首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A method for determining the distribution of supermicrometer nitrate between size-segregated sea-salt and soil derived particles is presented. The analysis is based on field data from six measurements at a coastal site in southern Finland, and on a theoretical treatment taking into account the transfer of gaseous species onto particle surfaces and their subsequent reaction. Significant amounts of nitrate were found in both the particle types, with the fraction of nitrate associated with soil particles varying from 20–50% in the 1–2 m size to near 90% in particles larger than 10 m. Overall, the nitrate accumulation followed closely the relative abundances of these two particle types. Two overlapping modes in supermicron nitrate mass size distributions could be identified. The lower mode, associated with sea-salt, was located between the surface-area and volume distribution of sodium peaking at about 2–3 m of EAD. The upper mode peaked at 3–5 m and followed more closely the surface-area distribution of calcium in all samples. At our site, the accumulation of nitrate into both particle types was shown to be limited by an effective surface reaction rate rather than by gas-phase diffusion. This rate was estimated to be considerably larger for sea-salt particles. Strong evidence in support of the saturation of nitrate in sea-salt particles were obtained.  相似文献   

2.
In the framework of the 2nd Aerosol Characterization Experiment (ACE-2), in June and July 1997, size segregated samples were collected for single particle analysis on the island of Tenerife, in both the marine boundary layer (MBL) and the free troposphere (FT), to study the characteristics of the North Atlantic aerosol. A systematic assessment was made of the aerosol under background conditions and when the environment was perturbed by European emissions and/or Saharan dust. The aerosol particles were analysed by automated and manual SEM-EDX, followed by cluster analysis to identify the different particle types and their abundance. Basing on back trajectory calculations, particle numbers and volume concentrations, different periods can be identified regarding the origin of the sampled air masses. In the FT, the air masses were classified as clean Atlantic, Saharan dust from Africa or pollution from Europe. In the MBL, air masses were classified as clean, polluted or perturbed by emissions from Europe. For both the FT and MBL samples, the main changes in chemical composition were observed between the fine and coarse mode aerosol. The FT fine mode aerosol is dominated by S-poor aluminosilicates (62%) in the event of the dust samples or sulphates, carbonaceous particles (20%) and S-rich aluminosilicates (46%) in the polluted samples. For the larger fractions, a strong decreasing trend was observed for the sulphates (less than 20%) and carbonaceous particles (10%) in the polluted samples. The MBL fine mode was completely dominated by S-rich particles (polluted 55% and perturbed 59%), and to a lesser extent, carbonaceous and aged sea salt particles. In the coarse mode, the polluted air mass is dominated by sea salt particles (62%). Contrary to the fine fraction, the polluted air mass in the coarse fraction contained 5.3% of S-rich particles. The combined interpretation of the data from the analysis of size-fractioned particles and the calculated backward trajectories for air masses coming from Europe, Africa and the Atlantic, results in better insights on aerosol chemistry, especially for the comparison of the particle composition in the FT and the MBL.  相似文献   

3.
Individual bacterial cells occur in many samples that were collected at Cape Grim, Tasmania and during the Lagrangian “B” experiment of the Aerosol Characterization Experiment 1 (ACE-1) campaign that was conducted above the Southern Ocean. They are present in samples from altitudes as high as 5.4 km. Morphologically, almost all bacteria are rod-shaped, about 1 μm long or smaller, have one polar flagellum, and contain inclusions that are rich in P and K. Their morphological features suggest that these bacteria are motile, marine species. It seems likely that the cells became airborne by the same bubble-bursting mechanism that ejects sea-salt aerosol particles into the atmosphere; however, the bacteria and sea-salt particles are typically not aggregated with one another. The estimated number ratio of bacteria and the dominant aerosol species, sea salt, varies in the samples and averages about 1%. The aerosol bacteria seem to represent an important atmospheric reservoir of P and organic compounds; on the other hand, since they are externally mixed with sea salt, they are unlikely to be effective as cloud condensation nuclei.  相似文献   

