首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
Geomagnetism and Aeronomy - The process of resonant transformation of fast magnetosonic (FMS) waves originating from the solar wind in Alfvén and slow magnetosonic (SMS) oscillations in the...  相似文献   

2.
太阳风动量涨落激发磁层亚暴的机制   总被引:2,自引:0,他引:2       下载免费PDF全文
本文将太阳风涨落传输能量产生磁层亚暴的机制推广到无碰撞等离子体过程。太阳风的涨落在磁层顶激发压缩阿尔文波,并在磁尾的无碰撞等离子体中传播。尾瓣中满足条件β?1,而等离子体片中β≥1,其中β为等离子体压力与磁压之比。这样,快磁声波在尾瓣中几乎不衰减,而在等离子体片中很快衰减,将波动能量耗散在等离子体片中使等离子体加热或者粒子加速。这种机制还表明,磁尾等离子体片中的高能粒子可以由太阳风涨落动能耗散而被加速,不一定是直接源于太阳。  相似文献   

3.
This paper shows that there exists a mechanism of longitudinal plasma acceleration which is inherent in the process of the process of resonant conversion of a fast magnetosonic wave freely propagating along the magnetic field into an Alfvén wave. This mechanism is caused by the Ampere force arising due to the interaction between the poloidal component of the current of the compressible disturbance and the generated toroidal disturbance. It is shown that plasma acceleration takes place at the stage of increase in the Alfvén wave amplitude and that the accelerated flow retains its velocity when the process of resonant conversion is over. We describe spatiotemporal structures of plasma flows arising with the transformation of fast magnetosonic waves into Alfvén waves. An interpretation of the presence of fast ion flows in the magnetotail as a consequence of the action of the plasma acceleration mechanism considered in this work is proposed.  相似文献   

4.
Ultra low frequency (ULF) waves incident on the Earth are produced by processes in the magnetosphere and solar wind. These processes produce a wide variety of ULF hydromagnetic wave types that are classified on the ground as either Pi or Pc pulsations (irregular or continuous). Waves of different frequencies and polarizations originate in different regions of the magnetosphere. The location of the projections of these regions onto the Earth depends on the solar wind dynamic pressure and magnetic field. The occurrence of various waves also depends on conditions in the solar wind and in the magnetosphere. Changes in orientation of the interplanetary magnetic field or an increase in solar wind velocity can have dramatic effects on the type of waves seen at a particular location on the Earth. Similarly, the occurrence of a magnetospheric substorm or magnetic storm will affect which waves are seen. The magnetosphere is a resonant cavity and waveguide for waves that either originate within or propagate through the system. These cavities respond to broadband sources by resonating at discrete frequencies. These cavity modes couple to field line resonances that drive currents in the ionosphere. These currents reradiate the energy as electromagnetic waves that propagate to the ground. Because these ionospheric currents are localized in latitude there are very rapid variations in wave phase at the Earth’s surface. Thus it is almost never correct to assume that plane ULF waves are incident on the Earth from outer space. The properties of ULF waves seen at the ground contain information about the processes that generate them and the regions through which they have propagated. The properties also depend on the conductivity of the Earth underneath the observer. Information about the state of the solar wind and the magnetosphere distributed by the NOAA Space Disturbance Forecast Center can be used to help predict when certain types and frequencies of waves will be observed. The study of ULF waves is a very active field of space research and much has yet to be learned about the processes that generate these waves.  相似文献   

5.
Based on long-term observations of the resonance structure in the electromagnetic background noise spectrum (resonance spectrum structure, RSS), recorded in the frequency range 0.1–10 Hz over one complete solar cycle (11 years, from 1985 to 1995), it was found that the resonance conditions for Alfven waves in the ionosphere (ionospheric Alfven resonator) are determined at midlatitudes by the level of solar activity. RSS are regularly observed in years of minimum solar activity, and are practically absent in years of maximum solar activity. It is shown that consideration of the ionospheric Alfven resonator explains the dependence of the RSS on solar activity.  相似文献   

