首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study examines the release of dissolved organic carbon (DOC) from upland peat during the period of the autumn flushing. Hydroclimatic conditions were monitored in conjunction with measurements of absorbance and the E4/E6 ratio of the stream draining an 11·4 km2 upland peat catchment in northern England. During two months of monitoring the effects of 67 separate rainfall events were examined showing that:
  • The peat behaves hydrologically as if it were a two end‐member system consisting of old, interevent, and new, event, water. Runoff is initiated by percolation excess of new water at the acrotelm–catotelm interface.
  • The discharge of dissolved organic matter behaves like a three end‐member system with the between‐event water being low in DOC and storm events being characterized by two types of water. Initial runoff being characterized by new water rich in DOC that gives way to new water depleted in DOC. This transition can be ascribed to the runoff progressing from throughflow within the acrotelm progressing to saturation‐excess overland flow.
  • Depletion of DOC during storm events is accompanied by a change in the character of the DOC as the E4/E6 ratio changes. This suggests that the decrease in DOC during events is the result of exhaustion of reserves rather than changes in the flowpaths being utilized by runoff.
  • The amount of carbon released in any event is critically dependent upon the time between events during which oxidation processes generate a reservoir of available carbon. Production of available carbon in the catchment is as high as 4·5 g C per day per m3 of peat, suggesting a turnover rate of peat of the order of 42 years. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

2.
The dynamics of dissolved and particulate N, P and organic C were examined for field drains, through a headwater (4 km2), into a mesoscale stream (51 km2) and river (1844 km2) catchment. Distributions of N and P forms were similar in the agricultural headwater and field drains; annual P fluxes of particulate and dissolved forms were of equal magnitude, whilst N was dominated by NO3–N. Across all scales organic P was an important, often dominant, component of the dissolved P. Temporal variation in nutrient concentrations and proportions was greatest in the headwater, where storms resulted in the generation of large concentrations of suspended particulate matter, particulate and dissolved P, particularly following dry periods. The data suggest that groundwater and minor point source inputs to the mesoscale catchment buffered the temporal variability in hydrochemistry relative to the headwater. Summer low flows were associated with large PO4–P concentrations in the mesoscale catchment at a critical time of biological sensitivity. At the largest river catchment scale, organic forms of C, N and P dominated. Inorganic nutrient concentrations were kept small through dilution by runoff from upland areas and biological processes converted dissolved N and P to particulate forms. The different processes operating between the drain/headwater to the large river scale have implications for river basin management. Given the prevalence of organic and particulate P forms in our catchment transect, the bioavailability of these fractions needs to be better understood.  相似文献   

3.
Concentrations of suspended particulate matter (SPM), NO3-N and P fractions: PO4-P, dissolved organic P (DOP), particulate P (PP) and bioavailable exchangeable P were examined over 5 storm events in two nested agricultural catchments in NE Scotland: a (51 km2) catchment and its headwater (4 km2). NO3-N showed anticlockwise hysteresis for all storms in both catchments. In contrast, the headwater showed strong clockwise hysteresis of SPM, dissolved and particulate P concentrations, but which weakened through summer to spring. Less pronounced hysteresis of P forms in the larger catchment was attributed to a combination of factors: a less energetic system, nutrient leaching from the floodplain, a point source of a small sewage treatment works and the occurrence of coarser soil and sediment parent materials with less P adsorption and transport capacity. The headwater exhibited a strong ‘first flush’ effect of sediment and dissolved P, particularly following dry conditions, received a significant transfer of readily-solubilized organic P from the surrounding soils in late summer and after manure applications in winter, and was the likely cause of large sediment associated P signals observed in the 51 km2 catchment. Our results suggest that steeper gradient headwaters should be targeted for riparian improvements to mitigate soil erosion from headwater fields. The efficiency of riparian erosion controls is also dependant on the size of the store of fine sediment material within the stream channel and this may be large.  相似文献   

