首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to regional climatic models, climate change may affect Mediterranean lakes significantly in terms of water availability and quality. Trichonis Lake catchment covers a semi-mountainous area of 403 km2 including the largest Greek lake by volume (2.6?×?109?m3), located in western Greece. The impact of climate change on the hydrology and water quality of the lake, in terms of lake water level and nutrient concentrations, has been assessed. Water balance estimates and geographical information system tools were then used to set up a physically based, spatially distributed model. The calibrated model was simulated for two future scenarios specified by the Intergovernmental Panel on Climate Change: A2 (pessimistic) and B2 (more optimistic), which involved temperature/evaporation/evapotranspiration increase and small precipitation decrease. The model was calibrated efficiently for the 1990–1992 period. The two basic climatic scenarios illustrated that the responses of the lake water levels will show a decrease of 24.2 and 12 cm, respectively, and an increase of total nitrogen concentrations by 3.4 and 10%, in relation to the early 1990s values. These important findings suggest that mitigation and optimum management plans should be developed to eliminate the aforementioned climate change impacts and further research should follow.  相似文献   

2.
A three-dimensional groundwater flow model was implemented to quantify the temporal variation of shallow groundwater levels in response to combined climate and water-diversion scenarios over the next 40 years (2011–2050) in Beijing-Tianjin-Hebei (Jing-Jin-Ji) Plain, China. Groundwater plays a key role in the water supply, but the Jing-Jin-Ji Plain is facing a water crisis. Groundwater levels have declined continuously over the last five decades (1961–2010) due to extensive pumping and climate change, which has resulted in decreased recharge. The implementation of the South-to-North Water Diversion Project (SNWDP) will provide an opportunity to restore the groundwater resources. The response of groundwater levels to combined climate and water-diversion scenarios has been quantified using a groundwater flow model. The impacts of climate change were based on the World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for future high (A2), medium (A1B), and low (B1) greenhouse gas scenarios; precipitation data from CMIP3 were applied in the model. The results show that climate change will slow the rate of decrease of the shallow groundwater levels under three climate-change scenarios over the next 40 years compared to the baseline scenario; however, the shallow groundwater levels will rise significantly (maximum of 6.71 m) when considering scenarios that combine climate change and restrictions on groundwater exploitation. Restrictions on groundwater exploitation for water resource management are imperative to control the decline of levels in the Jing-Jin-Ji area.  相似文献   

3.
Understanding the impacts of climate change on water quality and stream flow is important for management of water resources and environment. Miyun Reservoir is the only surface drinking water source in Beijing, which is currently experiencing a serious water shortage. Therefore, it is vital to identify the impacts of climate change on water quality and quantity of the Miyun Reservoir watershed. Based on long-time-series data of meteorological observation, future climate change scenarios for this study area were predicted using global climate models (GCMs), the statistical downscaling model (SDSM), and the National Climate Centre/Gothenburg University—Weather Generator (NWG). Future trends of nonpoint source pollution load were estimated and the response of nonpoint pollution to climate change was determined using the Soil and Water Assessment Tool (SWAT) model. Results showed that the simulation results of SWAT model were reasonable in this study area. The comparative analysis of precipitation and air temperature simulated using the SDSM and NWG separately showed that both tools have similar results, but the former had a larger variability of simulation results than the latter. With respect to simulation variance, the NWG has certain advantages in the numerical simulation of precipitation, but the SDSM is superior in simulating precipitation and air temperature changes. The changes in future precipitation and air temperature under different climate scenarios occur basically in the same way, that is, an overall increase is estimated. Particularly, future precipitation will increase significantly as predicted. Due to the influence of climate change, discharge, total nitrogen (TN) and total phosphorus (TP) loads from the study area will increase over the next 30 years by model evaluation. Compared to average value of 1961?~?1990, discharge will experience the highest increase (15%), whereas TN and TP loads will experience a smaller increase with a greater range of annual fluctuations of 2021 ~ 2050.  相似文献   

