首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Valencia Fan developed as the distal fill of a deep-sea valley, detached from the continental slope and the main sedimentary source. A survey of side-scan sonar, Sea Beam and reflection seismics shows that the sediment is largely fed through the Valencia Valley. The upper fan comprises large channels with low-relief levees, and the middle fan has sinuous distributary channels. Depositional bedforms predominate on the valley floor and levees, and erosional bedforms are common in the valley walls. A change to slope on the fan apex and the presence of volcanoes on the upper fan are the main factors influencing fan-growth pattern.  相似文献   

2.
The upper Indus Fan is characterized by an average 1∶500 gradient, chanels with 100 m high levees, several continuous subbottom reflectors on 3.5-kHz records, and generally fine-grained sediments. Multichannel seismics show the levee complexes typified by overlapping wedge-shaped reflection sets and channel axis by high-amplitude discontinuous reflections. The middle fan has 1∶500–1∶1000 gradients and channels with ≈20 m high levees. The lower fan has gradients less than 1∶1000, channels with 8–20 m high levees, few or no subbottom reflectors on 3.5-kHz records, and high sand content. Besides the dominant unchannelized turbidity currents, channelized and overbank flows also played a significant role in the sedimentation of the lower fan. Margin setting represents fan and/or source area  相似文献   

3.
The upper Indus Fan is characterized by an average 1∶500 gradient, chanels with 100 m high levees, several continuous subbottom reflectors on 3.5-kHz records, and generally fine-grained sediments. Multichannel seismics show the levee complexes typified by overlapping wedge-shaped reflection sets and channel axis by high-amplitude discontinuous reflections. The middle fan has 1∶500–1∶1000 gradients and channels with ≈20 m high levees. The lower fan has gradients less than 1∶1000, channels with 8–20 m high levees, few or no subbottom reflectors on 3.5-kHz records, and high sand content. Besides the dominant unchannelized turbidity currents, channelized and overbank flows also played a significant role in the sedimentation of the lower fan.  相似文献   

4.
The Magdalena Fan can be divided into: upper fan—1:60–1:110 gradients, channels with well-developed levees, generally several subbottom reflectors on 3.5-kHz records, and fine-grained sediments; middle fan—1:110–1:200 gradients, channels with very subdued levees, several to few subbottom reflectors on 3.5-kHz records, and chaotic and discontinuous reflections on multichannel seismic (MCS) records; lower fan—<1:250 gradients, small channels and relatively smooth seafloor, generally coarsegrained sediments, few or no subbottom reflectors on 3.5-kHz records, and flat continuous reflections on MCS records. In addition to the turbidity currents, slumping along the continental slope and elsewhere also influenced sedimentation in the fan.  相似文献   

5.
The Pab Formation consists of deltaic and turbiditic sediments which were deposited during the Late Maastrichtian on the Indo-Pakistani passive margin. The margin geometry has been restored in the Pab Range from a regional transect 120 km long. Two superposed turbiditic systems onlap the slope carbonates and completely pinch-out southward. The lowest turbiditic system (Lower Pab) is a sand-rich basin floor fan, which consists of sand-rich channel complexes distally passing to lobes northward. This basin floor fan is overlain by a mud-rich slope fan formed during the subsequent sea-level rise, which drowned the shelf. The upper turbiditic system (Upper Pab) is a sand-rich slope fan, formed during the progradation of a deltaic system in the shelf setting. It consists of prograding tabular lobes passing upward to conglomeratic channels, and thins out northwards. The Lower Pab turbiditic system consists of three channel complexes (LP1, 2, 3) organised in a backstepping succession. Each channel complex has a multi-storey internal architecture, resulting from the amalgamation of several individual turbiditic channels. Five major facies associations have been determined in the LP3 channel complex. FA-1 corresponds to polygenic and monogenic debris-flows, FA-2 to high-density gravelly or sandy turbidites, FA-3 to by-pass deposits, FA-4 to thin-bedded turbidites (spill-over lobes and levees) and FA-5 to hemipelagites. The downstream evolution of the LP3 channel complex can be studied from canyon to mid-fan settings. Where it is confined in the canyon, the channel complex is 50 m thick and 1 km large, and shows a high sand/shale ratio. The development of overflow deposits is limited and occurs only at the top of the channel complex. At the canyon mouth, the channel complex is still deeply incised but overflow deposits start to expand laterally as a result of the decreased confinement. By-pass facies here are well-developed, and are related to hydraulic jump processes. In the mid-fan setting, the channel complex widens and the sand/shale ratio decreases. Erosion at the channel base is less developed, whereas internal and external levees are well-developed. Spill-over lobes form the last stage of the channel complex infill. The internal geometry of the channel complexes is a result of a complex interaction between lateral confinement, by-pass and lateral migration processes.  相似文献   

