首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The Tharsis region is an 8000-km-wide structural dome that incorporates a concentration of the main volcanic and tectonic activity on the Planet Mars. The area of structural doming is characterised by giant radial graben-dike systems. Nested on a set of these giant dikes to the northern side of Tharsis, is Alba Patera, one of the largest volcanoes in the planetary system. The regional dikes there are in arcuate arrangement and imply an E-W to NW-SE regional extension at Alba Patera. To assess the influence of regional and local tectonics, we studied the dike orientations on the volcano with Viking mosaic data and simulated plausible stress fields with finite element modelling. We found that the influence of a NW-SE regional extension was strong near the volcano centre but decreased rapidly in importance towards the northern pole, i.e., far from the Tharsis centre. By combining this regional stress with a broad uplift that is due to a buoyancy zone of about 1400 km in lateral extent and centred under Alba Patera, we reproduced the radial pattern of dike swarms that diverge from the Tharsis trend. Regional tectonics may have dominated the early stages of dike injection. During the evolution of Alba Patera, however, local updoming controlled the dike pattern, supporting the idea of a hotspot under Alba Patera. The well-expressed dike geometry and characteristics of Alba Patera provide an ideal example for comparative study with analogue hotspots on Earth where plate tectonics and active erosion may complicate the reconstruction of volcanic and tectonic history and the understanding of involved geodynamic processes.  相似文献   

2.
The Alba Patera main graben zone is radial to the Tharsis bulge, indicating the importance of the Tharsis bulge-related peripheral rift tectonics. The concentric grabens around the Alba Patera area are also partly caused by crustal bending due to the central load of the Alba Patera volcano. These two graben sets partly coincide forming composite structures. Both tectonic systems were still active after the last major volcanic lava extrusions took place. After this, the crater chain grabens, radial to the northernmost part of the Tharsis bulge were formed. These collapse craters were evidently caused by the late-tectonic forces due to the northern Tharsis and adjoining lava loads, resulting in flexural tension and activating previous faults.  相似文献   

3.
Global data sets of images, topography and gravity are available for Mars from several orbiter missions. At the eve of new global data from Mars Global Surveyor (MGS), the capabilities of 3D geophysical modelling based on areal topography and gravity data combined with geologic-tectonic image interpretation is demonstrated here. A unique structure is chosen for the model calculations: the Alba Patera volcanic complex at the northern border of the Tharsis rise. Five groups of graben are discriminated: Ceraunius Fossae, Catenae, Tantalus Fossae (radial group) radial to the Tharsis rise, mainly associated to the formation of Tharsis, and Alba and Tantalus Fossae (circular group), younger than the other graben and circular around Alba Patera. Combining 3D elastic flexure of the lithosphere due to a 3D topographic surface load with 3D gravity models results in a rather thick lithosphere (150–200 km) and thick crust (60–100 km). In another model estimate it has been assumed that the circular grabens are induced by the stresses from the surface load of Alba Patera. In a first order calculation the surface stresses under a point load have been determined resulting in a good correlation of the stress maximum with the location of the circular grabens for a 50-km thick lithosphere. This is in accordance with earlier results from this method, but in contradiction with the thick lithosphere derived from flexure-gravity models. One possibility for this contradiction may be that the different models represent two evolutionary points of Alba Patera. (1) The correlation of stresses with the circular grabens may represent an older stage of evolution with a thinner lithosphere. (2) The flexure-gravity models represent a younger to present stage with a thick lithosphere. The results of the lithosphere thicknesses are compared with an admittance calculation and different thermal evolution models which determine comparable thicknesses (150 km). More detailed models including 3D stress models should wait for new data sets from MGS. The results from the lineament analysis and geophysical modelling are summarized in an evolution model for Alba Patera.  相似文献   

