首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Based on data from the middle Yellow River basin, a wind-water two-phase mechanism for erosion and sediment-producing processes has been found. By using this mechanism, the extremely strong erosion and sediment yield in the study area can be better explained. The operation of wind and water forces is different in different seasons within a year. During winter and spring, strong wind blows large quantities of eolian sand to gullies and river channels, which are temporally stored there. During the next summer, rainstorms cause runoff that contains much fine loessic material and acts as a powerful force to carry the previously prepared coarse material. As a result, hyperconcentrated flows occur, resulting in high-intensity erosion and sediment yield.  相似文献   

2.
Abstract

Some unique coupled wind–water erosion processes exist in the desert-loess transitional zone in the middle Yellow River basin. Based on data from 40 stations on 29 rivers, a study was made on the influence of such processes on suspended sediment grain-size characteristics of the tributaries of the Yellow River. Results show that the percentage of >0.05-mm grain size decreases with the increased annual mean precipitation, but increases with the increase in the annual mean number of sand-dust storm days. The percentage of <0.01-mm grain size increases with the increase in the annual mean precipitation, but decreases with the increase in the annual number of sand-dust storm days. Based on annual mean data from 40 stations, multiple regression equations were established between the percentages of >0.05-mm grain size (r >0.05) and <0.01-mm grain size (r <0.01), annual mean precipitation (P m) and annual mean number of sand-dust storm days (D ss). On this basis, the relative contributions of the variations in D ss and P m to the variation in r >0.05 and r <0.01 were estimated. The results indicate that the variation in sand-dust storm frequency exerts greater influences on the variation in grain-size characteristics of suspended load than does the variation in annual mean precipitation. With the increase in the coupled wind–water processes index, expressed by P m/D ss, the percentage of >0.05-mm grain size in suspended sediment decreases and the percentage of <0.01-mm grain size increases. With the variation in P m/D ss, different combinations of r >0.05 with r <0.01 appear, which have some influence on the formation of hyperconcentrated flows. There exist some optimal ratios of coarse to fine fractions in suspended sediment that make sediment concentrations of hyperconcentrated flows the highest. The optimal r >0.05/r <0.01 value is related to some range of the index P m/D ss. When the P m/D ss index falls in this range, the optimum combination of relative coarse with fine sediments in the suspended load appears, and thus results in the peak values of sediment concentration.  相似文献   

3.
Jiongxin Xu 《水文科学杂志》2013,58(10):1926-1940
ABSTRACT

The tributary–trunk stream relationship is investigated with respect to hyperconcentrated flows and coupled wind–water processes in the Yellow River, China. Ten small tributaries that drain only 3% of the total drainage area of the trunk stream transport large amounts of relatively coarse sediment from the desert to the trunk stream during hyperconcentrated floods. The resultant strong sedimentation often jams the trunk stream, leading to serious disasters. This study reveals the cause of this interesting phenomenon and proposes countermeasures for disaster reduction. A typical sediment-jamming event (SJE) in July 1989 was thoroughly analysed based on the observational data, including the beginning, development and final stages of the event. An index of the geomorphologic effectiveness of the tributary on the trunk stream and a number of indices describing SJEs and the influencing factors are adopted, based on which a discrimination relationship for the occurrence of SJEs is established and some statistical relationships are also established. The SJE’s hydrological and geomorphologic impacts are discussed at short timescales (from several days to one month) and at long time scales (up to 46 years). The results may help to gain a new insight into the study of the tributary–trunk stream relationship, and provide useful information for sediment management and disaster-reduction planning in the drainage basin. Countermeasures are suggested to reduce the channel sedimentation and the risk of sediment-jamming disaters.
Editor M.C. Acreman Associate editor Q. Zhang  相似文献   

4.
LINTRODUCTIONThetributariesofmiddleYellowRiverarefamousintheworldforthehighestsuspendedsedimentconcentrationandsedimentyield.Forexample,atWenjiachuanstationofKuyeheRiverthemeasuredhighestsuspendedconcentrationis1700kg/m',andthemeanannualsedimentyieldis25000t/(kln'.a).Theformationofhyperconcentratedflowsandtheirinfluenceonerosionprocessesareofgreatimportancenotonlyfromatheoreticalpointofviewbutalsoforpracticalpurposes.Therefore,scientistsfromChinaandallovertheworldhavedrawntheirintensio…  相似文献   