4.
In hydrological terms, raised bogs are often approximated by simple models as in the acrotelm–catotelm concept. However, raised bogs are often characterized by a pronounced surface topography, causing large changes in connectivity of contributing areas on the bog. In this study, daily regression of measured discharges versus catchment areas is used to quantify the impact of surface topography on catchment connectivity within a raised bog. The resulting coefficient of determination shows the strength of the relationship between the discharge and catchment area over time under different hydrological conditions. Monitoring of discharge, water table, transmissivity, and basic weather data on a raised bog (1.9 km2) in eastern central Estonia took place from May 2008 to June 2010. Contributing areas, calculated based on the outlet's discharge volume (V Q ) divided by the net precipitation volume ( ), of the outlet containing the central pool‐ridge system varied between 1×10?3 and 0.7 km2, suggesting significant differences in connectivity between hydrological events. Correlation between discharge and theoretical catchment size was high (R 2>0.75) when the water table was close to the surface (less than 5 cm below peat surface), and consequently, transmissivities were also high (up to 1,030m2d?1), which led to connectivity of local storage elements, such as pools and hollows. However, a water table below this threshold resulted in large parts of the catchment being disconnected. The importance of water table depths on catchment connectivity suggests the need to reconsider the hydrological concept of raised bogs; to incorporate these shallow flow components and better understand residence time and consequently transport of solutes, such as DOC, from patterned peatlands.  相似文献   

5.
This paper describes the preliminary evaluation of the PSYCHIC catchment scale (Tier 1) model for predicting the mobilisation and delivery of phosphorus (P) and suspended sediment (SS) in the Hampshire Avon (1715 km2) and Herefordshire Wye (4017 km2) drainage basins, in the UK, using empirical data. Phosphorus and SS transfers to watercourses in the Wye were predicted to be greater than corresponding delivery in the Avon; SS, 249 vs 33 kg ha−1 yr−1; DP, 2.57 vs 1.26 kg ha−1 yr−1; PP, 2.20 vs 0.56 kg ha−1 yr−1. The spatial pattern of the predicted transfers was relatively uniform across the Wye drainage basin, whilst in the Avon, delivery to watercourses was largely confined to the river corridors and small areas of drained land. Statistical performance in relation to predicted exports of P and SS, using criteria for relative error (RE) and root mean square error (RMSE), reflected the potential shortcomings associated with using longer-term climate data for predicting shorter-term (2002–2004) catchment response and the need to refine calculations of point source contributions and to incorporate additional river basin processes such as channel bank erosion and in-stream geochemical processing. PSYCHIC is therefore best suited to characterising longer-term catchment response.  相似文献   

6.
This study uses 2 years of data from a detailed weekly water sampling programme in a 11·4 km2 upland peat catchment in the Northern Pennines, UK. The sampling comprised precipitation, soil‐water samples and a number of streams, including the basin outlet. Samples were analysed for: pH, conductivity, alkalinity, Na, K, Ca, Mg, Fe, Al, Total N, SO4, Cl and colour. Principal component analysis (PCA) was used to identify end‐members and compositional trends in order to identify controls on the development of water composition. The study showed that the direct use of PCA had several advantages over the use of end‐member mixing analysis (EMMA) as it combines an analysis of mixing and evolving waters without the assumption of having to know the compositional sources of the water. In its application to an upland peat catchment, the study supports the view that shallow throughflow at the catotelm/acrotelm boundary is responsible for storm runoff generation and shows that baseflow is controlled by cation exchange in the catotelm and mixing with a base‐rich groundwater. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
T.S. McCarthy   《Journal of Hydrology》2006,320(3-4):264-282
The Okavango Delta of northern Botswana is a large (40,000 km2) alluvial fan located at the terminus of the Okavango River. The river discharges about 10 km3 of water onto the fan each year, augmented by about 6 km3 of rainfall, which sustains about 2500 km2 of permanent wetland and up to 8000 km2 of seasonal wetland. Interaction between this surface water and the groundwater strongly influences the structure and function of the wetland ecosystem. The climate is semi-arid, and only 2% of the water leaves as surface flow and probably very little as groundwater flow. The bulk of the water is lost to the atmosphere. The Okavango River also delivers about 170,000 tonnes of bedload sediment and about 360,000 tonnes of solutes to the Delta each year, most of which are deposited on the fan. Bedload is deposited in the proximal, permanent wetland, whilst much of the solute load is deposited in the seasonal wetland. Notwithstanding the high evapotranspirational loss, saline surface water is rare. Between 80 and 90% of the seasonal flood water infiltrates the ground, recharging the groundwater beneath the flood plains and the many islands on the flood plains. The remainder is lost by evaporation. This groundwater reservoir is transpired into the atmosphere by both aquatic vegetation on the flood plains and terrestrial vegetation on the islands, and the water table is steadily lowered following passage of the seasonal flood. Trees, which are almost exclusively confined to islands, are particularly important, as they lower the water table beneath islands relative to the surrounding wetlands. There is therefore a net flow of groundwater towards islands. Accumulation of dissolved salts in this groundwater leads to precipitation of solutes (mainly of silica and calcite) in the soils beneath island fringes and the islands grow by vertical expansion. Islands are thus an expression of the chemical sedimentation taking place on the fan. Sodium bicarbonate accumulates in the groundwater beneath island centres, and this impacts on the vegetation, leading ultimately to barren island interiors. Dense saline brine thus produced subsides under density-driven flow. This cycling of seasonal flood water through the groundwater reservoir thus plays a key role in creating and maintaining the biological and habitat diversity of the wetland, and inhibits the formation of saline surface water.  相似文献   