4.
The tectonics of the Tharsis and adjoining areas is considered to be associated with the convection in the Martian mantle. Convection and mantle plume have been responsible for the primary uplift and volcanism of the Tharsis area. The radial compressional forces generated by the tendency for downslope movement of surface strata, vertical volcanic intrusions and traction of mantle spreading beneath Tharsis were transmitted through the lithosphere to form peripheral mare ridge zones. The locations of mare ridges were thus mainly controlled by the Tharsis-radial compression. The load-induced stresses then contributed on further ridge formation over an extended period of time by the isostatic readjustment which was reponsible for long-term stresses in the adjoining areas. Extrusions, changes in internal temperature and possible phase changes may also have caused changes in mantle volume giving rise to additional compressional forces and crustal deformations.On leave from Dept. of Astronomy, University of Oulu, Oulu, Finland  相似文献   

5.
Using Mars Global Surveyor Mars Orbiter Camera daily global maps, cloud areas have been measured daily for water ice clouds associated with the topography of the major volcanoes Olympus Mons, Ascraeus Mons, Pavonis Mons, Arsia Mons, Elysium Mons, and Alba Patera. This study expands on that of Benson et al. [Benson, J.L., Bonev, B.P., James, P.B., Shan, K.J., Cantor, B.A., Caplinger, M.A., 2003. Icarus 165, 34-52] by continuing their cloud area measurements of the Tharsis volcanoes, Olympus Mons and Alba Patera for an additional martian year (August 2001-May 2003) and by also including Elysium Mons measurements from March 1999 through May 2003. The seasonal trends in cloud activity established by Benson et al. [Benson, J.L., Bonev, B.P., James, P.B., Shan, K.J., Cantor, B.A., Caplinger, M.A., 2003. Icarus 165, 34-52] for the five volcanoes studied earlier are corroborated here with an additional year of coverage. For volcanoes other than Arsia Mons, interannual variations that could be associated with the large 2001 planet encircling dust storm are minimal. At Arsia Mons, where cloud activity was continuous in the first two years, clouds disappeared totally for ∼85° of LS (LS=188°-275°) due to the dust storm. Elysium Mons cloud activity is similar to that of Olympus Mons, however the peak in cloud area is near LS=130° rather than near LS=100°.  相似文献   

6.
New topographic maps of six large central volcanoes on Mars are presented and discussed. These features are Olympus Mons, Elysium Mons, Albor Tholus, Ceraunius Tholus, Uranius Tholus, and Uranius Patera. Olympus Mons has the general form of a terrestrial basaltic shield constructed almost entirely from lava flows; but with 20 to 23 km of relief it is far larger. Flank slopes average about 4°. A nominal density calculated from the shield volume and the local free-air gravity anomaly is so high that anomalously dense lithosphere probably underlies the shield. Uranius Patera is a similar feature of much lower present relief, about 2 km, but its lower flanks have been buried by later lava flood deposits. Elysium Mons has about 13 km of local relief and average slopes of 4.4°, not significantly steeper than those of Olympus Mons. Its upper flank slopes are significantly steeper than those of Olympus Mons. We suggest Elysium Mons is a shield volcano modified and steepened by a terminal phase of mixed volcanic activity. Alternatively, the volcano may be a composite cone. Albor Tholus is a partially buried 3-km-tall shield-like construct. Ceranius and Uranius Tholus are steeper cone-like features with relief of about 6 and 2 km, respectively. Slopes are within the normal range for terrestrial basaltic shields, however, and topographic and morphologic data indicate burial of lower flanks by plains forming lavas. These cones may be lava shield constructs modified by a terminal stage of explosive activity which created striking radial patterns of flank channels. Differences among these six volcanoes in flank slopes and surface morphology may be primarily consequences of different terminal phases of volcanic activity, which added little to the volume of any construct, and burial of shallow lower flanks by later geologic events. Additional topographic data for Olympus Mons, Arsia Mons, and Hadriaca Patera are described. The digital techniques used to extract topographiv data from Viking Orbiter stereo images are also described.  相似文献   