4.
In many arid and semi-arid areas, intensive cultivation is practiced despite water commonly being a limiting factor. Often, irrigation water is from local aquifers or imported from out-of-area aquifers and surface reservoirs. Irrigation return flows become a significant local recharge source, but they may deteriorate aquifer water quality. La Aldea valley, located in the western sector of Gran Canaria Island (Atlantic Ocean), is a coastal, half-closed depression in altered, low-permeability volcanics with alluvium in the gullies and scree deposits over a large part of the area. This area is intensively cultivated. Irrigation water comes from reservoirs upstream and is supplemented (average 30 %) by local groundwater; supplementation goes up to 70 % in dry years, in which groundwater reserves are used up to exhaustion if the dry period persists. Thus, La Aldea aquifer is key to the water-supply system, whose recharge is mostly from return irrigation flows and the scarce local rainfall recharge on the scree formations, conveyed to the gully deposits. To quantify the hydrogeological conceptual model and check data coherence, a simplified numerical model has been constructed, which can be used as a tool to help in water management.  相似文献   

5.
Groundwater is the main source of water in arid and semi-arid regions, so it is very important to recognize vulnerable parts of aquifer under future climate change conditions. In this research, 16 climate models were evaluated based on weighting approach. HADCM3 and CGCM2.3.2a models were selected for temperature and precipitation prediction, respectively. LARS-WG was used for downscaling AOGCMs outputs. Results show that temperature increase by 1.4 °C and precipitation changes between +10 and ?6 % under B1 and A2 emission scenario, respectively. Runoff volumes will decrease by ?39 % under A2 emission scenario whereas runoff volume will increase by +12 % under B1 emission scenario. Simulation of groundwater head variation by MODFLOW software indicates higher groundwater depletion rate under A2 scenario compared to B1 scenario. Groundwater model outputs indicate that the most vulnerable part of the aquifer is located in the southwest region. Large number of extraction wells and low aquifer transmissivity are the reasons for high vulnerability of the region.  相似文献   

6.
The study on the stream-flow change associated with future climate change scenarios has a practical significance for local socio-economic development and eco-environmental protection. A study on the Jianzhuangcuan catchments was carried out to quantify the expected impact of climate change on the stream-flow using a multi-model ensemble approach. Climate change scenarios were developed by ensemble four Global Climate Models, which showed good performance for Jianzhuangcuan catchment. Soil and Water Assessment Tool (SWAT), a physically based distributed hydrological model, was used to investigate the impacts on stream-flow under climate change scenarios. The model was calibrated and validated using daily stream-flow records. The calibration and validation results showed that the SWAT model was able to simulate the daily stream-flow well, with Nash–Sutcliffe efficiency >0.83 for Yaoping Long station, for calibration and validation at daily and monthly scales. Their difference in simulating the stream-flow under future climate scenarios was also investigated. The results indicate a 0.6–0.9 °C increase in annual temperature and changes of 12.6–18.9 mm in seasonal precipitation corresponded to a change in stream-flow of about 0.62–3.67 for 2020 and 2030 scenarios. The impact of the climate change increased in both scenarios.  相似文献   

7.
Greater sage-grouse (Centrocercus urophasianus) are threatened by loss of sagebrush habitat and the spread of West Nile virus throughout much of their range in North America; yet, future impacts of climate change on these potential stressors have not been addressed. Here, we aim to quantify the potential impacts of climate change on the distribution of climatically suitable habitat for sagebrush and on transmission risk for West Nile virus in the eastern portion of the species’ range. We used Maxent to model the current and future climatically suitable habitat for two dominant sagebrush species in the study area, and we used a degree-day model to predict future West Nile virus transmission risk under likely climate-change scenarios. Our models suggest that areas with the highest future suitability for sagebrush habitat will be found in southwestern Wyoming and north-central Montana. The degree-day model suggests that greater sage-grouse in western portions of the study area, which are generally higher in elevation than where West Nile virus currently occurs, will see increasing risk of transmission in the future. We developed a spatially explicit map of suggested management actions based on our predictions that will aid in conservation of the species into the coming decades.  相似文献   

