首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extensive air showers detected by the GREX array have been sampled by means of highly segmented 8 m2 bakelite RPC in the GREX/COVER_PLASTEX experiment. Delay distributions of particles with respect to the first arriving particle in the EAS front at PeV energies have been analysed for individual events in the core distance range of 0–100 m. It is shown that both mean arrival time and EAS front thickness in individual showers fluctuate strongly and cannot be a good measure of the distance from the EAS axis in a 0–100 m core distance interval.

Individual distributions have been compared with integrated inclusive distributions measured in the same experiment. Results indicate that the width of the individual distribution is systematically less than that of the inclusive distribution. It means that the bulk of particles in individual showers arrive as a relatively compact group delayed by different time intervals from the first arriving particle. Such fluctuations of the arrival time for most of the shower particles may be the consequence of large fluctuations in the shower longitudinal development.

Comparison with CORSIKA Monte Carlo simulations confirmed the difference between the mean width of inclusive and individual arrival time distribution. It revealed also the presence in the experiment of the excessive train of delayed particles near the shower core. This train is obviously due to the non-relativistic low energy hadrons most abundant in the shower core region.  相似文献   


2.
Simulation results for the time structure of the extensive air shower disc are presented and compared with data from the GREX/COVER_PLASTEX experiment. The distribution of the arrival times at various distances from the shower core and the contributions from the secondary particles to the shape of the distribution are described. The main parameters of the distribution, the mean time of arrival τ and the standard deviation σ, reflect the shower disc profile and thickness. The dependence of the shower profile and thickness on the energy and mass of the primary particle initiating the shower as well as on its inclination angle is discussed. The influence of the experimental conditions on the disc profile and thickness measured by the GREX/COVER_PLASTEX experiment is analysed and a parametrization of the average profile and thickness is given.  相似文献   

3.
Various features and correlations of the arrival time and angle-of- incidence distributions of muons of extensive air showers (EAS) are studied by analyses based on Monte-Carlo simulations of the EAS development by using the air shower simulation code CORSIKA. Trends and dependencies of the temporal dispersion of the EAS muon component on shower size and distance from the shower core are displayed by the distribution of the arrival time and angle of incidence of the first muon, of the mean and median of the single shower distribution. Special attention is called to multi-correlations in observations at different radial distances from the shower core. These ‘radial’ correlations provide additional information for the discrimination of different EAS primaries, while the correlation of muon arrival time and angle-of-incidence is shown to improve the mass separation only insignificantly. This feature does not basically change, when arrival times and angles of incidence are displayed by transformed quantities like ‘muon production heights’.  相似文献   

4.
《Astroparticle Physics》2002,17(4):1083-475
Using data from the HEGRA air shower array, taken in the period from April 1998 to March 2000, upper limits on the ratio Iγ/ICR of the diffuse photon flux Iγ to the hadronic cosmic ray flux ICR are determined for the energy region 20–100 TeV. The analysis uses a gamma–hadron discrimination which is based on differences in the development of photon- and hadron-induced air showers after the shower maximum. A method which is sensitive only to the non-isotropic component of the diffuse photon flux yields an upper limit of Iγ/ICR (at 54 TeV) <2.0×10−3 (at the 90% confidence level) for a sky region near the inner galaxy (20°< galactic longitude <60° and |galactic latitude |<5°). A method which is sensitive to both the isotropic and the non-isotropic component yields global upper limits of Iγ/ICR (at 31 TeV) <1.2×10−2 and Iγ/ICR (at 53 TeV) <1.4×10−2 (at the 90% confidence level).  相似文献   

5.
We discuss the capability of ‘100 GeV’ class imaging atmospheric Cherenkov telescope (IACT) arrays as future powerful instruments of ground-based gamma-ray astronomy. It is assumed that the array is gathered from individually triggered quadrangular 4-IACT ‘cells’ with a linear size of about 100 m. The multi-cell concept allows coverage of large detection areas economically, and at the same time the effective exploitation of the stereoscopic approach of determination of the shower parameters using information obtained by several IACTs simultaneously. Determination of arrival directions of γ-ray primaries on an event-by-event basis with accuracy δθ ≤ 0.1° combined with high suppression efficiency (at both the hardware and software levels) of the background hadronic showers by a factor of ≈ 103, and large, up to 1 km2 collection areas, can provide minimum detectable energy fluxes of ≥ 100 GeV γ-rays from point sources down to 10−13 erg/cm2 s which is about 3 orders of magnitude lower than the current sensitivities achieved by the satellite-borne detectors at MeV and GeV energies. High sensitivities of multi-IACT arrays would partially compensate the limited efficiency of the technique for all-sky surveys, as well as allow study of moderately extended (≤ 1°) γ-ray sources. IACT arrays with minimum detectable fluence of ≥ 100 GeV γ-rays Sγ < 10−8 erg/cm2 are well suited for effective exploration of highly sporadic nonthermal phenomena from different classes of astrophysical objects on time-scales from ≤ 1 s to several minutes.  相似文献   