6.
There are three major fan valleys on upper Monterey fan. Deep-tow geophysical profiles and 40 sediment cores provide the basis for evaluation of the sedimentation histories of these valleys. Monterey fan valley leads from Monterey canyon to a major suprafan and is bounded by levees that crest more than 400 m above the valley floor. The valley passes through a large z-bend or meander. Monterey East fan valley joins Monterey fan valley at the meander at about 150 m above the valley floor, and marks an earlier position of the lower Monterey fan valley. Ascension valley, a hanging contributary to the Monterey fan valley, appears to have once been the shoreward head of the lower part of the present Monterey fan valley. The relief of Monterey fan valley appears from deep-tow profiles to be erosional. The valley is floored with sand. Holocene turbidity currents do not overtop the levees 400 m above the valley floor, but do at times overflow and transport sand into Monterey East valley, producing a sandy floor. An 1100 m by 300 m dune field was observed on side scan sonar in Monterey East valley.Ascension fan valley was floored with sand during glacial intervals of lowered sea level, then was cut off from its sand source as sea level rose. A narrow (500 m), erosional, meandering channel was incised into the flat valley floor; the relief features otherwise appear depositional, with a hummocky topography perhaps produced in the manner of a braided riverbed. The sand is mantled by about 6 m of probable Holocene mud. Hummocky relief on the back side of the northwestern levees of both Ascension and Monterey valleys is characteristic of many turbidite valleys in the northeast Pacific. The hummocky topography is produced by dune-like features that migrate toward levee crests during growth.  相似文献   

7.
The 0.5- to 2-km thick Quaternary Laurentian Fan is built over Tertiary and Mesozoic sediments that rest on oceanic crust. Two 400-km long fan valleys, with asymmetric levees up to 700-m high, lead to an equally long, sandy, lobate basin plain (northern Sohm Abyssal Plain). The muddy distal Sohm Abyssal Plain is a further 400-km long. The sediment supplied to the fan is glacial in origin, and in part results from seismically triggered slumping on the upper continental slope. Sandy turbidity currents, such as the 1929 Grand Banks earthquake event, probably erode the fan-valley floors; but thick muddy turbidity currents build up the high levees. Margin setting represents fan and/or source area  相似文献   

8.
The 0.5- to 2-km thick Quaternary Laurentian Fan is built over Tertiary and Mesozoic sediments that rest on oceanic crust. Two 400-km long fan valleys, with asymmetric levees up to 700-m high, lead to an equally long, sandy, lobate basin plain (northern Sohm Abyssal Plain). The muddy distal Sohm Abyssal Plain is a further 400-km long. The sediment supplied to the fan is glacial in origin, and in part results from seismically triggered slumping on the upper continental slope. Sandy turbidity currents, such as the 1929 Grand Banks earthquake event, probably erode the fan-valley floors; but thick muddy turbidity currents build up the high levees.  相似文献   

9.
The Magdalena Fan can be divided into: upper fan—1:60–1:110 gradients, channels with well-developed levees, generally several subbottom reflectors on 3.5-kHz records, and fine-grained sediments; middle fan—1:110–1:200 gradients, channels with very subdued levees, several to few subbottom reflectors on 3.5-kHz records, and chaotic and discontinuous reflections on multichannel seismic (MCS) records; lower fan—<1:250 gradients, small channels and relatively smooth seafloor, generally coarsegrained sediments, few or no subbottom reflectors on 3.5-kHz records, and flat continuous reflections on MCS records. In addition to the turbidity currents, slumping along the continental slope and elsewhere also influenced sedimentation in the fan. Margin setting represents fan and/or source area  相似文献   