8.
Tracing suspended sediment and particulate phosphorus sources in catchments   总被引:4,自引:0,他引:4  
Information on suspended sediment and particulate P (PP) sources is an important requirement in many catchment-based diffuse source pollution studies, in order to assist with model validation and to provide information to support the development of effective sediment and phosphorus control strategies. Such information is, however, frequently unavailable or difficult to assemble. In the study reported, source fingerprinting procedures were successfully used to assemble this information for seven sub-catchments in the Hampshire Avon catchment and five sub-catchments in the Middle Herefordshire Wye catchment. The results provide important new information on the relative importance of the contributions from surface and channel/subsurface sources to the suspended sediment and PP fluxes from the catchments. In the Wye sub-catchments channel/subsurface sources contributed 40–55% of the overall suspended sediment flux and 21–43% of the PP flux from the catchments. Equivalent values for the Avon were 1–41% and 1–54%, respectively. Combination of the information on the relative importance of surface and channel/subsurface sources with measured suspended sediment fluxes has provided the first estimates of the specific fluxes of sediment and PP attributable to channel/subsurface sources for UK catchments. The former are as high as 15–20 t km−2 year−1 in some of the Wye sub-catchments, whereas the latter exceeded 0.1 kgP ha−1 year−1 in the same sub-catchments. The results emphasize the need to take account of potential contributions from channel/subsurface sources when using measured suspended sediment and PP flux data to validate predictions derived from models incorporating only surface contributions.  相似文献   