7.
The Mars Global Surveyor Mars Orbiter Camera was used to obtain global maps of the martian surface with equatorial resolution of 7.5 km/pixel in two wavelength ranges: blue (400-450 nm) and red (575-625 nm). The maps used were acquired between March 15, 1999 (Ls=110°) and July 31, 2001 (Ls=205°), corresponding to approximately one and a quarter martian years. Using the global maps, cloud area (in km2) has been measured daily for water ice clouds topographically corresponding to Olympus Mons, Ascraeus Mons, Pavonis Mons, Arsia Mons, Alba Patera, the western Valles Marineris canyon system, and for other small surface features in the region. Seasonal trends in cloud activity have been established for the three Tharsis volcanoes, Olympus Mons, and Alba Patera. Olympus, Ascraeus, and Pavonis Mons show cloud activity from about Ls=0°-220° with a peak in cloud area near Ls=100°. One of our most interesting observational results is that Alba Patera shows a double peaked feature in the cloud area with peaks at Ls=60° and 140° and a minimum near Ls=100°. Arsia Mons shows nearly continuous cloud activity. The altitudes of several of these clouds have been determined from the locations of the visual cloud tops, and optical depths were measured for a number of them using the DISORT code of Stamnes et al. (1988, Appl. Opt. 27, 2502-2509). Several aspects of the observations (e.g., cloud heights, effects of increased dust on cloud activity) are similar to simulations in Richardson et al. (2002, J. Geophys. Res. 107, 5064). A search for short period variations in the cloud areas revealed only indirect evidence for the diurnal cloud variability in the afternoon hours; unambiguous evidence for other periodicities was not found.  相似文献   

8.
Jafar Arkani-Hamed 《Icarus》2009,204(2):489-498
We investigate the polar wander of Mars in the last ∼4.2 Ga. We identify two sets of basins from the 20 giant impact basins reported by Frey [Frey, H., 2008. Geophys. Res. Lett. 35, L13203] which trace great circles on Mars, and propose that the great circles were the prevailing equators of Mars at the impact times. Monte Carlo tests are conducted to demonstrate that the two sets of basins are most likely not created by random impacts. Also, fitting 63,771 planes to randomly selected sets of 5, 6, or 7 basins indicated that the identified two sets are unique. We propose three different positions for the rotation pole of Mars, besides the present one. Accordingly, Tharsis bulge was initially formed at ∼50 N and moved toward the equator while rotating counterclockwise due to the influence of the two newly forming volcanic constructs, Alba Patera and Elysium Rise. The formation of the giant impact basins, subsequent mass concentrations (mascons) in Argyre, Isidis, and Utopia basins, and surface masses of volcanic mountains such as Ascraeus, Pavonis, Arsia and Olympus, caused further polar wander which rotated Tharsis bulge clockwise to arrive at its present location. The extensive polar motion of Mars during 4.2-3.9 Ga implies a weak lithosphere on a global scale, deduced from a total of 72,000 polar wander models driven by Tharsis bulge, Alba Patera and Elysium Rise as the major mass perturbations. Different compensation states, 0-100%, are examined for each of the surface loads, and nine different thicknesses are considered for an elastic lithosphere. The lithosphere must have been very weak, with an elastic thickness of less than 5 km, if the polar wander was driven by these mass perturbations.  相似文献   

9.
The early history of Mars included two large-scale events of great significance: (1) the lowering and resurfacing of one-third of the crust, followed closely by (2) evolution of the Tharsis bulge. Tharsis development apparently involved two stages: (1) an initial rapid topographic rise accompanied by the development of a vast radial fault system, and (2) an extremely long-lived volcanic stage apparently continuing to the geologic present. A deformational model is proposed whereby a first-order mantle convection cell caused early subcrustal erosion and foundering of the low third of the planet. Underplating and deep intrusion by the eroded materials beneath Tharsis caused isostatic doming. Minor radial gravity motions of surficial layers off the dome produced the radial fault system. The hot underplate eventually affected the surface to cause the very long-lived volcanic second stage. Deep crustal anisotropy associated with the locally NE-trending boundary between the highland two-thirds and the lowland one-third caused the NE elongation of many features of Tharsis.  相似文献   