6.
根据完全动力论理论,证明了可由简化漂移动力论方程求得动力Alfven波色散方程,即横向用磁流体力学方程,纵向用Vlasov方程,在初级近似下由此推导出适合于日冕和太阳风的色散关系和Landau阻尼,得到在性质上与MHD Alfven波完全不同的动力Alfven波,太阳风中Alfven湍流很容易由动力Alfven波演化而来。提出由动力Alfren波构筑太阳风高速流模型将更符合观测结果。  相似文献   

7.
Disturbances in the solar wind density, geomagnetic field, and magnetospheric plasma density and fluxes are analyzed. The disturbances have the same sign and are close to each other in time. They accompany the process of amplitude modulation of Pc1 geomagnetic pulsations during the recovery phase of the moderate magnetic storm of April 10–11, 1997. The magnetospheric disturbances were recorded by ground-based observatories and on spacecraft in all local time sectors with insignificant time delays. It is concluded that in this case variations in the geomagnetic field and magnetospheric plasma density are primary, whereas the amplitude modulation of Pc1, 2 is a secondary manifestation of fast magnetosonic (FMS) waves that are generated during the interaction between the magnetosphere and solar wind density irregularities.  相似文献   

8.
The event of March 12–19, 2009, when a moderately high-speed solar wind stream flew around the Earth’s magnetosphere and carried millihertz ultralow-frequency (ULF) waves, has been analyzed. The stream caused a weak magnetic storm (D st min = −28 nT). Since March 13, fluxes of energetic (up to relativistic) electrons started increasing in the magnetosphere. Comparison of the spectra of ULF oscillations observed in the solar wind and magnetosphere and on the Earth’s surface indicated that a stable common spectral peak was present at frequencies of 3–4 mHz. This fact is interpreted as evidence that waves penetrated directly from the solar wind into the magnetosphere. Possible scenarios describing the participation of oscillations in the acceleration of medium-energy (E > 0.6 MeV) and high-energy (E > 2.0 MeV) electrons in the radiation belt are discussed. Based on comparing the event with the moderate magnetic storm of January 21–22, 2005, we concluded that favorable conditions for analyzing the interaction between the solar wind and the magnetosphere are formed during a deep minimum of solar activity.  相似文献   

9.
提出一个剪切Alfven波加速极光粒子的新模式。频率远小于离子回旋频率的Alfven波由磁层向电离层传播会演化成孤波,当场向电流超过离子声不稳定性的临界电流时,激发离子声不稳定性,波与粒子的相互作用产生反常阻尼使Alfven波演化成行波涌浪。它携带一个方向向上的平行电场,加速极光电子形成分立极光。对等离子体密度、电场及其对应的电势进行了数值计算,结果发现满足磁层加速区条件形成Alfvn行波涌浪,提供足够强的加速粒子的电场。  相似文献   

10.
We study the interaction between energetic protons of the Earth’s radiation belts and quasi-electrostatic whistler mode waves. The nature of these waves is well known: whistler waves, which are excited in the magnetosphere due to cyclotron instability, enter the resonant regime of propagation and become quasielectrostatic, while their amplitude significantly increases. Far enough from the equator where proton gyrofrequency and transversal velocity increase the nonlinear interaction between these waves and energetic protons becomes possible. We show that plasma inhomogeneity may destroy cyclotron resonance between wave and proton on the time scale of the order of particle gyroperiod which in fact means the absence of cyclotron resonance; nevertheless, the interaction between waves and energetic particles remains nonlinear. In this case, particle dynamics in the phase space has the character of diffusion; however, the diffusion coefficients are determined by the averaged amplitude of the wave field, but not by its resonant harmonics. For real parameters of the waves and magnetospheric plasma, proton pitch-angle diffusion leading to their precipitation from the magnetosphere becomes essential.  相似文献   

11.
由动力Alfven波沿磁场方向传播的扰动非线性方程,用量纲分析法导出太阳风中Alfven湍流谱. 太阳风中观测到的湍流谱恰是由方程得到谱的特例. 我们提出太阳风中Alfven湍流是一支反向串级的湍流,正向串级的一支湍流已经用于日冕而耗散掉. 理论上提出这支反向的Alfven湍流产生机制是由于动力Alfven波的非线性色散造成的调制不稳定性驱动的.  相似文献   

