首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. P -wave relative teleseismic residuals were measured for a network of seismological stations along a 300 km profile across the Adamawa Plateau and the Central African Shear Zone of central Cameroon, to determine the variation in crust and upper mantle velocity associated with these structures. A plot of the mean relative residuals for the stations shows a long wavelength (> 300 km) variation of amplitude 0.45 s. the slowest arrivals are located over and just to the north, of the faulted northern margin of the Adamawa Plateau. the residuals do not correlate with topography, surface geology or the previously determined crustal structure, in any simple way.
The Aki inversion technique has been used to invert the relative residuals into a 3-D model of velocity perturbations from a mean earth model. the results show the region is divided roughly into three blocks by two subvertical boundaries, striking ENE and traversing both the crust and upper mantle down to depths greater than 190km. the central block, which is 2 per cent slower than the adjacent blocks, roughly corresponds to the Central African Shear Zone. the Adamawa Plateau, as an individual uplifted area, is explained by the interaction of a regional anomalous upper mantle associated with the West African Rift System, and the Central African Shear Zone, which provided a conduit for heat flow to the surface.  相似文献   

2.
We present the first results of a high-resolution teleseismic traveltime tomography and seismic anisotropy study of the lithosphere–asthenosphere system beneath the western Bohemian Massif. The initial high-resolution tomography down to a depth of 250 km did not image any columnar low-velocity anomaly which could be interpreted as a mantle plume anticipated beneath the Eger Rift, similar to recent findings of small plumes beneath the French Massif Central and the Eifel in Germany. Alternatively, we interpret the broad low-velocity anomaly beneath the Eger Rift by an upwelling of the lithosphere–asthenosphere transition. We also map lateral variations of seismic anisotropy of the mantle lithosphere from spatial variations of P -wave delay times and the shear wave splitting. Three major domains characterised by different orientations of seismic anisotropy correspond to the major tectonic units—Saxothuringian, Moldanubian and the Teplá-Barrandian—and their fabrics fit to those found in our previous studies of mantle anisotropy on large European scales.  相似文献   

3.
The dispersive properties of surface waves are used to infer earth structure in the Eastern Mediterranean region. Using group velocity maps for Rayleigh and Love waves from 7 to 100 s, we invert for the best 1-D crust and upper-mantle structure at a regular series of points. Assembling the results produces a 3-D lithospheric model, along with corresponding maps of sediment and crustal thickness. A comparison of our results to other studies finds the uncertainties of the Moho estimates to be about 5 km. We find thick sediments beneath most of the Eastern Mediterranean basin, in the Hellenic subduction zone and the Cyprus arc. The Ionian Sea is more characteristic of oceanic crust than the rest of the Eastern Mediterranean region as demonstrated, in particular, by the crustal thickness. We also find significant crustal thinning in the Aegean Sea portion of the backarc, particularly towards the south. Notably slower S -wave velocities are found in the upper mantle, especially in the northern Red Sea and Dead Sea Rift, central Turkey, and along the subduction zone. The low velocities in the upper mantle that span from North Africa to Crete, in the Libyan Sea, might be an indication of serpentinized mantle from the subducting African lithosphere. We also find evidence of a strong reverse correlation between sediment and crustal thickness which, while previously demonstrated for extensional regions, also seems applicable for this convergence zone.  相似文献   

4.
We describe a waveform modelling technique and demonstrate its application to determine the crust- and upper-mantle velocity structure beneath Africa. Our technique uses a parallelized reflectivity method to compute synthetic seismograms and fits the observed waveforms by a global optimization technique based on a Very Fast Simulated Annealing (VFSA). We match the S , Sp, SsPmP and shear-coupled PL phases in seismograms of deep (200–800 km), moderate-to-large magnitude (5.5–7.0) earthquakes recorded teleseismically at permanent broad-band seismic stations in Africa. Using our technique we produce P - and S -wave velocity models of crust and upper mantle beneath Africa. Additionally, our use of the shear-coupled PL phase, wherever observed, improves the constraints for lower crust- and upper-mantle velocity structure beneath the corresponding seismic stations. Our technique retains the advantages of receiver function methods, uses a different part of the seismogram, is sensitive to both P - and S -wave velocities directly, and obtains helpful constraints in model parameters in the vicinity of the Moho. The resulting range of crustal thicknesses beneath Africa (21–46 km) indicates that the crust is thicker in south Africa, thinner in east Africa and intermediate in north and west Africa. Crustal P - (4.7–8 km s−1) and S -wave velocities (2.5–4.7  km s−1) obtained in this study show that in some parts of the models, these are slower in east Africa and faster in north, west and south Africa. Anomalous crustal low-velocity zones are also observed in the models for seismic stations in the cratonic regions of north, west and south Africa. Overall, the results of our study are consistent with earlier models and regional tectonics of Africa.  相似文献   