9.
Spatial and temporal variability of hydrological responses affecting surface water dissolved organic carbon (DOC) concentrations are important for determining upscaling patterns of DOC export within larger catchments. Annual and intra‐annual variations in DOC concentrations and fluxes were assessed over 2 years at 12 sites (3·40–1837 km2) within the River Dee basin in NE Scotland. Mean annual DOC fluxes, primarily correlated with catchment soil coverage, ranged from 3·41 to 9·48 g m?2 yr?1. Periods of seasonal (summer–autumn and winter–spring) DOC concentrations (production) were delineated and related to discharge. Although antecedent temperature mainly determined the timing of switchover between periods of high DOC in the summer‐autumn and low DOC in winter‐spring, inter‐annual variability of export within the same season was largely dependent on its associated water flux. DOC fluxes ranged from 1·39 to 4·80 g m?2 season?1 during summer–autumn and 1·43 to 4·15 g m?2 season?1 in winter–spring.Relationships between DOC areal fluxes and catchment scale indicated that mainstem fluxes reflect the averaging of highly heterogeneous inputs from contrasting headwater catchments, leading to convergent DOC fluxes at catchment sizes of ca 100 km2. However, during summer–autumn periods, in contrast to winter–spring, longitudinal mainstem DOC fluxes continue to decrease, most likely because of increasing biological processes. This highlights the importance of considering seasonal as well as annual changes in DOC fluxes with catchment scale. This study increases our understanding of the temporal variability of DOC upscaling patterns reflecting cumulative changes across different catchment scales and aids modelling of carbon budgets at different stages of riverine systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Waterborne carbon (C) export from terrestrial ecosystems is a potentially important flux for the net catchment C balance and links the biogeochemical C cycling of terrestrial ecosystems to their downstream aquatic ecosystems. We have monitored hydrology and stream chemistry over 3 years in ten nested catchments (0.6–15.1 km2) with variable peatland cover (0%–22%) and groundwater influence in subarctic Sweden. Total waterborne C export, including dissolved and particulate organic carbon (DOC and POC) and dissolved inorganic carbon (DIC), ranged between 2.8 and 7.3 g m–2 year–1, representing ~10%–30% of catchment net ecosystem exchange of CO2. Several characteristics of catchment waterborne C export were affected by interacting effects of peatland cover and groundwater influence, including magnitude and timing, partitioning into DOC, POC, and DIC and chemical composition of the exported DOC. Waterborne C export was greater during the wetter years, equivalent to an average change in export of ~2 g m–2 year–1 per 100 mm of precipitation. Wetter years led to a greater relative increase in DIC export than DOC export due to an inferred relative shift in dominance from shallow organic flow pathways to groundwater sources. Indices of DOC composition (SUVA254 and a250/a365) indicated that DOC aromaticity and average molecular weight increased with catchment peatland cover and decreased with increased groundwater influence. Our results provide examples on how waterborne C export and DOC composition might be affected by climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The extensive blanket peatlands of the UK uplands account for almost half of total national terrestrial carbon storage. However, much of the blanket peat is severely eroded so that the contemporary role of the peatland system in carbon sequestration is compromised by losses of organic carbon in dissolved (DOC) and particulate (POC) form in the fluvial system. This paper presents the first detailed assessment of dissolved and organic carbon losses from a severely eroded headwater peatland (River Ashop, South Pennines, UK). Total annual fluvial organic carbon losses range from 29–106 Mg C km,‐2 decreasing from the headwaters to the main catchment outlet. In contrast to less eroded systems fluvial organic carbon flux is dominated by POC. POC:DOC ratios decrease from values of 4 in the headwaters to close to unity at the catchment outlet. These results demonstrate the importance of eroding headwater sites as sources of POC to the fluvial system. Comparison with a range of catchment characteristics reveals that drainage density is the best predictor of POC:DOC but there is scatter in the relation in the headwaters. Steep declines in specific POC yield from headwater catchments are consistent with storage of POC within the fluvial system. Key to the significance of fluvial carbon flux in greenhouse gas budgets is understanding the fate of fluvial carbon. Further work on the fate of POC and the role of floodplains in fluvial carbon cycling is urgently required. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In 1995–1998, Han 11 km terrestrial surge of Kuannersuit Glacier, an outlet glacier of the largest ice cap on Disko Island, West Greenland, affected the catchment dramatically. In order to estimate solute fluxes and provenances, bulk meltwaters were sampled at the main subglacial outlet during the initial part of the quiescent phase. The hydrochemistry is significantly influenced by a subglacial basaltic weathering regime with absence of carbonate minerals. The results show that marine and aerosol derived solutes have minimal contribution to the total ion content, whereas sequestration of atmospheric CO2 associated with carbonation of Ca-rich feldspar and reactive volcanic glass is more dominant than previously reported from glacierized catchments. Application of a sampling strategy dividing water samples into four groups to determine the content of dissolved HCO3 and CO32− shows that the cationic equivalent weathering rate range is 683–860 Σmeq+ m−2 a−1 and solute flux ranges between 76 and 98 t km−2 a−1. The crustal denudation rate is estimated to 26 t km−2 a−1, and the transient CO2 drawdown amounts to 8500–13700 kg C km−2 a−1.  相似文献   

13.
M. Newson  A. Baker  S. Mounsey 《水文研究》2001,15(6):989-1002
The forested Coalburn catchment (1·5 km2) in northern England experiences episodic stream acidification. To plan for sustainable management of the plantation forest cycle, an understanding is required of the flow pathways and hydrochemical routing signatures of the organic and mineral soils that make up the source areas for runoff. A tentative mixing model, based on simple water chemistry exists for the major (terrestrial) sources and buffers of acidification; it is being expanded and consolidated by a detailed approach to the organic components of runoff, via sampling and analysis of the luminescence of surface waters at the catchment outlet and in two distinctive feeder streams. Luminescence measurements are presented that permit a simple apportionment of source areas. However, the technique also appears to have potential for identifying differential flow sourcing between the acrotelm and catotelm of intact peat deposits and for clarifying the influence of forest root systems in altering the organic chemistry of infiltrating waters. Applications may include the monitoring and prediction of coloured water events for the water supply industry. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The flux of fluvial carbon from the terrestrial biosphere to the world's oceans is known to be an important component of the global carbon cycle, but within this pathway, the flux and return of carbon to the river network via sewage effluent has not been quantified. In this study, monitoring data from 2000 to 2016 for the dissolved organic carbon (DOC) concentration, biochemical oxygen demand, and chemical oxygen demand of the final effluent of sewage treatment works from across England were examined to assess the amount of DOC contributing to national‐scale fluvial fluxes of carbon. The study shows that the median concentration of DOC in final effluent was 9.4 compared with 4.8 mg C/L for all surface waters for the United Kingdom over the study period and that the DOC in final effluent significantly declined over the study period from 11.0 to 6.4 mg C/L. Rivers receiving sewage effluent showed a significant, on average 19%, increase in DOC concentration downstream of sewage discharges. At the scale of the United Kingdom, the flux of DOC in final effluent was 31 ktonnes C/year with a per capita export of 0.55 kg C/year and compared with an average annual flux of DOC from the United Kingdom of 859 ktonnes C/year, that is, only 3.6% of national‐scale flux. The lability of this DOC was limited, with only 7.4% loss of final effluent DOC concentration over in‐stream residence times of up to 5 days. The direct decline in DOC concentration from sewage treatment works was not large enough on its own to explain the declines observed in DOC concentration in U.K. rivers at their tidal limit.  相似文献   