4.
Rainfall characteristics of the Madden–Julian oscillation (MJO) are analyzed primarily using tropical rainfall measuring mission (TRMM) precipitation radar (PR), TRMM microwave imager (TMI) and lighting imaging sensor (LIS) data. Latent heating structure is also examined using latent heating data estimated with the spectral latent heating (SLH) algorithm.The zonal structure, time evolution, and characteristic stages of the MJO precipitation system are described. Stratiform rain fraction increases with the cloud activity, and the amplitude of stratiform rain variation associated with the MJO is larger than that of convective rain by a factor of 1.7. Maximum peaks of both convective rain and stratiform rain precede the minimum peak of the outgoing longwave radiation (OLR) anomaly which is often used as a proxy for the MJO convection. Stratiform rain remains longer than convective rain until 4000 km behind the peak of the mature phase. The stratiform rain contribution results in the top-heavy heating profile of the MJO.Associated with the MJO, there are tri-pole convective rain top heights (RTH) at 10–11, 7 and 3 km, corresponding to the dominance of afternoon showers, organized systems, and shallow convections, respectively. The stratiform rain is basically organized with convective rain, having similar but slightly lower RTH and slightly lags the convective rain maximum. It is notable that relatively moderate (7 km) RTH is dominant in the mature phase of the MJO, while very tall rainfall with RTH over 10 km and lightning frequency increase in the suppressed phase. The rain-yield-per flash (RPF) varies about 20–100% of the mean value of 2–10 × 109 kg fl−1 over the tropical warm ocean and that of 2–5 × 109 kg fl−1 over the equatorial Islands, between the convectively suppressed phase and the active phase of MJO, in the manner that RPF is smaller in the suppressed phase and larger in the active phase.  相似文献   

5.
Shanghai is the largest industrial and commercial city in China, and its air quality has been deteriorating for several decades. However, there are scarce researches on the level and seasonal variation of fine particle (PM2.5) as well as the carbonaceous fractions when compared with other cities in China and around the world. In the present paper, abundance and seasonal characteristics of PM2.5, organic carbon (OC) and elemental carbon (EC) were studied at urban and suburban sites in Shanghai during four season-representative months in 2005–2006 year. PM2.5 samples were collected with high-vol samplers and analyzed for OC and EC using thermal-optical transmittance (TOT) protocol. Results showed that the annual average PM2.5 concentrations were 90.3–95.5 μg/m3 at both sites, while OC and EC were 14.7–17.4 μg/m3 and 2.8–3.0 μg/m3, respectively, with the OC/EC ratios of 5.0–5.6. The carbonaceous levels ranked by the order of Beijing > Guangzhou > Shanghai > Hong Kong. The carbonaceous aerosol accounted for  30% of the PM2.5 mass. On seasonal average, the highest OC and EC levels occurred during fall, and they were higher than the values in summer by a factor of 2. Strong correlations (r = 0.79–0.93) between OC and EC were found in the four seasons. Average level of secondary organic carbon (SOC) was 5.7–7.2 μg/m3, accounting for  30% of the total OC. Strong seasonal variation was observed for SOC with the highest value during fall, which was about two times the annual average.  相似文献   

6.
A one-dimensional photochemical model was used to explore the role of chlorine atoms in oxidizing methane and other nonmethane hydrocarbons (NMHCs) in the marine troposphere and lower stratosphere. Where appropriate, the model predictions were compared with available measurements. Cl atoms are predicted to be present in the marine troposphere at concentrations of approximately 103 cm-3, mostly as a consequence of the reaction of OH with HCl released from sea spray. Despite this low abundance, our results indicate that 20 to 40% of NMHC oxidation in the troposphere (0–10 km) and 40 to 90% of NMHC oxidation in the lower stratosphere (10–20 km) is caused by Cl atoms. At 15 km, NMHC-Cl reactions account for nearly 80% of the PAN produced.The model was also used to test the longstanding hypothesis that NOCl is an intermediate to HCl formation from sea salt aerosols. It was found that the NOCl concentration required (10 ppt) would be incompatible with field observations of reactive nitrogen and ozone abundance. Chlorine nitrate (ClONO2) and methyl nitrate (CH3ONO2) were shown to be minor components of the total NO y abundance. Heterogeneous reactions that might enhance photolysis of halocarbons or convert ClONO2 to HOCl or Cl2 were determined to be relatively unimportant sources of Cl atoms. Specific and reliable measurements of HCl and other reactive chlorine species are needed to better assess their role in tropospheric chemistry.  相似文献   