6.
The evolution of the cosmic ray primary composition in the energy range 106–107 GeV (i.e. the “knee” region) is studied by means of the e.m. and muon data of the Extensive Air Shower EAS-TOP array (Campo Imperatore, National Gran Sasso Laboratories). The measurement is performed through: (a) the correlated muon number (Nμ) and shower size (Ne) spectra, and (b) the evolution of the average muon numbers and their distributions as a function of the shower size. From analysis (a) the dominance of helium primaries at the knee, and therefore the possibility that the knee itself is due to a break in their energy spectrum (at EkHe=(3.5±0.3)×106 GeV) are deduced. Concerning analysis (b), the measurement accuracies allow the classification in terms of three mass groups: light (p,He), intermediate (CNO), and heavy (Fe). At primary energies E0≈106 GeV the results are consistent with the extrapolations of the data from direct experiments. In the knee region the obtained evolution of the energy spectra leads to: (i) an average steep spectrum of the light mass group (γp,He>3.1), (ii) a spectrum of the intermediate mass group harder than the one of the light component (γCNO2.75, possibly bending at EkCNO≈(6–7)×106 GeV), (iii) a constant slope for the spectrum of the heavy primaries (γFe2.3–2.7) consistent with the direct measurements. In the investigated energy range, the average primary mass increases from lnA=1.6–1.9 at E01.5×106 GeV to lnA=2.8–3.1 at E01.5×107 GeV. The result supports the standard acceleration and propagation models of galactic cosmic rays that predict rigidity dependent cut-offs for the primary spectra of the different nuclei. The uncertainties connected to the hadronic interaction model (QGSJET in CORSIKA) used for the interpretation are discussed.  相似文献   

7.
Ground-based arrays of imaging atmospheric Cherenkov telescopes have emerged as the most sensitive γ-ray detectors in the energy range of about 100 GeV and above. The strengths of these arrays are a very large effective collection area on the order of 105 m2, combined with excellent single photon angular and energy resolutions. The sensitivity of such detectors is limited by statistical fluctuations in the number of Cosmic-ray initiated air showers that resemble γ-ray air showers in many ways. In this paper, we study the performance of simple event reconstruction methods when applied to simulated data of the Very Energetic Radiation Imaging Telescope Array System (VERITAS) experiment. We review methods for reconstructing the arrival direction and the energy of the primary photons, and examine means to improve on their performance. For a software threshold energy of 300 GeV (100 GeV), the methods achieve point source angular and energy resolutions of σ63% = 0.1° (0.2°) and σ68% = 15% (22%), respectively. The main emphasis of the paper is the discussion of γ–hadron separation methods for the VERITAS experiment. We find that the information from several methods can be combined based on a likelihood ratio approach and the resulting algorithm achieves a γ–hadron suppression with a quality factor that is substantially higher than that achieved with the standard methods used so far.  相似文献   

8.
The existence of sidereal semidiurnal variation of cosmic-ray intensity in a rigidity region 102-103 GV has been reported by many researchers, but there is no consensus of opinion on its origin. In this paper, using the observed semidiurnal variations in a rigidity range (300–600 GV) with 10 directional muon telescopes at Sakashita underground station (geog. lat. = 36°, long. = 138°E, DEPTH = 80 m.w.e.), the authors determine the magnitudes (η1, η2) and directions (a1, a2) of the first- and second-order anisotropies in the following galactic cosmic-ray intensity distribution (j)
jdp = j0{1 + η1P1(cos χ1) + η2P2(cos χ2)}dp
, where Pnis the nth order spherical function and χn is the pitch angle of cosmic rays with respect to an. For the determination, the influence of cosmic-ray's heliomagnetospheric modulation, geomagnetic deflection and nuclear interaction with the terrestrial material and also of the geometric configuration of the telescopes are taken into account. Usually, the semidiurnal variation is produced by the second-order anisotropy. The present observation, however, requires also the first-order anisotropy which usually produces only the diurnal variation, but can produce also the semidiurnal variation as a result of the heliospheric modulation. The first- and second-order anisotropies are characterized with η1) > 0 and η2 < 0 have almost the same direction (a1 a2) specified by the right ascension ( 0.75 h) and declination (δ 50°S) and, therefore, they can be expressed, as a whole, by an axis-symmetric anisotropy of loss-cone type (i.e. deficit intensities in a cone). It is noteworthy that this anisotropy approximately coincides with that inferred from the air shower observation at Mt Norikura in the rigidity region 104 GV.  相似文献   