12.
A new index of wave activity (ULF index) is applied to analyze daytime magnetic pulsations in the Pc5 range (f = 2–7 mHz) during ten successive recurrent magnetic storms (CIR (corotating interaction region) storms) of 2006. The most intense daytime geomagnetic Pc5 pulsations on the Earth’s surface in all phases of CIR storms are predominantly observed in the pre-noon sector at latitudes higher than 70°, while those in CME storms (storms initiated by coronal mass ejection (CME)) are observed at latitudes lower than 70°. A comparison of wave activity during CIR and CME storms has shown that the amplitude of Pc5 pulsations in CIR storms is much smaller than that in CME storms and the spectrum maximum is observed at lower frequencies and higher latitudes. At the same time, the mechanism of ULF wave generation during both types of magnetic storms seems to be similar, namely, resonance of magnetic field lines due to the development of the Kelvin-Helmholtz instability caused by an approach of a high-velocity solar wind stream to the Earth’s magnetosphere. Since resonance oscillations are excited only in the closed magnetosphere, the higher-latitude position of the Pc5 pulsation intensity maximum in CIR storms points to larger dimensions of the daytime magnetosphere during CIR storms as compared to CME storms.  相似文献   

13.
本文研究了0.1~10 Hz频率范围内的ULF波从磁层到地面的传播,得到了解析解,分析了电离层Alfven谐振器、磁倾角、电离层电导率、以及波频率对地面观测到的地磁信号的影响.数值结果表明:在磁层中剪切波在竖直方向有明显的谐振结构;地面观测到的信号在IAR谐振频率出现极大值,其谐振频率随磁倾角的增大而增大;电离层电导率的变化可以改变IAR的谐振频率,并能改变波的透射,从而影响地面地磁信号的频谱.  相似文献   

14.
本文讨论了一种地球磁层的亚暴机制。当行星际磁场有大的南向分量时,磁层的位形可由基本闭式转变为开式。磁鞘中的阿尔文波可以携带超过10~(18)尔格/秒的能流传入磁层尾部,并将能量耗散于等离子体片中。等离子体片中的粒子被加热和加速后,注入近地空间,产生环电流和极区亚暴。计算了剪切流场中阿尔文波的传播过程,以及磁层中阿尔文波的耗散。将本文的结算与[4]中的结果合在一起,可以说明当行星际磁场转向南时,容易发生地球磁层亚暴,但这两者并非一一对应的关系,行星际磁场没有南向分量时也可以发生地球磁层亚暴。  相似文献   

15.
The contribution of global magnetospheric oscillations to magnetic disturbance during magnetospheric storms is studied. The bases of magnetic data from the INTERMAGNET global network in combination with the interplanetary and intramagnetospheric measurements of the magnetic field and plasma and the sets of the Kp, Dst, and AE indices are used for this purpose. The most favorable conditions in the solar wind and magnetosphere for generation of global Pc5 have been revealed. The contribution of these oscillations to the variations in the magnetic disturbance level, characterized by the AE index, has been estimated. The findings confirm that magnetospheric MHD oscillations participate in the processes of energy income from the solar wind and energy dissipation in the magnetosphere.  相似文献   

16.
Nonlinear properties of the Pc1 geomagnetic pulsations with anomalous (magnetosonic) dynamic spectrum are studied. The nonlinear properties of the waves are reflected in the emergence of ponderomotive force proportional to the squared amplitude of the waves. Just as in the case of the Alfven waves, at small values of parameter ν0 = ω/ωci0 < 0.4 (ratio of the carrier frequency to proton gyrofrequency in the equatorial plane), the ponderomotive force leads to the modification of the background plasma through increasing its density towards the equator. At ν0 > 0.4, plasma is expelled from the equator towards the higher latitudes. The dependence of the nonlinear modification of background plasma for the different parameters of the magnetosphere is studied.  相似文献   