7.
Dimethylsulfide (DMS), sulfur dioxide (SO2), methanesulfonate (MSA), nonsea-salt sulfate (nss-SO4 2–), sodium (Na+), ammonium (NH4 +), and nitrate (NO3 ) were determined in samples collected by aircraft over the open ocean in postfrontal maritime air masses off the northwest coast of the United States (3–12 May 1985). Measurements of radon daughter concentrations and isentropic trajectory calculations suggested that these air masses had been over the Pacific for 4–8 days since leaving the Asian continent. The DMS and MSA profiles showed very similar structures, with typical concentrations of 0.3–1.2 and 0.25–0.31 nmol m–3 (STP) respectively in the mixed layer, decreasing to 0.01–0.12 and 0.03–0.13 nmol m–3 (STP) at 3.6 km. These low atmospheric DMS concentrations are consistent with low levels of DMS measured in the surface waters of the northeastern Pacific during the study period.The atmospheric SO2 concentrations always increased with altitude from <0.16–0.25 to 0.44–1.31 nmol m–3 (STP). The nonsea-salt sulfate (ns-SO4 2–) concentrations decreased with altitude in the boundary layer and increased again in the free troposphere. These data suggest that, at least under the conditions prevailing during our flights, the production of SO2 and nss-SO4 2– from DMS oxidation was significant only within the boundary layer and that transport from Asia dominated the sulfur cycle in the free troposphere. The existence of a sea-salt inversion layer was reflected in the profiles of those aerosol components, e.g., Na+ and NO3 , which were predominantly present as coarse particles. Our results show that long-range transport at mid-tropospheric levels plays an important role in determining the chemical composition of the atmosphere even in apparently remote northern hemispheric regions.  相似文献   

8.
Electrical charges on aerosol particles and droplets modify the droplet–particle collision efficiencies involved in scavenging, and the droplet–droplet and particle–particle collision efficiencies involved in coalescence of droplets and particles, even in only weakly electrified clouds and aerosol layers. This work places electrically enhanced scavenging, and the electrical inhibition of scavenging in the context of the microphysics of weakly electrified clouds.Collision efficiencies are calculated by numerical integration to obtain particle trajectories, that are determined by the complex interplay of electrical, gravitational and phoretic forces together with inertia. These modify the trajectory of a particle as it is carried by flow around the falling droplet. Conversely, the flow around the particle also modifies the trajectory of the droplet. The flows are specified analytically, using a hybrid of the Proudman–Pearson stream function for that region close to the droplet or particle, where it is accurate, merging into the exact Oseen stream function for larger distances, where that becomes accurate. The effect of the flow around the particle on the motion of the droplet was simulated using Langmuir's superposition technique on the hybrid stream functions. The treatment of inertia in the present calculations allows an extension of the scope of our previous work by a factor of 10 larger in particle size (103 in mass). The coverage is extended to a wide range of atmospheric conditions and particle densities.The pressures and temperatures used in the models ranged from a representation of the lower troposphere at  1 km altitude (900 hPa, 10 °C) to that of the middle stratosphere at  30 km altitude (12 hPa, − 47 °C). The particles considered range from 0.1 μm to 10 μm radius; the droplet radii range from 4 μm to 50 μm; particle densities range from 300 kg m 3 to 2500 kg m 3; particle charges range from 2e to 100e with droplet charges of like sign of 100e; and relative humidities range from 10% to 100%.For the larger particles (radii greater than about 3 μm) interacting with the larger droplets (radii greater than about 15 μm) the effects of inertia increase with particle density and dominate at the larger densities. For particles with radii in the range 1–3 μm the ‘Greenfield Gap’ of very low collision efficiencies was found, and was determined to be due to the effects of the gravitational force causing a reduction of collisions of particles with the front of the droplet, and the effect of inertia overcoming the tendency for the weight to produce a collision in the slow velocity region in the rear. When the electrical or phoretic forces are sufficiently large the Greenfield Gap is closed.When the particles have radii < 3 μm inertial effects no longer dominate the collisions, although inertia modifies the weight effects for particles with radii down to about 0.5 μm. For charged aerosol particles with radii smaller than about 0.1 μm interacting with droplets or background aerosol particles smaller than a radius of about 15 μm, the long range electrical repulsive force is effective in opposing the phoretic forces and keeping the particle out of range of the short range attractive image force. Thus ‘electroscavenging’ gives way to ‘electroprotection’ against the scavenging or coagulation processes otherwise caused by Browninan diffusion or phoretic forces.In an atmosphere of temperature 10 °C and pressure 900 hPa the net phoretic force reduces to zero and becomes repulsive for particles with radii above about 2 μm (depending on particle conductivity). This enhances the development of the Greenfield Gap. However, the value of this radius (at which the net phoretic force is zero) increases strongly with decreasing temperature and pressure (increasing altitude) as expected from theory, and is about 5 μm in the middle troposphere and more than 10 μm in the stratosphere. Thus a net attractive phoretic force on particles extends into the 1–3 μm radius range in the upper troposphere; however, the weight and inertial effects can ensure the presence of the Greenfield Gap in that range for 2000 kg m 3 particles up to the middle stratosphere.  相似文献   