10.
The Yithi submarine canyons,composed of four canyons less than 60 km in length,are located on the narrowest part of the East China Sea(ECS) slope.They extend from the shelf break at 160 m down to water depth of 1 500 m with an average gradient(along the canyon axis) of 3°(<1 000 m) and 0.7°(>1000 m).The sinuosity of the canyons ranges form 1.02 to 1.14 and their pathways extend radially from the shelf break to the axis of the Okinawa Trough.Structural and evolution pattern of the Yithi canyons are mainly controlled by sediment mass-movements and turbidity current and similar with that of the canyons in Ebro continental slope.The whole canyon system consists of three parts:the canyon,the channel and the fan.Slumps and slides often develop in the upper part of canyon where the water depth is less than 1000 m,and the turbidities usually developed on the fan.The scale of turbidites becomes smaller and their inner structures become more regular towards the ends of the canyons.Canyon-fans are often associated with small angle progradational reflection.Most canyon-fans and levees were transversely cut by active normal faults with NEE-SWW trending that are coupled to the modern extension of the Okinawa Trough.According to the age of formation of canyon-fans and sediments incised by canyons,we can infer that the Yithi canyons were formed since the middle the Medio-Pleistocene.  相似文献   

11.
Morphological features on the Mississippi Fan in the eastern Gulf of Mexico were mapped using GLORIA II, a long-range side-scan sonar system. Prominent is a sinuous channel flanked by well-developed levees and occasional crevasse splays. The channel follows the axis and thickest part of the youngest fan lobe; seismic-reflection profiles offer evidence that its course has remained essentially constant throughout lobe development. Local modification and possible erosion of levees by currents indicates a present state of inactivity. Superficial sliding has affected part of the fan lobe, but does not appear to have been a factor in lobe construction.  相似文献   

12.
We examine the effect of a northward shift in the position of the southern hemisphere subpolar westerly winds (SWWs) on the vertical and horizontal distribution of temperature and salinity in the world ocean. A northward shift of the SWWs causes a latitudinal contraction of the subpolar gyres in the southern hemisphere (SH). In the Indian and Pacific, this leads to subsurface warming in the subtropical thermocline. As the southern margins of the gyres move into latitudes characterised by warmer surface air temperature (SAT), the layers at mid-depth below 400 m depth become ventilated by warmer water. We characterize the approximation of the ventilated thermocline in our coarse resolution model using a set of passive tracer experiments, and illustrate how the northward shift in the SWWs causes an equatorward shift in the latitude of origin of water ventilating layers deeper than 400 m in the Indian and Pacific, leaving the total surface ventilation of the upper 1200 m unchanged. In contrast, the latitudinal constraint on the Antarctic Circumpolar Current posed by the Drake Passage causes a cooling and freshening throughout the Atlantic thermocline; here, subsurface thermocline water originates from higher latitudes under the wind shift. On longer timescales Atlantic cooling and freshening is reinforced by a reduction in North Atlantic Deep Water (NADW) formation and surface salinification of the Indian and Pacific Oceans. In effect, the latitude of zero wind stress curl in the SWWs regulates the relative importance of the “cold water route” via the Drake Passage and the “warm water route” associated with thermocline water exchange via the Indian Ocean. Thus, a more northward location of the SWWs corresponds with a reduced salinity contrast between the Indian/ Pacific Oceans and the Atlantic. This results in reduced NADW formation. Also, a more northward location of the SWWs facilitates the injection of cool fresh Antarctic Intermediate Water into the South Atlantic subtropical gyre. Beyond these changes, on a millennial timescale, the deep ocean warms throughout the water column in response to the wind shift. Global salinity stratification also becomes less stable, as more saline water remains at the surface and accumulates in the Indian and Pacific thermocline. The freshening of the deep ocean reflects a reduced stirring of the global ocean due to reduced net circulation arising from a misalignment between the westerlies and the topographically constrained ACC. Our results lend support to the idea that a more equatorward location of the SWW maximum during glacial climates contributed to cooler and fresher conditions in the Atlantic, inhibiting NADW.  相似文献   