5.
We investigate the sensitivity of finite-frequency body-wave observables to mantle anisotropy based upon kernels calculated by combining adjoint methods and spectral-element modelling of seismic wave propagation. Anisotropy is described by 21 density-normalized elastic parameters naturally involved in asymptotic wave propagation in weakly anisotropic media. In a 1-D reference model, body-wave sensitivity to anisotropy is characterized by 'banana–doughnut' kernels which exhibit large, path-dependent variations and even sign changes. P -wave traveltimes appear much more sensitive to certain azimuthally anisotropic parameters than to the usual isotropic parameters, suggesting that isotropic P -wave tomography could be significantly biased by coherent anisotropic structures, such as slabs. Because of shear-wave splitting, the common cross-correlation traveltime anomaly is not an appropriate observable for S waves propagating in anisotropic media. We propose two new observables for shear waves. The first observable is a generalized cross-correlation traveltime anomaly, and the second a generalized 'splitting intensity'. Like P waves, S waves analysed based upon these observables are generally sensitive to a large number of the 21 anisotropic parameters and show significant path-dependent variations. The specific path-geometry of SKS waves results in favourable properties for imaging based upon the splitting intensity, because it is sensitive to a smaller number of anisotropic parameters, and the region which is sampled is mainly limited to the upper mantle beneath the receiver.  相似文献   

6.
The earthquakes in the seismicity belt extending through Indonesia, New Guinea, Vanuatu and Fiji to the Tonga–Kermadec subduction zone recorded at the 65 portable broad-band stations deployed during the Skippy experiment from 1993–1996 provide good coverage of the lithosphere and mantle under the Australian continent, Coral Sea and Tasman Sea.
The variation in structure in the upper part of the mantle is characterized by deter-mining a suite of 1-D structures from stacked record sections utilizing clear P and S arrivals, prepared for all propagation paths lying within a 10° azimuth band. The azimuth of these bands is rotated by 20° steps with four parallel corridors for each azimuth. This gives 26 separate azimuthal corridors for which 15 independent 1-D seismic velocity structures have been derived, which show significant variation in P and S structure.
The set of 1-D structures is combined to produce a 3-D representation by projecting the velocity values along the ray path using a turning point approximation and stacking into 3-D cells (5° by 50 km in depth). Even though this procedure will tend to underestimate wave-speed perturbations, S -velocity deviations from the ak135 reference model exceed 6 per cent in the lithosphere.
In the uppermost mantle the results display complex features and very high S -wave speeds beneath the Precambrian shields with a significant low-velocity zone beneath. High velocities are also found towards the base of the transition zone, with high S -wave speeds beneath the continent and high P -wave speeds beneath the ocean. The wave-speed patterns agree well with independent surface wave studies and delay time tomography studies in the zones of common coverage.  相似文献   

7.
Summary. The Nootka fault zone is the boundary between the small Explorer and Juan de Fuca plates which are situated between the America and Pacific plates off western Canada. To investigate the crustal structure in the region, three explosive/large airgun refraction lines were shot into three ocean bottom seismometers (OBSs) with three-component geophone assemblies. In this phase of the study, P -wave velocity—depth models are interpreted by comparison of the travel time and amplitude characteristics of the observed data with theoretical seismograms computed using a WKBJ algorithm. The interpretation gives relatively consistent results for the upper crust. However, the structure of the lower crust is significantly different among the various profiles. Upper mantle velocities range from 7.5 to 8.3 kms−1 and the sub-bottom crustal thickness vanes from 6.4 to 11 km. Nevertheless, these seismic models are consistent in general terms with oceanic crustal models represented by ophiolite complexes. Some aspects of the differences among profiles can be explained by consideration of a recent tectonic model for the development of the fault zone. This requires, within a 1 Myr time interval, variations in the process of crustal formation at the ridge, crustal 'maturing', or both. The abnormally thick crust near a spreading centre may result in part from the complex interaction of the Juan de Fuca and Explorer plates with the larger and older America and Pacific plates. Upper mantle velocity variations are consistent with the concept of velocity anisotropy. The different record sections show that seismic energy is attenuated for ray paths traversing the Nootka fault zone.  相似文献   