9.
The paper presents monitoring results and environmental pollution assessment for the Gdask-Sopot-Gdynia Tricity (Poland), based onanalysis of precipitation. Precipitation samples were collected over a period of 12 months (January–December 1998) at ten locations in the Tricity. The following selected ions were determined in the samples:SO4 2–, F, Cl, NO3 ,PO4 3–, NH4 +, Na+,Mg2+, Ca2+, K+. The results were subjected to full statistical evaluation. Values of the parameters determined were correlated with each other. An attempt was made to explain co-occurrences of certain ions and the significance of their mutual effects. Pollutant concentrations and loads in precipitation were also correlated with data on wind direction and temperature in the region.Deposition of pollutants was very high in spring due to the prevailing air circulation patterns and low temperatures. Analysis of the correlations between co-occurring ions confirmed the significant impact of the location (sea coast) on the composition of rain water. Ionic ratios in rainwater were similar to those observed for sea salt samples. In addition, heavy traffic was most probably responsible for high concentrations of various forms of nitrogen and sulphates in the vicinity of major highways.  相似文献   

10.
Sulfate-coated dust particles in the free troposphere over Japan   总被引:1,自引:0,他引:1  
Airborne aerosol collections were performed over Wakasa bay (36°00′N, 135°30′E) in March and Kumano open sea (34°00′N, 136°50′E) and Seto (35°10′N, 137°10′E) in July 2001 at altitudes between 1.0 and 5.8 km. The particles were individually analyzed using transmission electron microscopy (TEM). Relatively large mineral-dust (mostly clay) particles were abundant in the March samples. They also dominated in July in the mid-troposphere higher than 4 km altitude, whereas sea salt and ammonium sulfate were more abundant at lower altitudes. Ca-coated grid samples show many traces of aqueous sulfate droplets. The proportions of former sulfate droplets to the total collected particles apparently increased with increasing relative humidity at the time of sampling. TEM analysis revealed that a significant fraction of these former droplets enclose mineral-dust particles as well as sea salt, soot, and fly ash. Some enclose mixtures of mineral-dust, sea-salt, soot, and fly ash particles. The results provide evidence that mineral dust from the Asian continent could acquire coatings of sulfate while being transported in the free troposphere. The mineral-dust particles probably acquired the sulfate coatings either through heterogeneous uptake of gaseous SO2 and subsequent oxidation or through coagulation with cloud or fog droplets. The presence of the mixed particles in sulfate droplets also indicates that aggregation of particles of different origins occurred through cloud processing. Such sulfate-coated dust particles would affect cloud formation, precipitation, and chemistry of the free troposphere.  相似文献   

11.
Three ice cores and a set of snow pit samples collected on James Ross Island, Antarctic Peninsula, in 1979, 1981 and 1991 have been analyzed for water stable isotope content D or 18O (isotopic temperature) and major chemical species. A reliable and detailed chronological scale has been established first for the upper 24.5 m of water equivalent (1990–1943) where various data sets can be compared, then extended down to 59.5 m of water equivalent (1847) with the aid of seasonal variations and the sulphate peak reflecting the 1883 Krakatoa volcanic eruption. At James Ross Island, sea-salt aerosol is generally produced by ice-free marine surfaces during the summer months, although some winter sea-salt events have been observed. For the upper part of the core (1990–1943), correlations (positive or negative) were calculated between isotopic temperature, chloride content (a sea-salt indicator), sea-ice extent, regional atmospheric temperature changes and atmospheric circulation. The D and chloride content correlation was then extended back to 1847, making it possible to estimate decadal sea-ice cover fluctuations over the study period. Our findings suggest that ice-core records from James Ross Island reflect the recent warming and sea-ice decrease trends observed in the Antarctic Peninsula area from the mid-1940s.  相似文献   