17.
Compressible fluctuations in solar wind plasma are analyzed on the basis of the 1995–2010 WIND and Advanced Composition Explorer (ACE) spacecraft data. In the low-speed solar wind (V 0 < 430 km/s), correlations between fluctuations in the magnetic field direction and plasma density, as well as between velocity fluctuations and plasma density, are found. The covariance functions of these parameters calculated as functions of the local magnetic field direction are axially symmetric relative to the axis, which is oriented nearly along the regular magnetic field of the heliosphere (the Parker spiral). Fluctuations in the magnetic field and velocity are polarized in the plane that is orthogonal to the axis of symmetry. Plasma oscillations of these properties can be caused by fast magnetosonic waves propagating from the Sun along the Parker spiral.  相似文献   

18.
A search for Pc3–4 wave activity was performed using data from a trans-Antarctic profile of search-coil magnetometers extending from the auroral zone through cusp latitudes and deep into the polar cap. Pc3–4 pulsations were found to be a ubiquitous element of ULF wave activity in all these regions. The diurnal variations of Pc3 and Pc4 pulsations at different latitudes have been statistically examined using discrimination between wave packets (pulsations) and noise. Daily variations of the Pc3–4 wave power differ for the stations at the polar cap, cusp, and auroral latitudes, which suggests the occurrence of several channels of propagation of upstream wave energy to the ground: via the equatorial magnetosphere, cusp, and lobe/mantle. An additional maximum of Pc3 pulsations during early-morning hours in the polar cap has been detected. This maximum, possibly, is due to the proximity of the geomagnetic field lines at these hours to the exterior cusp. The statistical relation between the occurrence of Pc3–4 pulsations and interplanetary parameters has been examined by analyzing normalized distributions of wave occurrence probability. The dependences of the occurrence probability of Pc3–4 pulsations on the IMF and solar wind parameters are nearly the same at all latitudes, but remarkably different for the Pc3 and Pc4 bands. We conclude that the mechanisms of high-latitude Pc3 and Pc4 pulsations are different: Pc3 waves are generated in the foreshock upstream of the quasi-parallel bow shock, whereas the source of the Pc4 activity is related to magnetospheric activity. Hourly Pc3 power has been found to be strongly dependent on the season: the power ratio between the polar summer and winter seasons is 8. The effect of substantial suppression of the Pc3 amplitudes during the polar night is reasonably well explained by the features of Alfven wave transmission through the ionosphere. Spectral analysis of the daily energy of Pc3 and Pc4 pulsations in the polar cap revealed the occurrence of several periodicities. Periodic modulations with periods 26, 13 and 8–9 days are caused by similar periodicities in the solar wind and IMF parameters, whereas the 18-day periodicity, observed during the polar winter only, is caused, probably, by modulation of the ionospheric conductance by atmospheric planetary waves. The occurrence of the narrow-band Pc3 waves in the polar cap is a challenge to modelers, because so far no band-pass filtering mechanism on open field lines has been identified.  相似文献   

19.
Highlights of studies of ULF waves from 1995 to early 1997 are presented. The subjects covered include (1) Pc 3–5 waves excited by sources in the solar wind, with emphasis on the role of the magnetospheric cavity in modifying the external source and establishing its own resonances, and the role of the plasmapause in magnetohydrodynamic wave propagation; (2) Pi 2 waves, with emphasis on the plasmaspheric resonances and possible alternative excitation by plasmasheet source waves; (3) the spatial structure of internally excited long-period waves, including a kinetic theory for radially confined ring current instability and groundbased multipoint observation of giant pulsations; (4) amplitude-modulated Pc 1–2 waves in the outer magnetosphere (Pc 1–2 bursts) and in the inner magnetosphere (structured Pc 1 waves or pearls); and (5) the source region of the quasi-periodic emissions. Theory and observations are compared, and controversial issues are highlighted. In addition, some future directions are suggested.  相似文献   

20.
Propagation of electromagnetic inertio-gravity (IG) waves in the partially ionized ionospheric E- and F-layers is considered in the shallow water approximation. Accounting of the field-aligned current is the main novelty of the investigation. Existence of two new eigen-frequencies for fast and slow electromagnetic waves is revealed in the ionospheric E-layer. It is shown that in F-layer slowly damping new type of inertial-fast magnetosonic waves can propagate. Slowly damping low-frequency oscillations connected with the field-aligned conductivity are found. Broad spectrum of oscillations is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号