8.
Summary. Over 80 earthquakes, exclusively from the Hindukush focal region, which were recorded at the Gauribidanur seismic array (GBA) have been used in this study. These events have similar epicentral distances and a narrow azimuthal range from GBA but varying focal depths from 10 to 240 km. A fault plane dipping steeply (75°) in the north-west direction and striking N 66° E has been investigated on the basis of the spatial distribution of earthquakes in two vertical planes through 68° E and 32° N. Short period P -wave recordings up to 30 s were processed using the adaptive cross-correlation filtering technique. Slowness and azimuthal anomalies were obtained for first arrivals. These anomalies show positive as well as negative bias and are attributed to a steep velocity gradient in the upper mantle between the 400–700 km depth range where the seismic rays have their maximum penetration. Relative time residuals between the stations of GBA owe their origin very near to the surface beneath the array. A search of the signals across the array revealed that most of the events occurring at shallower depths had complex signatures as compared to the deeper events. The structure near the source region, complicated source functions and the scattering confined to the crust—upper mantle near source are mainly responsible for the complexity of the Hindukush earthquakes as the transmission zone of the ray tubes from turning point to the recording station is practically the same.  相似文献   

9.
In this study we image crustal structure beneath a magmatic continental rift to understand the interplay between crustal stretching and magmatism during the late stages of continental rifting: the Main Ethiopian Rift (MER). The northern sector of this region marks the transition from continental rifting in the East African Rift to incipient seafloor spreading in the southern Red Sea and western Gulf of Aden. Our local tomographic inversion exploits 172 broad-band instruments covering an area of 250 × 350 km of the rift and adjacent plateaux. The instruments recorded a total of 2139 local earthquakes over a 16-month period. Several synthetic tests show that resolution is good between 12 and 25 km depth (below sea level), but some horizontal velocity smearing is evident along the axis of the Main Ethiopian Rift below 16 km. We present a 3-D P -wave velocity model of the mid-crust and present the first 3-D Vp / Vs model of the region. Our models show high P -wave velocities (6.5 km s−1) beneath the axis of the rift at a depth of 12–25 km. The presence of high Vp / Vs ratios (1.81–1.84) at the same depth range suggest that they are cooled mafic intrusions. The high Vp / Vs values, along with other geophysical evidence, suggest that dyking is pervasive beneath the axis of the rift from the mid-crustal depths to the surface and that some portion of partial melt may exist at lower crustal depths. Although the crustal stretching factor across the Main Ethiopian Rift is ∼1.7, our results indicate that magma intrusion in narrow zones accommodates a large proportion of extensional strain, with similarities to slow-spreading mid-ocean ridge processes.  相似文献   

10.
Broad-band P - and S -waves from earthquakes in South America recorded at Californian network stations are analysed to image lateral variations of the D"-discontinuity beneath the Cocos plate. We apply two array processing methods to the data set: a simplified migration method to the P -wave data set and a double-array method to both the P - and S -wave data sets, allowing us to compare results from the two methods. The double-array method images a dipping reflector at a depth range from 2650 to 2700 km in the southern part of the study area. We observe a step-like topography of 100 km to a shallower reflector at about 2600 km depth to the north, as well as evidence for a second (deeper) reflector at a depth range from 2700 to 2750 km in the north. Results from the simplified migration agree well with those from the double-array method, similarly locating a large step in reflector depth in a similar location (about 2650 km depth in the south and about 2550 km in the north) as well as the additional deeper reflector at the depth of about 2750 km in the north. Waveform modelling of the reflected waves from both methods suggests a positive velocity contrast for S waves, but a negative velocity contrast for P waves for the upper reflector in agreement with predictions from mineral physical calculations for a post-perovskite phase transition. The data also show some evidence for the existence of another deeper reflector that could indicate a double intersection of the geotherm with the post-perovskite stability field, that is, the back-transformation of post-perovskite to perovskite close to the core–mantle boundary.  相似文献   