12.
The potential resources on the ion-stimulated syntheses effects of aerosol particles of lower troposphere in test sites in the arctic, mountain, arid and forest areas as the function of irradiation time and gas-precursor concentration were experimentally and theoretically evaluated. The dust-free outdoor air was irradiated with an ionization current of 10− 6 A by α-rays from isotope 239Pu. The total output of radiolytic aerosols (RA) with a diameter of 3–1000 nm was found to be 0.05–0.1 molecules per 1 eV of absorbed radiation, while the physical upper limit is 0.25–0.4 molecules/eV. In an interval of exposition time from 6 to 800 s (adsorbed energy is 3 · 1012–1014 eV/cm3) the RA mass concentration at different sites was increased from 1–10 to 50–500 μg/m3. According to the liquid chromatography data the major RA material is the H2O/HNO3 solution with acid concentration  25%. The used physical model presents new aerosols as a product from small and intermediate ion association through formation of neutral clusters and describes adequately some of the peculiarities in field experiment data. Introducing SO2, NH3, and also hydrochloric, nitric and sulphuric acid vapours with concentration 0.1–1 mg/m3 in the irradiated air stimulated an increase of mass aerosol concentration by a factor of 8–30. The mean size also decreased by a factor of 3–5. These facts allowed us to expect that the chemical composition of radiolytic aerosols generated in outdoor air would noticeably differ after addition of the gas-precursors.  相似文献   

13.
Ambient atmospheric aerosols and savanna fireparticulate emission samples from southern Africa werecharacterised in terms of particle classes and theirnumber abundance by electron probe X-ray microanalysis(EPXMA). About ten particle classes were identifiedfor each sample. The major classes werealuminosilicates and sea salts for ambient coarse(2–10 m equivalent aerodynamic diameter (EAD))samples, and K-S and S-only particles for ambient fine(<2 m EAD) samples. The K-S particles are oneof the major products of biomass burning. The EPXMAresults were found to be consistent with the resultsfrom bulk analyses on a sample by sample basis. Forsavanna fire fine samples, quantitative EPXMA revealedthat many particles had a composition of simple saltssuch as KCl. Some particles had a deviatingcomposition in the sense that more ionic species wereinvolved in sustaining the balance between cations andanions, and they were composite or mixed salts.Because of extensive processing during the atmospherictransport, the composition of the K-S particles in theambient samples was different from K2SO4,and such particles were enriched with S. The finepyrogenic KCl particles and the fine sea-saltparticles were much depleted in chlorine.  相似文献   

14.
Individual aerosol particles collected in the Negev desert in Israel during a summer and winter campaign in 1996–1997 were analysed by scanning electron microscopy with energy-dispersive X-ray analysis. Hierarchical cluster analysis was performed to interpret the data on the basis of particle diameter and composition. Eleven particle classes (groups) provided clues on sources and/or particle formation. The summer samples were enriched in sulphates and mineral dusts; the winter samples contained more sea salts, aged sea salts, and industrial particles. The fine size fraction below 1 m diameter was enriched in secondary particles and showed evidence of atmospheric processing. The secondary sulphate particles were mainly attributed to long-range transport. A regional conversion from calcite to calcium sulphate occurred during summer. Industrial particles originating from local pollution appeared during winter.  相似文献   