9.
Measuring radio emission from air showers provides excellent opportunities to directly measure all air shower properties, including the shower development. To exploit this in large-scale experiments, a simple and analytic parameterization of the distribution of the radio signal at ground level is needed. Data taken with the Low-Frequency Array (LOFAR) show a complex two-dimensional pattern of pulse powers, which is sensitive to the shower geometry. Earlier parameterizations of the lateral signal distribution have proven insufficient to describe these data. In this article, we present a parameterization derived from air-shower simulations. We are able to fit the two-dimensional distribution with a double Gaussian, requiring five fit parameters. All parameters show strong correlations with air shower properties, such as the energy of the shower, the arrival direction, and the shower maximum. We successfully apply the parameterization to data taken with LOFAR and discuss implications for air shower experiments.  相似文献   

10.
Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.  相似文献   

11.
The arrival directions of cosmic rays with energies above 1019 eV using data from EAS world arrays are considered. The problem of searching for clusters in arrival directions of the extensive air shower arrays at Yakutsk, Haverah Park, Volcano Ranch, Sydney and Akeno are examined. Four cluster directions are identified which are believed to be significant: these clusters do not lie in the direction of the Galactic Plane.  相似文献   

12.
Event-by-event measured arrival time distributions of extensive air shower (EAS) muons are affected and distorted by various interrelated effects which originate from the time resolution of the timing detectors, from fluctuations of the reference time and the number (multiplicity) of detected muons spanning the arrival time distribution of the individual EAS events. The origin of these effects is discussed, and different correction procedures, which involve detailed simulations, are proposed and illustrated. The discussed distortions are relevant for relatively small observation distances (Rμ<200 m) from the EAS core. Their significance decreases with increasing observation distance and increasing primary energies. Local arrival time distributions which refer to the observed arrival time of the first local muon prove to be less sensitive to the mass of the primary. This feature points to the necessity of arrival time measurements with additional information on the curvature of the EAS disk.  相似文献   

13.
The GREX/COVER_PLASTEX experiment has measured the temporal and spatial fine structure of the EAS disc at sea level in a new and original way, using resistive plate counter detectors for direct measurements of the arrival time of each particle crossing the detector. Data were taken at EAS core distances up to 100 m for shower size N > 105 (PeV energy range). Arrival times of shower particles were measured with nanosecond accuracy. More than 450000 air shower events have been included in this analysis.  相似文献   

14.
The energy spectrum of cosmic rays with primary energies between 1014 eV and 1016 eV has been studied with the CASA-MIA air shower array. The measured differential energy spectrum is a power law (dj/dEEy) with spectral indices γ of 2.66±0.02 below approximately 1015 eV and 3.00±0.05 above. A new method is used for measuring primary energy derived from ground-based data in a compositionally insensitive way. In contrast with some previous reports, the “knee” of the energy spectrum does not appear sharp, but rather a smooth transition over energies from 1015 eV to 3.0 × 1015 eV.  相似文献   

15.
The discrimination between air showers initiated by γ rays and by hadrons is one of the fundamental problems in experimental cosmic-ray physics. The physics of this ‘γ/hadron separation’ is discussed in this paper. We restrict ourselves to the energy range from about 20 to 500 TeV, and take only the information contained in the lateral Čerenkov light distribution and the number of electrons at the detector level into consideration. An understanding of the differences between air showers generated by γ rays and those due to hadrons leads us to formulate suitable observables for the separation process. Angle integrating Čerenkov arrays (AICA) offer a promising new approach to ground-based γ-ray astronomy in the energy region from about 20 to 500 TeV. In order to establish this technique, an efficient suppression of the overwhelming hadronic background radiation is required. As an example for our general discussion, we present one method for γ/hadron separation in AICAs called ‘LES’. It is based on the simultaneous determination of the shower size and some characteristic parameters of the lateral distribution of the Čerenkov light. The potential inherent within this technique is demonstrated in quantitative detail for the existing ‘AIROBICC’ AICA. We also propose an objective measure of the intrinsic sensitivity of a detection scheme in ground-based γ-ray astronomy, the ‘reduced quality factor’. It is shown that AICAs may reach a sensitivity to γ-ray point sources in the high VHE range similar to that of the Čerenkov-telescope imaging technique in the low VHE region.  相似文献   

