Greenland ice sheet within the range of uncertainty of the Inter governmental Panel on Climate Change (IPCC1) 1995 estimates. Both models reproduce some of the characteristics of the extent of the wet snow zone observed with satellite remote sensing; the MIT model is closer to observations in terms of areal extent and intensity of the melting in the southern half of the ice-sheet in July and August while the ECHAM model reproduces melting in the northern half of the ice sheet well. Changes in runoff from Greenland and Antarctica are often cited as one of the major concerns linked to anthropogenic changes in climate. Because it is based on physical principles and relies on the surface energy balance as input, the snow cover model can respond to the current climatic forcing as well as to future changes in climate on the century time scale without the limitations inherent in empirical parametrizations. For a reference climate scenario similar to the IPCC's IS92a, the model projects that the Greenland ice sheet does not contribute significantly to changes in the level of the ocean over the twenty-first century. Increases in accumulation over the central portion of the ice sheet offset most of the increase in melting and runoff, which takes place along the margins of the ice sheet. The range of uncertainty in the predictions of sea-level rise is estimated by repeating the calculation with the MIT model for seven climate change scenarios. The range is –0.5 to 1.7 cm.  相似文献   

14.
We use the Earth system model of intermediate complexity LOVECLIM to show the effect of coupling interactive ice sheets on the climate sensitivity of the model on a millennial time scale. We compare the response to a 2×CO2 warming scenario between fully coupled model versions including interactive Greenland and Antarctic ice sheet models and model versions with fixed ice sheets. For this purpose an ensemble of different parameter sets have been defined for LOVECLIM, covering a wide range of the model??s sensitivity to greenhouse warming, while still simulating the present-day climate and the climate evolution over the last millennium within observational uncertainties. Additional freshwater fluxes from the melting ice sheets have a mitigating effect on the model??s temperature response, leading to generally lower climate sensitivities of the fully coupled model versions. The mitigation is effectuated by changes in heat exchange within the ocean and at the sea?Cair interface, driven by freshening of the surface ocean and amplified by sea?Cice-related feedbacks. The strength of the effect depends on the response of the ice sheets to the warming and on the model??s climate sensitivity itself. The effect is relatively strong in model versions with higher climate sensitivity due to the relatively large polar amplification of LOVECLIM. With the ensemble approach in this study we cover a wide range of possible model responses.  相似文献   

15.
Satellite altimetry offers means of directly measuring changes in surface elevation over the polar ice sheets of Greenland and Antarctica. By relating these changes to variations in ice mass, it becomes possible to detect short-term changes in the Earth's ice sheets. However, it is not immediately obvious that short-term changes in surface elevation are indicative of any (long-term) trend in ice mass. An increase in ice thickness may very well reflect the response of the glacier to random fluctuations in precipitation. The spectrum of this response is dominated by low frequencies, with the majority of the variance contained in the longer time scales. As a result, the ice-thickness record may exhibit trends that have no climatic significance, but are due to a low-frequency response to random forcing. A simple model for the interpretation of observed elevation changes is developed and applied to measurements made over the Greenland Ice Sheet. It appears to be unlikely that the difference between the rate of thickening derived by Zwally and others (1989) using repeat satellite altimetry, and significantly smaller previous estimates, can be explained as being the response of the ice sheet to random climatic forcing or that this difference can be attributed to a recent increase in accumulation rate.  相似文献   

16.
The “Panama Hypothesis” states that the gradual closure of the Panama Seaway, between 13 million years ago (13 Ma) and 2.6 Ma, led to decreased mixing of Atlantic and Pacific water Masses, the formation of North Atlantic Deep water and strengthening of the Atlantic thermohaline circulation, increased temperatures and evaporation in the North Atlantic, increased precipitation in Northern Hemisphere (NH) high latitudes, culminating in the intensification of Northern Hemisphere Glaciation (NHG) during the Pliocene, 3.2–2.7 Ma. Here we test this hypothesis using a fully coupled, fully dynamic ocean-atmosphere general circulation model (GCM) with boundary conditions specific to the Pliocene, and a high resolution dynamic ice sheet model. We carry out two GCM simulations with “closed” and “open” Panama Seaways, and use the simulated climatologies to force the ice sheet model. We find that the models support the “Panama Hypothesis” in as much as the closure of the seaway results in a more intense Atlantic thermohaline circulation, enhanced precipitation over Greenland and North America, and ultimately larger ice sheets. However, the volume difference between the ice sheets in the “closed” and “open” configurations is small, equivalent to about 5 cm of sea level. We conclude that although the closure of the Panama Seaway may have slightly enhanced or advanced the onset of NHG, it was not a major forcing mechanism. Future work must fully couple the ice sheet model and GCM, and investigate the role of orbital and CO2 effects in controlling NHG.  相似文献   