15.
Airborne observations during August 1985 over Greenland and the North American Arctic revealed that dense, discrete haze layers were common above 850 mb. No such hazes were found near the surface in areas remote from local sources of particles. The haze layers aloft were characterized by large light-scattering coefficients due to dry particles (maximum value 1.24 × 10–4m–1) and relatively high total particle concentrations (maximum value 3100 cm–3). Sulfate was the dominant ionic component of the aerosol (0.06 – 1.9 g m–3); carbon soot was also present. Evidence for relatively fresh aerosols, accompanied by NO2 and O3 depletion, was found near, but not within, the haze layers. The hazes probably derived from anthropogenic sources and/or biomass burning at midlatitudes.It is hypothesized that the scavenging of particles by stratus clouds plays an important role in reducing the frequency and intensity of hazes at the surface in the Arctic in summer. Since the detection of haze layers aloft through measurements of column-integrated parameters from the surface (e.g., by lidar) cannot be carried out reliably when clouds are present, such measurements have likely underestimated the occurrence of haze layers in the Arctic, particularly in summer.  相似文献   

16.
A two-dimensional cloud model with bin microphysics was used to investigate the effects of cloud condensation nuclei (CCN) concentrations and thermodynamic conditions on convective cloud and precipitation developments. Two different initial cloud droplet spectra were prescribed based on the total CCN concentrations of maritime (300 cm− 3) and continental (1000 cm− 3) air masses, and the model was run on eight thermodynamic conditions obtained from observational soundings. Six-hourly sounding data and 1-hourly precipitation data from two nearby weather stations in Korea were analyzed for the year 2002 to provide some observational support for the model results.For one small Convective Available Potential Energy (CAPE) ( 300 J kg− 1) sounding, the maritime and continental differences were incomparably large. The crucial difference was the production of ice phase hydrometeors in the maritime cloud and only water drops in the continental cloud. Ice phase hydrometeors and intrinsically large cloud drops of the maritime cloud eventually lead to significant precipitation. Meanwhile negligible precipitation developed from the continental cloud. For the three other small CAPE soundings, generally weak convective clouds developed but the maritime and continental clouds were of the same phases (both warm or both cold) and their differences were relatively small.Model runs with the four large CAPE ( 3000 J kg− 1) soundings demonstrated that the depth between the freezing level (FL) and the lifting condensation level (LCL) was crucial to determine whether a cloud becomes a cold cloud or not, which in turn was found to be a crucial factor to enhance cloud invigoration with the additional supply of freezing latent heat. For two large CAPE soundings, FL–LCL was so deep that penetration of FL was prohibitive, and precipitation was only mild in the maritime clouds and negligible in the continental clouds. Two other soundings of similarly large CAPE had small FL–LCL, and both the maritime and continental clouds became cold clouds. Precipitation was strong for both but much more so in the maritime clouds, while the maximum updraft velocity and the cloud top were slightly higher in continental clouds. Although limited to small CAPE cases, more precipitation for smaller FL–LCL for a selected group of precipitation and thermodynamic sounding data from Korea was in support of these model results in its tendency.These results clearly demonstrated that the CCN effects on cloud and precipitation developments critically depended on the given thermodynamic conditions and not just the CAPE but the entire structure of the thermodynamic profiles had to be taken into account.  相似文献   

17.
Summary The study examines regional atmospheric model (RM) simulations of the mean June–September (JJAS) climate and the implications of the mean state for the model representation of African wave disturbances (AWD). Two simulations are made with a version of the RM that computes soil moisture with multivariate functions that statistically relate it to rainfall, surface temperature, albedo, vegetation and terrain slope. These simulations differ according to the assignment of ground temperatures (Tg). While the control experiment is based on the fully interactive computation of soil moisture, the second experiment tests the response to fixed Tg whose seasonal means are more realistic than in the control within a swath along the Gulf of Guinea coast. A third simulation is made with the RM coupled to a sophisticated land surface process model (RM2). Results show a rather acute sensitivity of the mean circulation to land surface processes. The more realistic meridional temperature gradient created by fixing Tg in turn increased the vertical wind shear over West Africa and eliminated unrealistic westerly circulation at 700mb. AWD composites were transformed from intense closed cyclonic circulations with copious rainfall to more realistic open waves that organized more moderate precipitation maxima. Lower vorticity variances in the specified change experiment imply that the open waves were characterized by more moderate vorticity extremes. Corresponding spectral amplitudes for 3–6 day periodicities of the 700mb meridional wind were 40–80% of control values within the swath of maximum AWD activity. From among the three simulations, RM2 achieved seasonal mean precipitation, temperature, energy flux and circulation distributions that, despite some unrealistic features, were closest to observational evidence. RM2 AWD were much less intense and favored slightly longer periods. Results demonstrate that discrepancies in modeled ground temperatures caused by underestimating the cloudiness that intercepts short wave solar flux along a narrow swath of the West African coast have far-reaching consequences for the simulation of both the mean summer climate and individual synoptic disturbances. The study implies that this cooling along the Gulf of Guinea coast prevents AWD from developing into more intense storms with heavier precipitation.  相似文献   