11.
A seismic-array study of the continental crust and upper mantle in the Ivrea-Yerbano and Strona-Ceneri zones (northwestern Italy) is presented. A short-period network is used to define crustal P - and S -wave velocity models from earthquakes. The analysis of the seismic-refraction profile LOND of the CROP-ECORS project provided independent information and control on the array-data interpretation.
Apparent-velocity measurements from both local and regional earthquakes, and time-term analysis are used to estimate the velocity in the lower crust and in the upper mantle. The geometry of the upper-lower crust and Moho boundaries is determined from the station delay times.
We have obtained a three-layer crustal seismic model. The P -wave velocity in the upper crust, lower crust and upper mantle is 6.1±0.2 km s−1, 6.5±0.3 km s−1 and 7.8±0.3 km s−1 respectively. Pronounced low-velocity zones in the upper and lower crust are not observed. A clear change in the velocity structure between the upper and lower crust is documented, constraining the petrological interpretation of the Ivrea-type reflective lower continental crust derived from small-scale petrophysical data. Moreover, we found a V P/ V S ratio of 1.69±0.04 for the upper crust and 1.82±0.08 for the lower crust and upper mantle. This is consistent with the structural and petrophysical differences between a compositionally uniform and seismically transparent upper crust and a layered and reflective lower crust. The thickness of the lower crust ranges from about 8 km in front of the Ivrea body (ARVO, Arvonio station) in the northern part of the array to a maximum of about 15 km in the southern part of the array. The lower crust reaches a minimum depth of 5 km below the PROV (Provola) station.  相似文献   

12.
Summary. Two localized regions of velocity heterogeneity in the lower mantle with scale lengths of 1000–2000 km and 2 per cent velocity contrasts are detected and isolated through comparison of S, ScS, P and PcP travel times and amplitudes from deep earthquakes in Peru, Bolivia, Argentina and the Sea of Okhotsk. Comparison of the relative patterns of ScS-S differential travel times and S travel-time residuals across North American WWSSN and CSN stations for the different source regions provides baselines for interpreting which phases have anomalous times. A region of low S and P velocities is located beneath Northern Brazil and Venezuela at depths of 1700–2700 km. This region produces S -wave delays of up to 4 s for signals from deep Argentine events recorded at eastern North American stations. The localized nature of the anomaly is indicated by the narrow bounds in azimuth (15°) and take-off angle (13°) of the arrivals affected by it. The long period S -waves encountering this anomaly generally show 30–100 per cent amplitude enhancement, while the short-period amplitudes show no obvious effect. The second anomaly is a high-velocity region beneath the Caribbean originally detected by Jordan and Lynn, who used travel times from deep Peruvian events. The data from Argentine and Bolivian events presented here constrain the location of the anomaly quite well, and indicate a possible short- and long-period S -wave amplitude diminution associated with it. When the travel-time data are corrected for the estimated effects of these two anomalies, a systematic regional variation in ScS-S station residuals is apparent between stations east of and west of the Rocky Mountains. One possible explanation of this is a long wavelength lateral variation in the shear velocity structure of the lower mantle at depths greater than 2000 km beneath North America.  相似文献   

13.
Receiver functions (RFs) from teleseismic events recorded by the NARS-Baja array were used to map crustal thickness in the continental margins of the Gulf of California, a newly forming ocean basin. Although the upper crust is known to have split apart simultaneously along the entire length of the Gulf, little is known about the behaviour of the lower crust in this region. The RFs show clear P -to- S wave conversions from the Moho beneath the stations. The delay times between the direct P and P -to- S waves indicate thinner crust closer to the Gulf along the entire Baja California peninsula. The thinner crust is associated with the eastern Peninsular Ranges batholith (PRB). Crustal thickness is uncorrelated with topography in the PRB and the Moho is not flat, suggesting mantle compensation by a weaker than normal mantle based on seismological evidence. The approximately W–E shallowing in Moho depths is significant with extremes in crustal thickness of ∼21 and 37 km. Similar results have been obtained at the northern end of the Gulf by Lewis et al., who proposed a mechanism of lower crustal flow associated with rifting in the Gulf Extensional Province for thinning of the crust. Based on the amount of pre-Pliocene extension possible in the continental margins, if the lower crust did thin in concert with the upper crust, it is possible that the crust was thinned during the early stages of rifting before the opening of the ocean basin. In this case, we suggest that when breakup occurred, the lower crust in the margins of the Gulf was still behaving ductilely. Alternatively, the lower crust may have thinned after the Gulf opened. The implications of these mechanisms are discussed.  相似文献   