10.
We have used Galileo spacecraft data to produce a geomorphologic map of the Culann-Tohil region of Io's antijovian hemisphere. This region includes a newly discovered shield volcano, Ts?i Goab Tholus and a neighboring bright flow field, Ts?i Goab Fluctus, the active Culann Patera and the enigmatic Tohil Mons-Radegast Patera-Tohil Patera complex. Analysis of Voyager global color and Galileo Solid-State Imaging (SSI) high-resolution, regional (50-330 m/pixel), and global color (1.4 km/pixel) images, along with available Galileo Near-Infrared Mapping Spectrometer (NIMS) data, suggests that 16 distinct geologic units can be defined and characterized in this region, including 5 types of diffuse deposits. Ts?i Goab Fluctus is the center of a low-temperature hotspot detected by NIMS late during the Galileo mission, and could represent the best case for active effusive sulfur volcanism detected by Galileo. The Culann volcanic center has produced a range of explosive and effusive deposits, including an outer yellowish ring of enhanced sulfur dioxide (SO2), an inner red ring of SO2 with short-chain sulfur (S3-S4) contaminants, and two irregular green diffuse deposits (one in Tohil Patera) apparently produced by the interaction of dark, silicate lava flows with sulfurous contaminants ballistically-emplaced from Culann's eruption plume(s). Fresh and red-mantled dark lava flows west of the Culann vent can be contrasted with unusual red-brown flows east of the vent. These red-brown flows have a distinct color that is suggestive of a compositional difference, although whether this is due to surface alteration or distinct lava compositions cannot be determined. The main massif of Tohil Mons is covered with ridges and grooves, defining a unit of tectonically disrupted crustal materials. Tohil Mons also contains a younger unit of mottled crustal materials that were displaced by mass wasting processes. Neighboring Radegast Patera contains a NIMS hotspot and a young lava lake of dark silicate flows, whereas the southwest portion of Tohil Patera contains white flow-like units, perhaps consisting of ‘ponds’ of effusively emplaced SO2. From 0°-15° S the hummocky bright plains unit away from volcanic centers contains scarps, grooves, pits, graben, and channel-like features, some of which have been modified by erosion. Although the most active volcanic centers appear to be found in structural lows (as indicated by mapping of scarps), DEMs derived from stereo images show that, with the exception of Tohil Mons, there is less than 1 km of relief in the Culann-Tohil region. There is no discernable correlation between centers of active volcanism and topography.  相似文献   

11.
The formation of the central calderas of the Alba Patera summit area is proposed to have been caused by collapse(s) into relatively shallow and wide magma chamber(s). The subduction or collapse of the whole central Alba Patera area and the formation of peripheral circular fossae grabens around it were caused by a deeper, wider and more primary magmatic process which was more directly connected to the ascending hot mantle.  相似文献   

12.
Karl R. Blasius 《Icarus》1976,29(3):343-361
Mariner 9 images of the four great volcanic shields of the Tharsis region of Mars show many circular craters ranging in diameter from 100mm to 20 km. Previous attempts to date the volcanoes from their apparent impact crater densities yielded a range of results. The principal difficulty is sorting volcanic from impact craters for diameters ?1 km. Many of the observed craters are aligned in prominent linear and concentric patterns suggestive of volcanic origin. In this paper an attempt is made to date areas of shield surface, covered with high resolution images using only scattered small (?1 km) craters of probable impact origin. Craters of apparent volcanic origin are systematically excluded from the dating counts.The common measure of age, deduced for all surfaces studied, is a calculated “crater age” F′ defined as the number of craters equal to or larger than 1 km in diameter per 106km2. The conclusions reached from comparing surface ages and their geological settings are: (1) Lava flow terrain surfaces with ages, F′, from 180 to 490 are seen on the four great volcanoes. Summit surfaces of similar ages, F′ = 360 to 420, occur on the rims of calderas of Arsia Mons, Pavonis Mons, and Olympus Mons. The summit of Ascraeus Mons is possibly younger; F′ is calculated to be 180 for the single area which could be dated. (2) One considerably younger surface, F′ < 110, is seen on the floor of Arsia Mon's summit caldera. (3) Nearly crater free lava flow terrain surfaces seen on Olympus Mons are estimated to be less than half the age of a summit surface. The summit caldera floor is similarly young. (4) The pattern of surface ages on the volcanoes suggests that their eruption patterns are similar to those of Hawaiian basaltic shields. The youngest surfaces seem concentrated on the mid-to-lower flanks and within the summit calderas. (5) The presently imaged sample of shield surface, though incomplete, clearly shows a broad range of ages on three volcanoes—Olympus, Arsia, and Pavonis Mons.Estimated absolute ages of impact dated surfaces are obtained from two previously published estimates of the history of flux of impacting bodies on Mars. The estimated ranges of age for the observed crater populations are 0.5 to 1.2b.y. and 0.07 to 0.2b.y. Areas which are almost certainly younger, less than 0.5 or 0.07b.y., are also seen. The spans of surface age derived for the great shields are minimum estimates of their active lifetimes, apparently very long compared to those of terrestrial volcanoes.  相似文献   