13.
High-resolution multichannel 2-D and 3-D seismic data, primarily from upper fan reaches of near-seafloor channel-levee systems on the Niger Delta slope and in the Arabian Sea, reveal a high level of detail and architectural complexity. Several architectural elements are common to each system examined in this study. They include inner levees, outer levees, erosional fairways, channel-axis deposits, rotational slumps blocks, and mass transport deposits. Although the scale of individual systems varies significantly, similarities in first-order architectural elements and their configurations suggest that common depositional processes are involved regardless of scale differences.Most of the channel-levee systems examined in this study are characterized by a basal erosional fairway that is bordered by outer levees of varying thickness. Together these elements define the base and margins of the channel-belt, where channel-axis deposits and inner levees are the dominant architectural elements. Vertical, sub-vertical, and lateral stacking patterns of sinuous and/or meandering channels create seismic facies that range from narrow to wide zones of high amplitude reflections (HARs) with chaotic to continuous and shingled to horizontal reflections. Some HARs appear as isolated or stacked asymmetric to symmetric u- and v-shaped reflections, referred to here as channel-forms. Channel-belts evolve within the confines of the scalloped erosional fairway walls (flanked by outer levee), and are similar in morphology to meander-belts in fluvial systems, but commonly have a greater component of vertical aggradation. Detailed study of one particular channel-levee system on the Niger Delta slope shows a period of incision followed by three distinct phases of channel development during its aggradational history. Each fill phase corresponds to a different channel stacking architecture, planform geometry, and nature of terrace development, with important implications for reservoir architecture. In some cases, multiple phases of inner levee growth are observed, each intimately linked to the channel migration and aggradation history. Channel sinuosity evolves dynamically, with some meander loops undergoing periods of accelerated meander growth at the same time that others show little lateral migration.  相似文献   

14.
Shallow 3D seismic data show contrasting depositional patterns in Pleistocene deepwater slopes of offshore East Kalimantan, Indonesia. The northern East Kalimantan slope is dominated by valleys and canyons, while the central slope is dominated by unconfined channel–levee complexes. The Mahakam delta is immediately landward of the central slope and provided large amounts of sediments to the central slope during Pleistocene lowstands of sea level. In the central area, the upper slope contains relatively straight and deep channels. Sinuous channel–levee complexes occur on the middle and lower slope, where channels migrated laterally, then aggraded and avulsed. Younger channel–levee complexes avoided bathymetric highs created by previous channel–levee complexes. Levees decrease in thickness down slope. Relief between channels and levees also decreases down slope.North of the Mahakam delta, siliciclastic sediment supply was limited during the Pleistocene, and the slope is dominated by valleys and canyons. Late Pleistocene rivers and deltas were generally not present on the northern outer shelf. Only one lowstand delta was present on the northern shelf margin during the upper Pleistocene, and sediments from that lowstand delta filled a pre-existing slope valley complex and formed a basin-floor fan. Except for that basin-floor fan, the northern basin floor shows no evidence of sand-rich channels or fans, but contains broad areas with chaotic reflectors interpreted as mass transport complexes. This suggests that slope valleys and canyons formed by slope failures, not by erosion associated with turbidite sands from rivers or deltas. In summary, amount of sediment coming onto the slope determines slope morphology. Large, relatively steady input of sediment from the Pleistocene paleo-Mahakam delta apparently prevented large valleys and canyons from developing on the central slope. In contrast, deep valleys and canyons developed on the northern slope that was relatively “starved” for siliciclastic sediment.  相似文献   