8.
The assessment of freshwater resources in a drainage basin is not only dependent on its hydrologic parameters but also on the socio-economic system driving development in the watershed area; the socio-economic aspect, that is often neglected in hydrologic studies, is one of the novelties of this study. The aim of this paper is twofold: (1) presenting an integrated working methodology and (2) studying a local case of a North African watershed where scarce field data are available. Using this integrated methodology, the effects of climate and land use change on the water resources and the economic development of the Tahadart drainage basin in Northern Morocco have been evaluated. Water salinization, tourism, urbanization, and water withdrawals are a threat to water resources that will increase with future climate change. The Tahadart Basin (Morocco 1,145 km2) is characterized by rain-fed agriculture and by the presence of two water retention basins. Assessment of the effects of climate and land use change on this drainage basin was based on current and future land cover maps obtained from spatial interactions models, climate data (current and future; scenario A1b for the period 2080–2100), and hydrological models for water budget calculations. Land use suitability maps were designed assuming a A1b Special Report on Emissions Scenarios socio-economic development scenario. The most important conclusions for the period 2080–2100 are the following: (1) Freshwater availability within the watershed will likely be affected by a strong increase in evaporation from open water surface bodies due to increased temperature. This increase in evaporation will limit the amount of freshwater that can be stored in the surface reservoirs. (2) Sea level rise will cause flooding and salinization of the coastal area. (3) The risk for drought in winter is likely to increase. The methodology used in this paper is integrated into a decision support tool that is used to quantify change in land use and water resources.  相似文献   

9.
Water resources in Egypt are becoming scarce and the demand for clean drinking water supply is one of the most important priorities of the Egyptian government in recent years. Analyzing water use and future demand forecasting is a primitive clue for water demand management. Water in Luxor is used for agricultural, residential, institutional, commercial, and touristic purposes. The results of water use analysis indicated that for the time period from 1983 to 2012, agriculture is the highest consumer of water which reached about 94.76–97.38 % followed by residential water consumption (1.90–3.05 %), institutional water consumption (0.71–1.75 %), and touristic water consumption (0.02–0.43 %), respectively. The future demand forecasting results revealed that the present situation may continue to rise in the next 50 years which will increase the water demand with a water deficit ranging between 15 and 114 MCM/year. To fill the gap between the present water consumption and future residential, institutional, commercial, and touristic water demand, additional municipal facilities, and improvement and management of water supply/demand are needed. To cope with the predicted future water demand, it is recommended to improve the on-farm irrigation, reduce the demand for irrigation water, rationalize the irrigation water use, and enhance the integrated role of water users in integrated water resources management.  相似文献   

10.
Urbanisation and climate change can have adverse effects on the streamflow and water balance components in river basins. This study focuses on the understanding of different hydrologic responses to climate change between urban and rural basins. The comprehensive semi-distributed hydrologic model, SWAT (Soil and Water Assessment Tool), is used to evaluate how the streamflow and water balance components vary under future climate change on Bharalu (urban basin) and Basistha (rural basin) River basins near the Brahmaputra River in India based on precipitation, temperature and geospatial data. Based on data collected in 1990–2012, it is found that 98.78% of the water yield generated for the urban Bharalu River basin is by surface runoff, comparing to 75% of that for the rural Basistha basin. Comparison of various hydrologic processes (e.g. precipitation, discharge, water yield, surface runoff, actual evapotranspiration and potential evapotranspiration) based on predicted climate change scenarios is evaluated. The urban Bharalu basin shows a decrease in streamflow, water yield, surface runoff, actual evapotranspiration in contrast to the rural Basistha basin, for the 2050s and 2090s decades. The average annual discharge will increase a maximum 1.43 and 2.20 m3/s from the base period for representative concentration pathways (RCPs) such as 2.6 and 8.5 pathways in Basistha River and it will decrease a maximum 0.67 and 0.46 m3/s for Bharalu River, respectively. This paper also discusses the influence of sensitive parameters on hydrologic processes, future issues and challenges in the rural and urban basins.  相似文献   