13.
Wudalianchi volcanic field, located in northeast China, consists of 14 Quaternary volcanoes with each volcano as a steep-sided scoria cone surrounded by gently sloping lava flows. Each cone is topped with a bowl-shaped or funnel-shaped crater. The volcanic cones are constructed by the accumulation of tephra and other ejecta. In this paper, their geologic features have been investigated and compared with some Martian volcanic features at Ascraeus Mons volcanoes observed on images obtained from High-Resolution Imaging Science Experiments (HiRISE), Mars Orbiter Camera (MOC), Context Imager (CTX) and Thermal Emission Imaging System (THEMIS). The results show that both Wudalianchi and Ascraeus Mons volcanoes are basaltic, share similar eruptive and geomorphologic features and eruptive styles, and have experienced multiple eruptive phases, in spite of the significant differences in their dimension and size. Both also show a variety of eruptive styles, such as fissure and central venting, tube-fed and channel-fed lava flows, and probably pyroclastic deposits. Three volcanic events are recognized at Ascraeus Mons, including an early phase of shield construction, a middle eruptive phase forming a low lava shield, and the last stage with aprons mantling both NE and SW flanks. We suggest that magma generation at both Wudalianchi and Ascraeus Mons might have been facilitated by an upwelling mantle plume or upwelling of asthenospheric mantle, and a deep-seated fault zone might have controlled magma emplacement and subsequent eruptions in Ascraeus Mons as observed in the Wudalianchi field, where the volcanoes are constructed along the northeast-striking faults. Fumarolic cones produced by water/magma interaction at the Wudalianchi volcanic field may also serve as an analogue for the pseudocraters identified at Isidis and Cerberus Planitia on Mars, suggesting existence of frozen water in the ground on Mars during Martian volcanic eruptions.  相似文献   

14.
Observations of water ice clouds and dust are among the main scientific goals of the Planetary Fourier Spectrometer (PFS), a payload instrument of the European Mars Express mission. We report some results, obtained in three orbits: 37, 41 and 68. The temperature profile, and dust and water ice cloud opacities are retrieved from the thermal infrared (long-wavelength channel of PFS) in a self-consistent way using the same spectrum. Orographic ice clouds are identified above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Both volcanoes were observed near noon at Ls=337° and 342°, respectively. The effective radius of ice particles is preliminary estimated as 1-3 μm, changing along the flanks. The corresponding visual opacity changes in the interval 0.2-0.4 above Olympus and 0.1-0.6 above Ascraeus Mons. In the case of Ascraeus Mons, the ice clouds were observed mainly above the Southern flank of the volcano with maximum opacity near the summit. In the case of Olympus, the clouds were found above both sides of the top. A different type of ice cloud is observed at latitudes above 50°N (orbit 68) in the polar hood: the effective particle radius is estimated to be 4 μm. Below the 1 mb level an inversion in the temperature profiles is found with maximum temperature at around 0.6 mb. Along orbit 68 it appears above Alba Patera, then it increases to the north and decreases above the CO2 polar cap. Beginning from latitude 20°S above Tharsis (orbit 68), the ice clouds and dust contribute equally to the spectral shape. Further on, the ice clouds are found everywhere along orbit 68 up to the Northern polar cap, except the areas between the Northern flank of Ascraeus Mons (below 10 km) and the edge of Alba Patera. Orbit 41 is shifted from the orbit 68 by roughly 180° longitude and passes through Hellas. Ice clouds are not visible in this orbit at latitudes below 80°S. The dust opacity is anticorrelated with the surface altitude. From 70°S to 25°N latitude the vertical dust distribution follows an exponential law with a scale height of 11.5±0.5 km, which corresponds to the gaseous scale height near noon and indicates a well-mixed condition. The 9 μm dust opacity, reduced to zero surface altitude, is found to be 0.25±0.05, which corresponds to a visual opacity of 0.5-0.7 (depending on the particle size).  相似文献   