16.
The ultra-high energy cosmic rays recently detected by several air shower experiments could have an extragalactic origin. In this case, the nearest active galaxy Centaurus A might be the source of the most energetic particles ever detected on Earth. We have used recent radio observations in order to estimate the arrival energy of the protons accelerated by strong shock fronts in the outer parts of this southern radio source. We expect detections coresponding to particles with energies up to 2.2 × 1021 eV and an arrival direction of (l ≈ 310°, b ≈ 20°) in galactic coordinates. The future Southern Hemisphere Pierre Auger Observatory might provide a decisive test for extragalactic models of the origin of the ultra-high energy cosmic rays.  相似文献   

17.
18.
An interpretation of Akeno giant air shower array (AGASA) data by comparing the experimental results with the simulated ones by cosmic ray simulation for KASCADE (CORSIKA) has been made. General features of the electromagnetic component and low energy muons observed by AGASA can be well reproduced by CORSIKA. The form of the lateral distribution of charged particles agrees well with the experimental one between a few hundred metres and 2000 m from the core, irrespective of the hadronic interaction model studied and the primary composition (proton or iron). It does not depend on the primary energy between 1017.5 and 1020 eV as the experiment shows. If we evaluate the particle density measured by scintillators of 5 cm thickness at 600 m from the core S0(600), suffix 0 denotes the vertically incident shower) by taking into account the similar conditions as in the experiment, the conversion relation from S0(600) to the primary energy is expressed as E (eV)=2.15×1017S0(600)1.015 within 10% uncertainty among the models and composition used, which suggests the present AGASA conversion factor is the lower limit. Although the form of the muon lateral distribution fits well to the experiment within 1000 m from the core, the absolute values change with hadronic interaction model and primary composition. The slope of the ρμ(600) (muon density above 1 GeV at 600 m from the core) vs. S0(600) relation in experiment is flatter than that in simulation of any hadronic model and primary composition. As the experimental slope is constant from 1015 to 1019 eV, we need to study this relation in a wide primary energy range to infer the rate of change of chemical composition with energy.  相似文献   

19.
We have used Monte Carlo simulations to investigate the capabilities of a giant air shower observatory designed to detect showers initiated by cosmic rays with energies exceeding 1019 eV. The observatory is to consist of an array of detectors that will characterise the air shower at ground level, and optical detectors to measure the fluorescence light emitted by the shower in the atmosphere. Using these detectors together in a ‘hybrid’ configuration, we find that precise geometrical reconstruction of the shower axis is possible, leading to excellent resolution in energy. The technique is also shown to provide very good reconstruction below 1019 eV, at energies where the ground array is not fully efficient.  相似文献   

20.
We describe a method of observation for PeV–EeV τ neutrinos using Cherenkov light from the air showers of decayed τs produced by τ neutrino interactions in the Earth. Aiming for the realization of neutrino astronomy utilizing the Earth-skimming τ neutrino detection technique, highly precise determination of arrival direction is key due to the following issues: (1) clear identification of neutrinos by identifying those vertices originating within the Earth’s surface and (2) identification of very high energy neutrino sources. The Ashra detector uses newly developed light collectors which realize both a 42°-diameter field-of-view and arcminute resolution. Therefore, it has superior angular resolution for imaging Cherenkov air showers. In this paper, we estimate the sensitivity of and cosmic-ray background resulting from application of the Ashra-1 Cherenkov τ shower observation method. Both data from a commissioning run and a long-term observation (with fully equipped trigger system and one light collector) are presented. Our estimates are based on a detailed Monte Carlo simulation which describes all relevant shower processes from neutrino interaction to Cherenkov photon detection produced by τ air showers. In addition, the potential to determine the arrival direction of Cherenkov showers is evaluated by using the maximum likelihood method. We conclude that the Ashra-1 detector is a unique probe into detection of very high energy neutrinos and their accelerators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号