15.
Sagami Bay is a deep-water foreland basin with an average sedimentary rate of approximately 0.1 g/cm2/year. It is an appropriate area to study for better understanding of sedimentary processes in a setting with a high sedimentation rate. Seven multiple core samples, 30-50 cm thick, were obtained from Sagami Bay. Four of the core samples were taken from the Tokyo submarine fan system (Tokyo canyon floor, Tokyo fan valley and its levee, the distal fan margin). Two samples were obtained from the Sakawa fan delta and the adjacent topographic high. The remaining one was from an escarpment of the Sagami submarine fault. Variations in chemical composition can be recognized at every coring site. They show two different sediment sources: the sediments of the Tokyo submarine fan system and those from Sakawa fan delta. Further, there are differences in chemical composition between canyon floor and levees even within the Tokyo submarine fan system. The results suggest that the sedimentary process is strongly controlled not by vertical particle settling but by a hyperpycnal flow process. The proxies obtained from the core samples do not reflect conditions in the water column immediately overlying the sea floor. Rather, they are controlled by conditions on the adjacent continental shelf or/and shallow basins, which are the areas of primary accumulation.  相似文献   

16.
Barotropic tide in the northeast South China Sea   总被引:2,自引:0,他引:2  
A moored array deployed across the shelf break in the northeast South China Sea during April-May 2001 collected sufficient current and pressure data to allow estimation of the barotropic tidal currents and energy fluxes at five sites ranging in depth from 350 to 71 m. The tidal currents in this area were mixed, with the diurnal O1 and K1 currents dominant over the upper slope and the semidiurnal M2 current dominant over the shelf. The semidiurnal S2 current also increased onshelf (northward), but was always weaker than O1 and K1. The tidal currents were elliptical at all sites, with clockwise turning with time. The O1 and K1 transports decreased monotonically northward by a factor of 2 onto the shelf, with energy fluxes directed roughly westward over the slope and eastward over the shelf. The M2 and S2 current ellipses turned clockwise and increased in amplitude northward onto the shelf. The M2 and S2 transport ellipses also exhibited clockwise veering but little change in amplitude, suggesting roughly nondivergent flow in the direction of major axis orientation. The M2 energy flux was generally aligned with the transport major axis with little phase lag between high water and maximum transport. These barotropic energy fluxes are compared with the locally generated diurnal internal tide and high-frequency internal solitary-type waves generated by the M2 flow through the Luzon Strait.  相似文献   

17.
The interpretation of sedimentological and geochronological results lead us to the conclusion that the sedimentary levees flanking the deep-sea channels of the Rhône deep-sea fan are made up of various kinds of turbidites originating from different coastal areas and were deposited during the Quaternary glacial epochs.  相似文献   

18.
We use a 9-km pan-Arctic ice–ocean model to better understand the circulation and exchanges in the Bering Sea, particularly near the shelf break. This region has, historically, been undersampled for physical, chemical, and biological properties. Very little is known about how water from the deep basin reaches the large, shallow Bering Sea shelf. To address this, we examine here the relationship between the Bering Slope Current and exchange across the shelf break and resulting mass and property fluxes onto the shelf. This understanding is critical to gain insight into the effects that the Bering Sea has on the Arctic Ocean, especially in regard to recent indications of a warming climate in this region. The Bering Sea shelf break region is characterized by the northwestward-flowing Bering Slope Current. Previously, it was thought that once this current neared the Siberian coast, a portion of it made a sharp turn northward and encircled the Gulf of Anadyr in an anticyclonic fashion. Our model results indicate a significantly different circulation scheme whereby water from the deep basin is periodically moved northward onto the shelf by mesoscale processes along the shelf break. Canyons along the shelf break appear to be more prone to eddy activity and, therefore, are associated with higher rates of on-shelf transport. The horizontal resolution configured in this model now allows for the representation of eddies with diameters greater than 36 km; however, we are unable to resolve the smaller eddies.  相似文献   