15.
Bell Regio is a highland fragment south of Ishtar Terra, extending 1300 km in N-S direction and 900 km in E-W direction. South of this region Eisila Regio is located with an E-W extension of 8000 km and a width of 2000 km. Bell Regio consists of two large massifs: a northern massif with maximum altitudes of 2.5 to 3.0 km above the 6051 km datum and with a semi-corona (other coronae on Venus are associated with volcanic-tectonic processes) and a southern massif with a maximum of 4 to 4.5 km above the datum. The possible shield volcano Tepev Mons of 250 km in diameter is superimposed on the southern massif. It shows a radar dark crater of 40 km diameter on its eastern flank, a crater-like feature of 15 km diameter on the top and a radar bright area extending from the dark crater across the summit. South of Tepev Mons are several volcanic structures with summit depressions. The crest of Bell Regio exhibits a N-S extending fossa system. The whole fresh appearing plain-like area has been classified as rather young compared to other units. Gravity data show a maximum of 33 mGal at Bell Regio and 35 mGal at eastern Eisila Regio. The basins north and south of the highland fragments are associated with gravity lows.Density models have been calculated along the gravity profile Rev. 163 of Pioneer Venus Orbiter across Bell and Eisila Regiones assuming Airy isostatic compensation of the topography and considering several boundary conditions (e.g. mean crustal thickness T<- 100 km). There are two groups of density models in the case of Airy compensation. In the first group global total compensation is assumed along the profile and regional partial compensation for Bell and Eisila Regiones. This solution gives a range of possible models with 10 km <- T <- 100 km and a partial compensation for Bell and Eisila Regiones between 12% and 55%. Thus these two highland fragments show subsurface surplus masses.The second group of models considers for the whole profile total compensation with a global T <- 100 km and a regional very large depth of compensation for Bell and Eisila Regiones, i.e. T > 100 km.The highland of Beta Regio has, like Bell Regio, a N-S rifting system, volcanic structures, a fresh appearing plain-like surface and either deep-seating compensating masses or near surface surplus masses. Bell can be considered as little sister of Beta. The geological and geophysical results imply a volcanic-tectonic uplift over a hot spot. The conditions of Atla Regio in eastern Aphrodite Terra are similar. Thus the existence of volcanic-tectonic uplifts support the important role of hot spot volcanism on Venus.Contribution Nr. 343, Institut für Geophysik der Universität Kiel, F.R.G.  相似文献   

16.
Topographic information, surface structures and construction of the Martian Tharsis bulge are used to estimate the previous stresses across the low-lying peripheral margins of the crustal blocks in terms of simple compensation models. Hot mantle activity, crustal roots, isostasy, and late-stage extensive lithosphere thickening together with volcanic building have been in combined response to the high-elevated Tharsis bulge. The initial phases of the Tharsis building have been dominated by the mantle plume doming, followed by extrusional dome raising. The volcanism has been most important bulge building factor only after thickening of the crust. During the initial mantle-generated doming and igneous activity the thin-lithosphere block tectonics has been very important. There has been a compressional peripheral zone around the bulge giving rise to dorsa formation while the high bulge crests have been in tensional state. The situation may be favorable for comparative studies with other planets. We may have something to learn from this block tectonics on the one-plate planet Mars even in respect to the Earth's plate tectonic paradigm.On leave from Dept. of Astronomy, University of Oulu, Finland.  相似文献   

17.
Gerald G. Schaber 《Icarus》1980,42(2):159-184
High-resolution Viking Orbiter images (10 to 15 m/pixel) contain significant information on Martian surface roughness at 25- to 100-m lateral scales, whereas Earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m, or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns (low peak radar cross section) are qualitatively confirmed by the Viking image data. Large-scale, curvilinear (but parallel) ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows south and west of Arsia Mons, and within the large region of low thermal inertia centered on Tharsis Montes (H. H. Kieffer et al., 1977, J. Geophys. Res.82, 4249–4291), were found to possess such a recent mantle. At predawn residual temperatures ≥ ?10K (south boundary of this low-temperature region), lava flows are shown to have relatively old eolian mantles. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin.  相似文献   