14.
The Massif Central, the most significant geomorphological unit of the Hercynian belt in France, is characterized by graben structures which are part of the European Cenozoic Rift System (ECRIS) and also by distinct volcanic episodes, the most recent dated at 20 Ma to 4000 years BP. In order to study the lithosphere-asthenosphere system beneath this volcanic area, we performed a teleseismic field experiment.
During a six-month period, a joint French-German team operated a network of 79 mobile short-period seismic stations in addition to the 14 permanent stations. Inversion of P -wave traveltime residuals of teleseismic events recorded by this dense array yielded a detailed image of the 3-D velocity structure beneath the Massif Central down to 180 km depth. The upper 60 km of the lithosphere displays strong lateral heterogeneities and shows a remarkable correlation between the volcanic provinces and the negative velocity perturbations. The 3-D model reveals two channels of low velocities, interpreted as the remaining thermal signature of magma ascent following large lithospheric fractures inherited from Hercynian time and reactivated during Oligocene times. The teleseismic inversion model yields no indication of a low-velocity zone in the mantle associated with the graben structures proper. The observation of smaller velocity perturbations and a change in the shape of the velocity pattern in the 60–100 km depth range indicates a smooth transition from the lithosphere to the asthenosphere, thus giving an idea of the lithosphere thickness. A broad volume of low velocities having a diameter of about 200 km from 100 km depth to the bottom of the model is present beneath the Massif Central. This body is likely to be the source responsible for the volcanism. It could be interpreted as the top of a plume-type structure which is now in its cooling phase.  相似文献   

15.
We compare 3-D upper mantle anisotropic structures beneath the North American continent obtained using standard and improved crustal corrections in the framework of Non-linear Asymptotic Coupling Theory (NACT) applied to long period three component fundamental and higher mode surface waveform data. Our improved approach to correct for crustal structure in high-resolution regional waveform tomographic models goes beyond the linear perturbation approximation, and is therefore more accurate in accounting for large variations in Moho topography within short distances as observed, for instance, at ocean–continent margins. This improved methodology decomposes the shallow-layer correction into a linear and non-linear part and makes use of 1-D sensitivity kernels defined according to local tectonic structure, both for the forward computation and for the computation of sensitivity kernels for inversion. The comparison of the 3-D upper mantle anisotropic structures derived using the standard and improved crustal correction approaches shows that the model norm is not strongly affected. However, significant variations are observed in the retrieved 3-D perturbations. The largest differences in the velocity models are present below 250 km depth and not in the uppermost mantle, as would be expected. We suggest that inaccurate crustal corrections preferentially map into the least constrained part of the model and therefore accurate corrections for shallow-layer structure are essential to improve our knowledge of parts of the upper mantle where our data have the smallest sensitivity.  相似文献   

16.
A 3-D P -velocity map of the crust and upper mantle beneath the southeastern part of India has been reconstructed through the inversion of teleseismic traveltimes. Salient geological features in the study region include the Archean Dharwar Craton and Eastern Ghat metamorphic belt (EGMB), and the Proterozoic Cuddapah and Godavari basins. The Krishna–Godavari basin, on the eastern coastal margin, evolved in response to the Indo–Antarctica breakup. A 24-station temporary network provided 1161 traveltimes, which were used to model 3-D P -velocity variation. The velocity model accounts of 80 per cent of the observed data variance. The velocity picture to a depth of 120 km shows two patterns: a high velocity beneath the interior domain (Dharwar craton and Cuddapah basin), and a lower velocity beneath the eastern margin region (EGMB and coastal basin). Across the array velocity variations of 7–10 per cent in the crust (0–40 km) and 3–5 per cent in the uppermost mantle (40–120 km) are observed. At deeper levels (120–210 km) the upper-mantle velocity differences are insignificant among different geological units. The presence of such a low velocity along the eastern margin suggests significantly thin lithosphere (<100 km) beneath it compared to a thick lithosphere (>200 km) beneath the eastern Dharwar craton. Such lithospheric thinning could be a consequence of Indo–Antarctica break-up.  相似文献   

17.
Summary. The analysis of data of seismic crustal studies in the USSR, obtained from waves propagating at different azimuths, reveals considerable horizontal and vertical inhomogeneity of the crust. Against this background it is difficult to predict what kind of velocity anisotropy can be expected in the continental crust. The rare cases of disagreement in velocities on intersecting profiles can be attributed both to anisotropy and to horizontal crustal inhomogeneity. There is a definite disagreement in layer velocities measured by reflected waves: fine layers in the crust and upper mantle have been found to have anomalously high velocities. The role of anisotropy in these events is not clear. The frequently observed splitting of S -wave with different polarization, however, positively implies anisotropy in the Earth's crust.  相似文献   