5.
Sediment production, transport and yield were quantified over various timescales in response to rainfall and runoff within an alluvial gully (7 · 8 ha), which erodes into dispersible sodic soils of a small floodplain catchment (33 ha) along the Mitchell River, northern Australia. Historical air photographs and recent global positioning system (GPS) surveys and LiDAR data documented linear increases in gully area and volume, indicating that sediment supply has been relatively consistent over the historic period. Daily time lapse photography of scarp retreat rates and internal erosion processes also demonstrated that erosion from rainfall and runoff consistently supplied fine washload (< 63 µm) sediment in addition to coarse lags of sand bed material. Empirical measurements of suspended sediment concentrations (10 000 to >100 000 mg/L) and sediment yields (89 to 363 t/ha/yr) were high for both Australian and world data. Total sediment yield estimated from empirical washload and theoretical bed material load was dominated by fine washload (< 63 µm). A lack of hysteresis in suspended sediment rating curves, scarp retreat and sediment yield correlated to rainfall input, and an equilibrium channel outlet slope supported the hypothesis that partially or fully transport‐limited conditions predominated along the alluvial gully outlet channel. This is in contrast to sediment supply‐limited conditions on uneroded floodplains above gully head scarps. While empirical data presented here can support future modelling efforts to predict suspended sediment concentration and yield under the transport limiting situations, additional field data will also be needed to better quantify sediment erosion and transport rates and processes in alluvial gullies at a variety of spatial and temporal scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Flow records, rising‐stage sediment samplers, and a sand suspension model are used to examine suspended sediment concentrations during major floods caused by tropical cyclones TC Joni and TC Kina in the Rewa River, Fiji. The highest concentrations of total suspended solids were measured during the early stages of TC Kina. The suspension model predicts higher sand concentrations for TC Kina compared with TC Joni because of the larger slope and higher shear stresses during Kina. Extremely high wash load concentrations early in TC Kina are at least partly due to remobilization of fine sediment deposited during the earlier TC Joni flood. Samples from the TC Kina had volumetric concentrations larger than 5%, indicating hyperconcentrated streamflows. Mass‐density shear stresses in the hyperconcentrated flows are up 1·6 times larger than clear‐water shear stresses, but they occur early during low stages of the flood and probably do not result in severe bed erosion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Based on data from 35 stations on the tributaries of the Yellow River, annual specific sediment yield (Ys) in eight grain size fractions has been related to basin‐averaged annual sand–dust storm days (Dss) and annual precipitation (Pm) to reveal the influence of eolian and fluvial processes on specific sediment yield in different grain size fractions. The results show that Ys in fine grain size fractions has the highest values in the areas dominated by the coupled wind–water process. From these areas to those dominated by the eolian process or to those dominated by the fluvial process, Ys tends to decrease. For relatively coarse grain size fractions, Ys has monotonic variation, i.e. with the increase in Dss or the decrease in Pm, Ys increases. This indicates that the sediment producing behavior for fine sediments is different from that for relatively coarse sediments. The results all show that Ys for relatively coarse sediments depends on the eolian process more than on the fluvial process, and the coarser the sediment fractions the stronger the dependence of the Ys on the eolian process. The YsDss and YsPm curves for fine grain size fractions show some peaks and the fitted straight lines for YsDss and YsPm relationships for relatively coarse grain size fractions show some breaks. Almost all these break points may be regarded as thresholds. These thresholds are all located in the areas dominated by the coupled wind–water process, indicating that these areas are sensitive for erosion and sediment production, to which more attention should be given for the purpose of erosion and sediment control. A number of regression equations were established, based which the effect of rainfall, sand–dust storms and surface material grain size on specific sediment yield can be assessed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Modeling of suspended sediment particle movement in surface water can be achieved by stochastic particle tracking model approaches.In this paper,different mathematical forms of particle tracking models are introduced to describe particle movement under various flow conditions,i.e.,the stochastic diffusion process,stochastic jump process,and stochastic jump diffusion process.While the stochastic diffusion process can be used to represent the stochastic movement of suspended particles in turbulent flows,the stochastic jump and the stochastic jump diffusion processes can be used to describe suspended particle movement in the occurrences of a sequence of extreme flows.An extreme flow herein is defined as a hydrologic flow event or a hydrodynamic flow phenomenon with a low probability of occurrence and a high impact on its ambient flow environment.In this paper,the suspended sediment particle is assumed to immediately follow the extreme flows in the jump process(i.e.the time lag between the flow particle and the sediment particle in extreme flows is considered negligible).In the proposed particle tracking models,a random term mainly caused by fluid eddy motions is modeled as a Wiener process,while the random occurrences of a sequence of extreme flows can be modeled as a Poisson process.The frequency of occurrence of the extreme flows in the proposed particle tracking model can be explicitly accounted for by the Poisson process when evaluating particle movement.The ensemble mean and variance of particle trajectory can be obtained from the proposed stochastic models via simulations.The ensemble mean and variance of particle velocity are verified with available data.Applicability of the proposed stochastic particle tracking models for sediment transport modeling is also discussed.  相似文献   