11.
Hydrological models play vital roles in understanding and management of surface water resources. The physically based distributed model Soil and Water Assessment Tool (SWAT) was applied to a small catchment in south eastern Australia to determine its ability to mimic low and high streamflows. The model was successfully calibrated using 1993–2002 streamflow data and validated using 2003–2011 data with a combination of manual and auto-calibration techniques for both monthly and daily time steps. Sensitivity analysis indicated that curve number for moisture condition II (CN2) is the most sensitive parameter for both time steps. In general, the model performance statistics indicated “very good” agreement between measured and simulated discharges for both calibration and validation periods. The model was able to satisfactorily simulate both low and high flows of the Yass River. Analysis of water balance components indicated that more than 90 % of the rainfall is lost as evapotranspiration and about 45 % of the streamflow is base flow. The calibrated and validated SWAT model can be used to analyze the effect of climate and land use changes on catchment wide hydrologic process.  相似文献   

12.
Sustainable groundwater management requires knowledge of recharge. Recharge is also an important parameter in groundwater flow and transport models. Spatial variation in recharge due to distributed land-us.e, soil texture, topography, groundwater level, and hydrometeorological conditions should be accounted for in recharge estimation. However, conventional point-estimates of recharge are not easily extrapolated or regionalized. In this study, a spatially distributed water balance model WetSpass was used to simulate long-term average recharge using land-use, soil texture, topography, and hydrometeorological parameters in Dire Dawa, a semiarid region of Ethiopia. WetSpass is a physically based methodology for estimation of the long-term average spatial distribution of surface runoff, actual evapotranspiration, and groundwater recharge. The long-term temporal and spatial average annual rainfall of 626 mm was distributed as: surface runoff of 126 mm (20%), evapotranspiration of 468 mm (75%), and recharge of 28 mm (5%). This recharge corresponds to 817 l/s for the 920.12 km2 study area, which is less than the often-assumed 1,000 l/s recharge for the Dire Dawa groundwater catchment.  相似文献   

13.
The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.  相似文献   

14.
This paper proposes a decision support system for Yamchi reservoir operation in semi-arid region of Iran. The paper consists of the following steps: Firstly, the potential impacts of climate change on the streamflow are predicted. The study then presents the projections of future changes in temperature and precipitation under A2 scenario using the LARS-WG downscaling model and under RCP2.6, RCP4.5, and RCP8.5 using the statistical downscaling model (SDSM) in the northwestern of Iran. To do so, a general circulation model of HadCM3 is downscaled by using the LARS-WG model. As a result, the average temperature, for the horizon 2030 (2011–2030), will increase by 0.77 °C and precipitation will decrease by 11 mm. Secondly, the downscaled variables are used as input to the artificial neural network to investigate the possible impact of climate change on the runoffs. Thirdly, the system dynamics model is employed to model different scenarios for reservoir operation using the Vensim software. System dynamics is an effective approach for understanding the behavior of complex systems. Simulation results demonstrate that the water shortage in different sectors (including agriculture, domestic, industry, and environmental users) will be enormously increased in the case of business-as-usual strategy. In this research, by providing innovative management strategies, including deficit irrigation, the vulnerability of reservoir operation is reduced. The methodology is evaluated by using different modeling tests which then motivates using the methodology for other arid/semi-arid regions.  相似文献   

15.
Yang  Xiao-Hua  Sun  Bo-Yang  Zhang  Jian  Li  Mei-Shui  He  Jun  Wei  Yi-Ming  Li  Yu-Qi 《Natural Hazards》2015,76(1):63-81