17.
Summary The feasibility of using satellite data for climate research over the Greenland ice sheet is discussed. In particular, we demonstrate the usefulness of Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) and Global Area Coverage (GAC) data for narrow-band albedo retrieval. Our study supports the use of lower resolution AVHRR (GAC) data for process studies over most of the Greenland ice sheet. Based on LAC data time series analysis, we can resolve relative albedo changes on the order of 2–5%. In addition, we examine Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I) passive microwave data for snow typing and other signals of climatological significance. Based on relationships between in situ measurements and horizontally polarized 19 and 37 GHz observations, wet snow regions are identified. The wet snow regions increase in aerial percentage from 9% of the total ice surface in June to a maximum of 26% in August 1990. Furthermore, the relationship between brightness temperatures and accumulation rates in the northeastern part of Greenland is described. We found a consistent increase in accumulation rate for the northeastern part of the ice sheet from 1981 to 1986.With 16 Figures  相似文献   

18.
We have examined several MSA (methanesulfonic acid) records from the upper 200 m of the Antarctic ice sheet and in particular the new Dome F profile. At all the four sites studied, concentration profiles exhibit similar patterns as a function of depth. They suggest that snow metamorphism and solid phase migration are responsible for a marked release of gaseous MSA to interstitial firn air as well as probably to the free atmosphere, in particular at extremely low accumulation sites. Snow acidity can also modify MSA concentration. It is proposed that, below the upper few metres where the communication with the free atmosphere is possible, gaseous MSA may remain in the firn layers and be entrapped later in air bubbles at pore close-off, i.e. when firn is transformed into ice. Chemical measurements on the firn core do not take into account the MSA released to the gaseous phase, but this fraction is measurable in ice samples. In spite of these alterations occurring in the firn layers, relative changes of the atmospheric MSA concentration in the past are probably still there deep within the Antarctic ice sheet. However, for glacial periods, different processes have to be considered in relation to modified aerosol properties.  相似文献   

19.
Long-term observations for monitoring of the cryosphere   总被引:1,自引:0,他引:1  
John E. Walsh 《Climatic change》1995,31(2-4):369-394
Variations of the cryosphere over decadal-to-century timescales are assessed by a survey of data on sea ice, snow cover, glaciers and ice sheets, permafrost and lake ice. The recent variations are generally consistent across the different cryospheric variables, especially when placed into the context of variations of temperature and precipitation. The recent warming over northern land areas has been accompanied by a decrease of snow cover, particularly during spring; the retreat of mountain glaciers is, in an aggregate sense, compatible with the observed warming; permafrost extent and lake ice duration show similar variations in areas for which data are available. Corresponding trends are not apparent, however, in data for some regions such as eastern Canada, nor in hemispheric sea ice data, especially for winter. The data also suggest an increase of snowfall over high latitudes, including the Antarctic ice sheet.Estimates of both the climatic and the statistical significance of the recent variations are hampered by data inhomogeneities, the shortness of the records of many variables and the absence of central archives for data on several variables. The potential of monitoring by satellite remote sensing has been realized with several variables (extent of sea ice, snow cover). Other cryospheric variables (snow depth, ice sheet elevation, lake ice, mountain glaciers) may be amenable to routine monitoring by satellites pending advances in instrumentation, modifications of satellite orbit, and further developments in signal detection algorithms. The survey of recent variations leads to recommendations concerning the use of historical data,in situ measurements, and remote sensing applications in the monitoring of the cryosphere.  相似文献   

20.
 The effect of a snow cover on sea ice accretion and ablation is estimated based on the ‘zero-layer’ version sea ice model of Semtner, and is examined using a coupled atmosphere-sea ice model including feedbacks and ice dynamics effects. When snow is disregarded in the coupled model the averaged Antarctic sea ice becomes thicker. When only half of the snowfall predicted by the atmospheric model is allowed to land on the ice surface sea ice gets thicker in most of the Weddell and Ross Seas but thinner in East Antarctic in winter, with the average slightly thicker. When twice as much snowfall as predicted by the atmospheric model is assumed to land on the ice surface sea ice also gets much thicker due to the large increase of snow-ice formation. These results indicate the importance of the correct simulation of the snow cover over sea ice and snow-ice formation in the Antarctic. Our results also illustrate the complex feedback effects of the snow cover in global climate models. In this study we have also tested the use of a mean value of 0.16 Wm-1 K-1 instead of 0.31 for the thermal conductivity of snow in the coupled model, based on the most recent observations in the eastern Antarctic and Bellingshausen and Amundsen Seas, and have found that the sea ice distribution changes greatly, with the ice becoming much thinner by about 0.2 m in the Antarctic and about 0.4 m in the Arctic on average. This implies that the magnitude of the thermal conductivity of snow is of considerable importance for the simulation of the sea ice distribution. An appropriate value of the thermal conductivity of snow is as crucial as the depth of the snow layer and the snowfall rate in a sea ice model. The coupled climate models require accurate values of the effective thermal conductivity of snow from observations for validating the simulated sea ice distribution under the present climate conditions. Received: 20 November 1997/Accepted: 27 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号