10.
Suspended sediment dynamics are still imperfectly understood, especially in the loess hilly region on the Loess Plateau, with strong temporal variability, where few studies heretofore have been conducted. Using a dataset up to eight years long in the Lower Chabagou Creek, the variability in suspended sediment load at different temporal scales (within‐flood variability, monthly–seasonal and annual) is analyzed in this paper. The results show that, on the within‐flood scale, most of the sediment peaks lag behind peak discharges, implying that slope zones are the main sediment source area; independent of the occurring sequences of the peaks of sediment and discharge, all the events could present an anti‐clockwise hysteresis loop resulting from the abundant material and the influence of hyperconcentrated flows on suspended sediment concentration. At monthly and seasonal scales, there is a ‘store–release’ process, i.e. sediment is prepared in winter, spring and late autumn, and exported in summer and early autumn. At the annual scale, the high variability in concentration and sediment yield are highly correlated with water yield, resulting from the number and magnitude of floods recorded yearly, and almost all the suspended load is transported during these events. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Elaborate experiments were performed in a 30 m long, 0.5 m deep and 0.2 m wide laboratory flume to study the process of infiltration of fine sediment into the pores of coarse sediment forming the channel bed material. Different concentrations of suspended load of fine sediment of size 0.064 mm were passed over the channel bed made up of three different types of coarse sediments; two uniform and one nonuniform. The proportion of fine sediment infiltrated into the pores of bed material for each equilibrium concentration of suspended load of fine sediment in the flow was studied during several experimental runs. The proportion of fine sediment within the pores of bed material increased with an increase in the equilibrium concentration of suspended load of fine sediment in the flow. This process continued till the pores within the coarse sediment bed were filled up to the capacity with the fine sediment transported by the flow in suspension. The theoretical value was identified for limit for maximum proportion of fine sediment that can be present within the pores of bed material. On further increase in the concentration of suspended load of fine sediment in the flow, deposition of fine sediment occurs on the surface of the flume bed in the form of ripples of the fine sediment. This condition is defined as 'depositional condition'. Experimental observations on these and related aspects are presented herein.  相似文献   

12.
Characteristics of energy dissipation in hyperconcentrated flows   总被引:1,自引:0,他引:1  
An equilibrium equation for the turbulence energy in of solid-liquid two-phase flow theory. The equation sediment-laden flows was derived on the basis was simplified for two-dimensional, uniform, steady and fully developed turbulent hyperconcentrated flows. An energy efficiency coefficient of suspended-load motion was obtained from the turbulence energy equation, which is defined as the ratio of the sediment suspension energy to the turbulence energy of the sediment-laden flows. Laboratory experiments were conducted to investigate the characteristics of energy dissipation in hyperconcentrated flows. A total of 115 experimental runs were carried out, comprising 70 runs with natural sediments and 45 runs with cinder powder. Effects of sediment concentration on sediment suspension energy and flow resistance were analyzed and the relation between the energy efficiency coefficient of suspended-load motion and sediment concentration was established on the basis of experimental data. Furthermore, the characteristics of energy dissipation in hyperconcentrated flows were identified and described. It was found that the high sediment concentration does not increase the energy dissipation; on the contrary, it decreases flow resistance.  相似文献   

13.
Due to the temporal decoupling of water and sediment sources in a large river basin, a flood from a sediment source area with high suspended sediment concentration (SSC) may be diluted by flow from a major runoff source area with low SSC. In this paper, this dilution effect is considered for 145 flood events from the Yellow River, China. Two indices (β1 and β2) describing the dilution effect are proposed, based on water and sediment from the clear water source area and the coarse sediment producing area. Regression equations between channel sedimentation (Sdep) and β1 and β2 are established based on flood events and annual data, respectively. The results show that dilution reduces channel sedimentation in the lower reaches by 34?1% and that this is related to a reduced frequency of hyperconcentrated flows in the lower reaches. The Longyangxia Reservoir for hydro‐electric generation has stored huge quantities of clear runoff from the upper Yellow River during high‐flow season since 1985, greatly reducing the dilution of the hyperconcentrated floods and therefore enhancing sedimentation in the lower reaches. For the purpose of reducing sedimentation, changing the operational mode of the Longyangxia Reservoir to restore the dilution effect is suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
《水文科学杂志》2013,58(4):777-792
Abstract