Rapid population growth and increased economic activity impose an urgent challenge on the sustainability of water resources in Beijing. Water resources system is a complex uncertain system under climate change which is of vulnerability. But water resources system vulnerability research is relatively weak. In this study, we present a multifunctional hierarchy indicator system for the performance evaluation of water resources vulnerability (WRV) under climate change. We established an evaluation model, i.e., analytic hierarchy process combining set pair analysis (AHPSPA) model, for assessing WRV, in which weight is determined by the analytic hierarchy process (AHP) method and the evaluation degrees are determined by the set pair analysis (SPA) theory. According to the principle of scientificalness, representative, completeness and operability, the index systems and standard of water resources vulnerability evaluation are established based on the analysis of sensibility and adaptability which include five subsystems: climate change, water resources change, social and economic infrastructure, water use level and water security capability. The AHPSPA model is used to assess water resource vulnerability in Beijing with 26 indexes under eight kinds of future climate change scenarios. Certain and uncertain information quantity of the WRV is calculated by connection numbers in the AHPSPA model. Results show that the WRV of Beijing is in the middle vulnerability (3 or III) under above-mentioned different climate change scenarios. The uncertain information is between 37.77 and 39.99 % in the WRV evaluation system in Beijing. Compared with present situation, the WRV will become better under scenario I and III and will become worse under scenario II, scenario IV, scenario representative concentration pathways (RCP)2.6, scenario RCP4.5, scenario RCP6.0 and scenario RCP8.5. In addition, we find that water resources change and water use level factors play more important role in the evaluation system of water resource vulnerability in Beijing. Finally, we make some suggestions for water resources management of Beijing.

  相似文献   

16.
Climate change can impact the hydrological processes of a watershed and may result in problems with future water supply for large sections of the population. Results from the FP5 PRUDENCE project suggest significant changes in temperature and precipitation over Europe. In this study, the Soil and Water Assessment Tool (SWAT) model was used to assess the potential impacts of climate change on groundwater recharge in the hydrological district of Galicia-Costa, Spain. Climate projections from two general circulation models and eight different regional climate models were used for the assessment and two climate-change scenarios were evaluated. Calibration and validation of the model were performed using a daily time-step in four representative catchments in the district. The effects on modeled mean annual groundwater recharge are small, partly due to the greater stomatal efficiency of plants in response to increased CO2 concentration. However, climate change strongly influences the temporal variability of modeled groundwater recharge. Recharge may concentrate in the winter season and dramatically decrease in the summer–autumn season. As a result, the dry-season duration may be increased on average by almost 30 % for the A2 emission scenario, exacerbating the current problems in water supply.  相似文献   

17.
Sustainable management of groundwater resources is vital for development of areas at risk from water-resource over-exploitation. In northeast Thailand, the Phu Thok aquifer is an important water source, particularly in the Thaphra area, where increased groundwater withdrawals may result in water-level decline and saline-water upconing. Three-dimensional finite-difference flow models were developed with MODFLOW to predict the impacts of future pumping on hydraulic heads. Four scenarios of pumping and recharge were defined to evaluate the system response to future usage and climate conditions. Primary model simulations show that groundwater heads will continue to decrease by 4–12?m by the year 2040 at the center of the highly exploited area, under conditions of both increasing pumping and drought. To quantify predictive uncertainty in these estimates, in addition to the primary conceptual model, three alternative conceptual models were used in the simulation of sustainable yields. These alternative models show that, for this case study, a reasonable degree of uncertainty in hydrostratigraphic interpretation is more impactful than uncertainty in recharge distribution or boundary conditions. The uncertainty-analysis results strongly support addressing conceptual-model uncertainty in the practice of groundwater-management modeling. Doing so will better assist decision makers in selecting and implementing robust sustainable strategies.  相似文献   