18.
Syria Planum and Alba Patera are two of the most prominent features of magmatic-driven activity identified for the Tharsis region and perhaps for all of Mars. In this study, we have performed a Geographic Information System-based comparative investigation of their tectonic histories using published geologic map information and Mars Orbiter Laser Altimetry (MOLA) data. Our primary objective is to assess their evolutional histories by focusing on their extent of deformation in space and time through stratigraphic, paleotectonic, topographic, and geomorphologic analyses. Though there are similarities among the two prominent features, there are several distinct differences, including timing deformational extent, and tectonic intensity of formation. Whereas Alba Patera displays a major pulse of activity during the Late Hesperian/Early Amazonian, Syria Planum is a long-lived center that displays a more uniform distribution of simple graben densities ranging from the Noachian to the Amazonian, many of which occur at greater distances away from the primary center of activity. The histories of the two features presented here are representative of the complex, long-lived evolutional history of Tharsis.  相似文献   

19.
L.S. Crumpler  J.C. Aubele 《Icarus》1978,34(3):496-511
Analysis of Viking Orbiter data suggests that Arsia Mons, Pavonis Mons, and Ascreus Mons, three large shield volcanoes of the Tharsis volcanoes of Mars, have had similar evolutionary trends. Arsia Mons appears to have developed in the following sequence: (1) construction of a main shield volcano, (2) outbreak of parasitic eruption centers on the northeast and southwest flanks, (3) volcano-tectonic subsidence of the summit and formation of concentric fractures and grabens, possibly by evacuation of an underlying magma chamber during eruption of copious lavas from parasitic eruption centers on the northeast and southwest flanks, and (4) continued volcanism along a fissure or rift bisecting the main shield, resulting in flooding of the floor of the volcano-tectonic depression and inundation of the northeast and southwest flanks by voluminous lavas locally forming parasitic shields. In terms of this sequence Pavonis Mons has developed to stage (3) and Ascreus Mons has evolved to stage (2). This interpretation is supported by crater frequency-diameter distributions in the 0.1? to 3.0 km-diameter range.  相似文献   

20.
Abstract— The age, structure, composition, and petrogenesis of the martian lithosphere have been constrained by spacecraft imagery and remote sensing. How well do martian meteorites conform to expectations derived from this geologic context? Both data sets indicate a thick, extensive igneous crust formed very early in the planet's history. The composition of the ancient crust is predominantly basaltic, possibly andesitic in part, with sediments derived from volcanic rocks. Later plume eruptions produced igneous centers like Tharsis, the composition of which cannot be determined because of spectral obscuration by dust. Martian meteorites (except Allan Hills 84001) are inferred to have come from volcanic flows in Tharsis or Elysium, and thus are not petrologically representative of most of the martian surface. Remote‐sensing measurements cannot verify the fractional crystallization and assimilation that have been documented in meteorites, but subsurface magmatic processes are consistent with orbital imagery indicating thick crust and large, complex magma chambers beneath Tharsis volcanoes. Meteorite ejection ages are difficult to reconcile with plausible impact histories for Mars, and oversampling of young terrains suggests either that only coherent igneous rocks can survive the ejection process or that older surfaces cannot transmit the required shock waves. The mean density and moment of inertia calculated from spacecraft data are roughly consistent with the proportions and compositions of mantle and core estimated from martian meteorites. Thermal models predicting the absence of crustal recycling, and the chronology of the planetary magnetic field agree with conclusions from radiogenic isotopes and paleomagnetism in martian meteorites. However, lack of vigorous mantle convection, as inferred from meteorite geochemistry, seems inconsistent with their derivation from the Tharsis or Elysium plumes. Geological and meteoritic data provide conflicting information on the planet's volatile inventory and degassing history, but are apparently being reconciled in favor of a periodically wet Mars. Spacecraft measurements suggesting that rocks have been chemically weathered and have interacted with recycled saline groundwater are confirmed by weathering products and stable isotope fractionations in martian meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号