19.
Hans Nelson 《Marine Geology》1976,22(2):129-155
The asymmetrical Astoria Fan (110 × 180 km) developed off the Columbia River and Astoria submarine canyon during the Pleistocene. Morphology, stratigraphy, and lithology have been outlined for a Pleistocene turbidite, and a Holocene hemipelagic sedimentary regime to generate geologically significant criteria for comparison with ancient equivalent deposits. Both gray silty clay of the Late Pleistocene and olive-gray clay of the Early Holocene are interrupted by turbidites. The few deeply incised fan valleys of the more steeply sloping upper fan contain thick, muddy and very poorly sorted sand and gravel beds that usually have poorly developed internal sedimentary structures. The numerous shallower fan valleys and distributaries of the flatter middle and lower fan contain thick, clean, and moderately sorted medium to fine sands that are vertically graded in texture, composition and well-developed internal sedimentary structures. Tuffaceous turbidites (containing Mazama ash, 6600 B.P.) can be traced as thick deposits (ca. 30–40 cm) throughout the Astoria Channel system and as thin correlative interbeds (ca. 1–2 cm) in interchannel areas. Similarly, sand/shale ratios are high throughout the fan valleys and the middle and lower fan areas of distributaries, but are low in the upper-fan interchannel areas.These depositional trends indicate that high-density turbidity currents carry coarse traction loads that remain confined in upper but not lower fan valleys. Fine debris selectively sorts out from channelized flows into overbank suspension flows that spread over the fan and deposit clayey silt. A high content of mica, plant fragments, and glass shards (if present) characterizes deposits of the overbank flows, a major process in the building of upper fan levees and interchannel areas.In the Late Pleistocene, turbidity currents funneled most coarse-grained debris through upper channels to depositional sites in middle and lower fan distributaries that periodically shifted, anastomosed and braided to spread sand layers throughout the area. At this time, depositional rates were many times greater (>50 cm/1000 years) than in the Holocene (8 cm/1000 years).During the Holocene rise of sea level, the shoreline shifted, the Columbia River sediment was trapped, and turbidity-current activity slackened from one major event per 6 years in the Late Pleistocene, to one per 1000 years in the Early Holocene, to none since the Mt. Mazama eruption (ca. 6600 B.P.). Turbidites became muddier and deposited as thick beds within main channels, in part explaining Holocene deposition rates three times greater there (25 cm/1000 years) than in interchannel regions. Turbid-layer debris, funneled through channel systems and trapped from flows off the continental terrace, also contributed to rapid sedimentation in valleys; however, less than 2% of the suspended sediment load of the Columbia River has been trapped in fan valleys during the Holocene.By the Late Holocene, continuous particle-by-particle deposition of hemipelagic clay with a biogenous coarse fraction was the predominant process on the fan. These hemipelagites contain progressively more clay size and less terrigenous debris offshore, and are finer grained, richer in planktonic tests and dominated by radiolarians compared to the foraminiferal-rich Pleistocene clays. The hemipelagic sedimentation of interglacial times, however, is insignificant compared to turbidite deposition of glacial times.  相似文献   

20.
The origin of acoustically transparent fan deposits overlying glacial till and ice-proximal sediments on the southern margin of the Norwegian Channel has been studied using high-resolution seismic-reflection profiles and multibeam bathymetry. The first deposits overlying glacigenic sediments are a series of stacked, acoustically transparent submarine fans. The lack of glaciomarine sediments below and between individual fans indicates that deposition was rapid and immediately followed the break up of the Late Weichselian ice cover. The fans are overlain by stratified glaciomarine sediments and Holocene mud. Because of the uniformity of this drape, the upper surface of the fan deposits is mimicked at the present seafloor, and the bathymetric images clearly show the spatial relationship of the fans to bedrock ridges and the presence of braided channel-levee systems on the surface of the youngest fans. The acoustically transparent character of the fan deposits indicates that they comprise silt and clay, and their lobate form and lack of internal stratification indicates that they were deposited by debris flows. The channel-levee morphology indicates deposition from more watery hyperconcentrated fluid flows. The fan sediments were either derived from 1) erosion of Mid Weichselian lake deposits in southern Skagerrak or 2) from Late glacial ice-margin lake deposits, ponded against the Norwegian Channel ice stream, which collapsed catastrophically when the lateral support was removed as the ice disintegrated. Fans composed almost exclusively of fine-grained sediment need not, therefore, rule out an origin in a deglacial setting relatively close to the former margins of glaciers and ice sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号