15.
F. Worrall  T. P. Burt  J. Adamson 《水文研究》2008,22(16):3181-3193
This study considers three long records of dissolved organic carbon (DOC) flux from two catchments with peat‐covered headwaters. The catchments vary in size from 11 to 818 km2 and the records are at least 12 years old, with one record going back to 1965. The study compares both annual and monthly DOC flux records with a range of hydroclimatic indicators in order to test which component of droughts may contribute to increasing DOC flux. The study found that: (1) there was no significant correlation between any of the proposed drought variables and DOC flux in any of the study catchments over periods of up to 34 years; (2) the most important variable for explaining the DOC flux was the runoff from the catchments overlying a seasonal cycle and an underlying upward trend was present in some records; (3) the residual time‐series, after removal of the best‐fit models, showed no evidence of increased production after times of severe drought. The lack of any evidence for any additional biogeochemical reactions associated with drought supports evidence that DOC loss from peat is limited by its solubility and that its production is fast on the time‐scale of runoff events. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
C. Soulsby 《Journal of Hydrology》1995,170(1-4):159-179
The hydrochemistry of stream water in an acidic afforested catchment in the Welsh uplands was monitored routinely between 1985 and 1990. Nineteen storm episodes were sampled intensively during this period. Although the general storm response of the stream can be characterised by increased concentrations of H+, Al and dissolved organic carbon (DOC), and a dilution of Ca and SiO2, the detailed hydrochemistry of individual acid episodes exhibited marked contrasts. The minimum pH reached during specific episodes ranged from 4.1 to 5.0, and peak dissolved Al concentrations varied from 9 to 44 μmol l−1. The reasons for such differences in the hydrochemical response can be identified for each individual episode by examining the complex interactions between (1) the quantity and quality of event precipitation, (2) antecedent patterns of weather and atmospheric deposition and (3) the hydrological processes which dominate the storm runoff response. The dynamic nature of catchment hydrology was found to exert a particularly strong influence on the hydrochemistry of specific acid episodes.  相似文献   

17.
Spatial and temporal measurements of shallow sub-surface soil physical properties were made within a 1 km2 upland catchment. The surface soil layer of the catchment was organic rich (>70% organic matter) with a corresponding total porosity of 81%. Monthly point observations of volumetric water content (θ) were combined with point estimates of total porosity () and the porosity <50 μm (residual), to define the ratio of water filled pore volume:pore volume in pores <50 μm (=θ/residual). Values of θ/residual were compared with discharge to test whether mass flow occurred when θ/residual>1. A correlation between water content and discharge was found, with discharge increasing rapidly when θ/residual approached unity. Similar relationships between water content and catchment discharge were identified for soil units adjacent to the stream when θ/residual approached unity. These data suggest that soil pores >50 μm are of crucial importance in determining catchment discharge. Spatial and temporal variations in soil properties related to moisture content of the soil were also observed. Under dry conditions, a clear division based on aspect was noted, the west-facing side of the catchment being wettest. In wetter months, total porosity and soil water content were significantly affected by soil type and the spatial pattern of soil water content was more variable than in the dryer months. The physical quantification of soil properties in the shallow sub-surface layer proved important in explaining different initial changes in discharge from the catchment in response to a rainfall event.  相似文献   