18.
Mesoscale nocturnal jetlike winds have been observed over a flat, open coast. They occur within the planetary boundary layer between 100 and 600 m. At times the wind shear may reach 15 m s-1 per 100 m. Unlike the common low-level jet that occurs most often at the top of the nocturnal inversion and only with a wind from the southerly quadrant, this second kind of jet exists between nocturnal ground-based inversion layers formed by the cool pool, or mesohigh, and the elevated mesoscale inversion layer over the coast. It occurs mostly when light % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgs% MiJkaaiwdacqGHsislcaaI2aGaaeyBaiaabccacaqGZbWaaWbaaSqa% beaacqGHsislcaaIXaaaaOGaaiykaaaa!3FCF!\[( \leqslant 5 - 6{\text{m s}}^{ - 1} )\] geostrophic winds blow from land to sea and when the air temperature over adjacent seas is more than 5 °C warmer than that over the coast. This phenomenon may be explained by combined Venturi and gravity-wind effects existing in a region from just above the area a few kilometres offshore to 100–600 m in height approximately 40–50 km inland because this region is sandwiched between the aforementioned two inversion layers.  相似文献   

19.
The occurrence of CH2Br2, CH2BrCl, CH2I2, CH2ClI, CHBr3, CHBr2Cl, CHBrCl2 and CH2Br-CH2Br in marine air and seawater from various sampling sites in the region of the Atlantic Ocean have been measured and evaluated. A correlation exists between high concentrations of these compounds in air and in water and the occurrence of algae at the coastlines of various islands (The Azores, Bermuda, Tenerife) and in a region of high bioactivity in the Atlantic Ocean near the West African coast.Real-world air-water concentration ratios derived from measurements in the open ocean identify the water mass near the African coast with its high primary production as a source for the above compounds. This region has to be discussed also as a possible secondary source in which CHBr2Cl, CHBrCl2 and CH2ClI can be formed via halogen-exchange. Whether CHBrCl2 and CH2ClI under-go transformation to CHCl3 and CH2Cl2, respectively, is open to further investigations.Direct photolysis and degradation by OH-radicals lead to a gradient in the marine troposphere with reduced concentrations for the organobromides above the tropospheric boundary layer.Partly presented at: 2nd International Symposium on Biosphere-Atmosphere Exchange, Mainz, F.R.Germany, 16–21 March, 1986. Part VII: Chemosphere 15 (1986) 429–436.  相似文献   

20.
Variations in ice winter severity in the Western Baltic between 1501 and 1995 were investigated using an index time series derived from classified values of accumulated areal ice volume along the German Baltic coast, the time series back to 1701, having been extended to the beginning of the 16th century. When compared with the 1501–1995 mean, the Gaussian lowpass-filtered time series of the ice winter index numerals with a 40-year cutoff period shows increased severity (strong phases) in 1554–1576, 1593–1630, 1655–1710, and 1763–1860, while periods of decreased severity occurred in 1501–1553, 1577–1592, 1631–1654, 1711–1762, and from 1861 to the present. During the latter part of the Little Ice Age, especially during the 1655–1710 and 1763–1860 phases, the lowpass-filtered time series lay more than half a standard deviation above the arithmetic mean of the reference period 1901–1960, representing the present regime, for more than three decades. Between 1501 and 1860, the ice winter severity in the Western Baltic fluctuated around a level 55% higher than that during the present period. Using the contingency table published by Koslowski and Loewe, the frequency of events of weak westerly flow above the northeastern North Atlantic during the Little Ice Age was estimated. The calculated values of weak westerly flow expected per decade suggest that strong phases of increased ice winter severity were characterized by frequent blocking situations (weak westerly flow), and that, contrarily, the weak phases of reduced ice winter severity between about 1575 and 1860 may be regarded as phases of increased zonal circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号