18.
Grasslands account for 40 % of the Chinese land area. About 80 % of the total grasslands are in the northern temperate zone. These grassland ecosystems provide goods and services to the local people and play an important role in the global carbon cycle. Remote sensing and ecosystem modeling approaches have been used to quantify the carbon budget of these grasslands. However, the intensive site measurements and meteorological data acquired in these ecosystems in the last few decades have not been adequately used to improve ecosystem model capabilities, in turn, better quantify their carbon budget. In this study an effort was made to examine the carbon budget and its spatial–temporal variation of the temperate grasslands in China from 1951 to 2007 using a process-based biogeochemistry model. It was found that the regional grasslands acted as a small carbon sink at 11.25 g C m?2 year?1 in the study area of 64.96 million hectares with a high inter-annual variability ranging from ?124 to 122.7 g C m?2 year?1 during the study period. As a result, the temperate grasslands sequestered about 410 Tg C in their vegetation and soils during the study period. The carbon sink occurred in typical steppe in central Inner Mongolia within the 300–400 mm rainfall zone and forest steppe in central and western China. By contrast, forest steppe in northeastern China mainly acted as a carbon source. Three major ecosystem types of forest steppe, typical steppe and desert steppe account for 54, 34, and 12 % of the total sink (7.3 Tg C year?1) during 1951–2007, respectively. Soil moisture and evapotranspiration had a dominant effect on carbon budget in the typical steppe and the forest steppe while both water conditions and nitrogen mineralization rate were the major factors in the desert steppe. At a decadal scale, the air temperature significantly increased by 0.4 °C and annual precipitation insignificantly decreased by 0.2 mm; the regional carbon sink increased by 2.2 Tg C per decade during the period 1951–2007. However, further sensitivity analysis suggests that the sink of temperate grasslands will be reduced if the climate gets warmer and drier during this century since the increasing net primary production does not keep up with the increase of heterotrophic respiration.  相似文献   

19.
Atmospheric aerosol optical depth (AOD) plays an important role in radiation modeling and partly determines the accuracy of estimated downward surface shortwave radiation (DSSR). In this study, Iqbal’s model C was used to estimate DSSR under cloud-free conditions over the Koohin and Chitgar sites in Tehran, Iran; the estimated DSSR was based on (1) our proposed hybrid modeling scheme where the AOD is retrieved using the Simplified Aerosol Retrieval Algorithm (SARA), ground-based measurements at the AERONET site in Zanjan and (2) the AOD from the Terra MODerate-resolution Imaging Spectroradiometer (MODIS) sensor. Several other Terra MODIS land and atmospheric products were also used as input data, including geolocation properties, water vapor, total ozone, surface reflectance, and top-of-atmosphere (TOA) radiance. SARA-based DSSR and MODIS-based DSSR were evaluated with ground-based DSSR measurements at the Koohin and Chitgar sites in 2011 and 2013, respectively; the averaged statistics for SARA-based DSSR [R 2 ≈ 0.95, RMSE ≈ 22 W/m2 (2.5% mean value), and bias ≈ 3 W/m2] were stronger than those for MODIS-based DSSR [R 2 ≈ 0.79, RMSE ≈ 51 W/m2 (5.8% mean value), and bias ≈ 34 W/m2]. These results show that the proposed hybrid scheme can be used at regional to global scales under the assumption of future access to spatially distributed AERONET sites. Additionally, the robustness of this modeling scheme was exemplified by estimating the aerosol radiative forcing (ARF) during a dust storm in Southwest Asia. The results were comparable to those of previous studies and showed the strength of our modeling scheme.  相似文献   

20.
The modeling of changes in surface water and groundwater in the areas of inter-basin water diversion projects is quite difficult because surface water and groundwater models are run separately most of the time and the lack of sufficient data limits the application of complex surface-water/groundwater coupling models based on physical laws, especially for developing countries. In this study, a distributed surface-water and groundwater coupling model, named the distributed time variant gain model–groundwater model (DTVGM-GWM), was used to assess the influence of climate change and inter-basin water diversion on a watershed hydrological cycle. The DTVGM-GWM model can reflect the interaction processes of surface water and groundwater at basin scale. The model was applied to the Haihe River Basin (HRB) in eastern China. The possible influences of climate change and the South-to-North Water Diversion Project (SNWDP) on surface water and groundwater in the HRB were analyzed under various scenarios. The results showed that the newly constructed model DTVGM-GWM can reasonably simulate the surface and river runoff, and describe the spatiotemporal distribution characteristics of groundwater level, groundwater storage and phreatic recharge. The prediction results under different scenarios showed a decline in annual groundwater exploitation and also runoff in the HRB, while an increase of groundwater storage and groundwater level after the SNWDP’s operation. Additionally, as the project also addresses future scenarios, a slight increase is predicted in the actual evapotranspiration, soil water content and phreatic recharge. This study provides valuable insights for developing sustainable groundwater management options for the HRB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号