18.
We study the crustal structure of eastern Marmara region by applying the receiver function method to the data obtained from the 11 broad-band stations that have been in operation since the 1999 İzmit earthquake. The stacked single-event receiver functions were modelled by an inversion algorithm based on a five-layered crustal velocity model to reveal the first-order shear-velocity discontinuities with a minimum degree of trade-off. We observe crustal thickening from west (29–32 km) to east (34–35 km) along the North Anatolian Fault Zone (NAFZ), but we observe no obvious crustal thickness variation from north to south while crossing the NAFZ. The crust is thinnest beneath station TER (29 km), located near the Black Sea coast in the west and thickest beneath station TAR (35 km), located inland in the southeast. The average crustal thickness and S -wave velocity for the whole regions are  31 ± 2  km and  3.64 ± 0.15 km s−1  , respectively. The eastern Marmara region with its average crustal thickness, high heat flow value (101 ± 11 mW m−2) and with its remarkable extensional features seems to have a Basin and Range type characteristics, but the higher average shear velocities (∼3.64 km s−1) and crustal thickening from 29 to 35 km towards the easternmost stations indicate that the crustal structure shows a transitional tectonic regime. Therefore, we conclude that the eastern Marmara region seems to be a transition zone between the Marmara Sea extensional domain and the continental Anatolian inland region.  相似文献   

19.
The inverse tomography method has been used to study the P - and S -waves velocity structure of the crust and upper mantle underneath Iran. The method, based on the principle of source–receiver reciprocity, allows for tomographic studies of regions with sparse distribution of seismic stations if the region has sufficient seismicity. The arrival times of body waves from earthquakes in the study area as reported in the ISC catalogue (1964–1996) at all available epicentral distances are used for calculation of residual arrival times. Prior to inversion we have relocated hypocentres based on a 1-D spherical earth's model taking into account variable crustal thickness and surface topography. During the inversion seismic sources are further relocated simultaneously with the calculation of velocity perturbations. With a series of synthetic tests we demonstrate the power of the algorithm and the data to reconstruct introduced anomalies using the ray paths of the real data set and taking into account the measurement errors and outliers. The velocity anomalies show that the crust and upper mantle beneath the Iranian Plateau comprises a low velocity domain between the Arabian Plate and the Caspian Block. This is in agreement with global tomographic models, and also tectonic models, in which active Iranian plateau is trapped between the stable Turan plate in the north and the Arabian shield in the south. Our results show clear evidence of the mainly aseismic subduction of the oceanic crust of the Oman Sea underneath the Iranian Plateau. However, along the Zagros suture zone, the subduction pattern is more complex than at Makran where the collision of the two plates is highly seismic.  相似文献   

20.
Magnetotelluric data from the backarc of the Central Andes in NW Argentinawere re-examined by employing impedance tensor decomposition and 2-D inversion and modelling techniques. The data in the period range of 50–15 000 s were collected on a profile of 220 km length reaching from the Eastern Cordillera across the Santa Barbara System to the Andean foreland of the Argentinean Chaco.
After a dimensionality analysis, data from most sites were treated as regional 2-D. The exception was the eastern section of the profile, where the magnetotelluric transfer functions for periods ≤ 1000 s reflect a 3-D earth. Application of two tensor decomposition schemes yielded a regional strike direction of N–S, which is the azimuth of the Central Andean mountain chains. Several 2-D models were obtained by pseudo- and full 2-D Occam inversion schemes. Special emphasis was placed on the inversion of phase data to reduce the influence of static shifts in the apparent resistivity data. The smooth inversion models all show a good conductor at depth. A final model was then calculated using a finite element forward algorithm.
The most prominent feature of the resulting model is a conductor which rises from depths of 180 km below the Chaco region to 80 km beneath the Santa Barbara System and the Eastern Cordillera. Its interpretation as a rise of the electrical asthenosphere is supported by seismic attenuation studies. Magnetotelluric results, surface heat-flow distribution in the area, and the electrical properties of crustal and mantle rocks suggest that the upper mantle is predominantly ductile beneath the Eastern Cordillera and the western Santa Barbara System. This generally agrees with anelastic seismic attenuation models of the area and is useful in discriminating between models of Q quality factor distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号