18.
Most lead brought to the Mediterranean Sea has an anthropogenic origin and is mainly transported through the atmosphere. Atmospheric Pb was continuously collected at Cap Ferrat in 1986 and 1987. From this study, the estimation of the anthropogenic Pb flux on the whole Western Mediterranean was, averaged on 1986 and 1987 data, 4080 t. Assuming that the atmospheric anthropogenic Pb input varied in this course of time similarly to the consumption of Pb added to gasolines in France, the mean annual flux could be calculated: 3.95 kg km−2 yr−1, that is an annual input of 3360 t yr−1. Reaching the sea, this metal seems to become rapidly bound to phytoplankton. Grazing by zooplankton leads to the production of faecal pellets which frequently contain rather high metal concentrations. The sinking rate of pellets of various zooplankton species is high; within a few days pellets may reach deep-sea sediments. After deposition, Pb is released from this organic-rich material during early diagenesis. In most cases, it, therefore, returns to the overlaying water body by ascending diffusion. But, in a deep-sea area of approximately 80 000 km2 where Mn oxide precipitation occurs in surficial sediments, Pb seems to remain stored by coprecipitation processes. By considering the lead stored in ‘excess’ in the surficial sediment of the deep-sea area, we estimate that a mean annual anthropogenic Pb amount ranging from 800 up to 1080 t was stored every year from 1950. On the same area, taking into account the Pb loss at the straits, the ‘direct’ atmospheric input to the sea bottom is, on average, 184 t yr−1. The remaining part, that is (800–1080)−184=(616–896) t yr−1, corresponds to an additional ‘indirect’ Pb flux in water due to Pb released from sediments of the surrounding areas where it does not remain stored.  相似文献   

19.
The blocking of drainage ditches in peat has been proposed as a possible mitigation strategy for the widely observed increases in dissolved organic carbon (DOC) concentrations from northern peatlands. This study tested the hypothesis that drain‐blocking could lead to lower DOC concentrations by measuring the DOC export from a series of small peat‐covered catchments over a period of 2 years. Six catchments were chosen: two were pristine that had never been drained; three where drains had been blocked (one in 1995, and two in 2003); and a control peat drain catchment where the drain was left unblocked throughout the study. In the case where drains were blocked as part of thus study, the drains were observed for 2 months before blocking and 2 years after blocking. The results show that: (i) high concentrations of DOC can come from water ponded in the drain; (ii) the DOC export (flux of DOC per area of catchment) from the six study catchments shows a high degree of positive correlation with both catchment size and water yield; (iii) distinctly lower DOC export with water yield was observed for the catchments containing higher‐order channels (>27 500 m2) as opposed to single drain catchments (>7500 m2); (iv) drain‐blocking resulted in a statistically significant decrease in DOC export (average was 39%) but the effect upon DOC concentration explained only 1% of the variance in the data. The results suggest that drain blocking works by decreasing the flow from the drain, not by changing the production of DOC in the peat. The change in export with catchment size implies a considerable removal of DOC from large catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Riparian vegetation can trap sediment and nutrients sourced from hillslopes and reduce stream bank erosion. This study presents results from a 10-year stream monitoring program (1991–2000), in a 6 km2 agricultural catchment near Albany, Western Australia. After 6 years, a 1.7 km stream reach was fenced, planted with eucalyptus species and managed independently from the adjacent paddocks. Streamflow, nutrient and sediment concentration data were collected at the downstream end of the fenced riparian area, so there are data for before and after improved riparian management. Suspended sediment (SS) concentrations fell dramatically following improved riparian management; the median event mean concentration (EMC) dropped from 147 to 9.9 mg l−1. Maximum SS concentrations dropped by an order of magnitude. As a result, sediment exports from the catchment decreased following improved riparian management, from over 100 to less than 10 kg ha−1 yr−1. Observations suggest that this was the result of reduced bank erosion and increased channel stability. Riparian management had limited impact on total phosphorus (TP) concentrations or loads, but contributed to a change in phosphorus (P) form. Before improved riparian management, around half of the P was transported attached to sediment, but after, the median filterable reactive P (FRP) to TP ratio increased to 0.75. In addition, the median FRP EMC increased by 60% and the raw median FRP concentration increased from 0.18 to 0.35 mg l−1. These results suggest that there was a change in the dominant P form, from TP to FRP. Changes in total nitrogen (TN) following improved riparian management were less clear. There were reductions in TN concentrations at high flows, but little change in the loads or EMC. This study demonstrates the benefits of riparian management in reducing stream bank erosion, but suggests that in catchments with sandy, low P sorption soils, there may be limitations on the effectiveness of riparian buffers for reducing P and N exports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号