Based on data from five hydrometric stations, Pingshan station on the Jinshajiang River, Gaochang station on the Minjiang River, Wulong station on the Wujiang River, Wusheng station on the Jialingjiang River and Yichang station on the Yangtze River, a study has been made of the temporal variation in grain size of suspended sediment load in the upper Yangtze River. The results show that in the past 40 years, the grain size of the suspended sediment load in the main stem and major tributaries of the upper Yangtze River has had a decreasing trend, that can be explained by the effect of reservoir construction and implementation of soil conservation measures. The reservoirs in the upper Yangtze River Basin, all used for water storage for hydro-electric generation and/or irrigation, have trapped coarse sediment from the drainage area above the dam and, thus, the sediment released now is much finer than before the construction of the reservoirs. The downstream channels are all gravel-bedded or even in bedrock, with little fine sediment, and thus, the released flow can hardly get a supply of fine sediment through eroding the bed. Then, after the downstream adjustment, the grain size of suspended sediment is still fine. Large-scale soil conservation measures have significantly reduced sediment yield in some major sediment source areas. The relatively coarse sediment is trapped and, thus, the sediment delivered to the river becomes finer.  相似文献   

15.
IINTRODUCTIONStreamflowformostriversintheworldcanberegardedasasolid-liquidtwo-phaseflow.Theexistenceofsuspendedsedimenthassomeinfluenceonthestreamflow'sphysicalandmechanicalproperties,whichinturnaffectsthestreamflow'ssedimentcarryingbehaviors(ChienandWan,1983;Chien,1989).Forriverswithrelativelylowsuspendedsedimefltconcentrations,theabove-mentionedeffectisnegligible.However,withtheincreasesinsuspendedsedimentconcentration,thiseffectbecomesincreasinglysignificant;thesediment-carryingbehavi…  相似文献   

16.
Since 1986, with a sharp decrease in water dis-charges, the Yellow River has entered a period charac-terized by low discharges and seasonally occurring dry-ups[1,2]. Since 1999, more strict management of water diversion has been imposed, and therefore the dry-ups have been well under control. However, the lower reaches of the Yellow River is still predominated by low-discharges, and has become a man-induced shrinking river. In the past 40 years, significant effect of soil and water conservat…  相似文献   

17.
The production of coarse sediment in mountain landscapes depends mainly on the type and activity of geomorphic processes and topographic and natural conditions (e.g. vegetation cover) of these catchments. The supply of sediment from these slopes to mountain streams and its subsequent transport lead to sediment connectivity, which describes the integrated coupled state of these systems. Studies from the Northern Calcareous Alps show that the size of the sediment contributing area (SCA), a subset of the drainage area that effectively delivers sediment to the channel network, can be used as a predictor of sediment delivery to mountain streams. The SCA concept is delineated on a digital elevation model (DEM) using a set of rules related to the steepness and length of slopes directly adjacent to the channel network, the gradient of the latter and the vegetation cover. The present study investigates the applicability of this concept to the Western Alps to identify geomorphologically active areas and to estimate mean annual sediment yield (SY) in mainly debris-flow-prone catchments. We use a statistical approach that shows a parameter optimisation and a linear regression of SY on SCA extent. We use a dataset of ~25 years of assessed coarse sediment accumulation in 35 sediment retention basins. In the investigated catchments, sediment transport is governed by several factors, mainly by the extent of vegetation-free areas with a minimum slope of 23° that is coupled to the channel network with a very low gradient of the latter. With our improved framework, we can show that the SCA approach can be applied to catchments that are widely distributed, in a large spatial scale (hectare area) and very heterogeneous in their properties. In general, the investigated catchments show high connectivity, resulting in significant correlations between long-term average yield and the size of the SCA.  相似文献   

18.
Field observations on hydraulics and sediment dynamics during extreme floods in two mountain torrents show the influence of man-made constructions such as bridges and check dams, in addition to the sediment supplied naturally by the basin and the channel network, on the formation of hyperconcentrated flows. In the Pyrenean Arás basin, hyperconcentrated flow occurred after collapse of a bridge, which in turn mobilized large volumes of sediment from the stream channel and, subsequently, destroyed a series of check dams. Boulders up to several metres in size were transported in a mixture of sand and fine material. A minimum of 100000 tonnes of sediment were deposited on the alluvial fan during the event. Prior to bridge destruction, mean bedload transport rates had reached 0.4t m−1 s−1 upstream. In the alpine Lainbach basin, the flood was characterized by transportation of large amounts of slope material, including debris flows. Along its main tributary an intensive hyperconcentrated flow occurred during the rising stage, whereas in the main valley smaller flows occurred after failure of check dams. The depth of coarse material deposited reached 80 cm. The effectiveness of the Aràs and Lainbach floods was attained due to exceptional rates of energy expediture. Flood power ranged from 20000 W m−2 to 40000 W m−2 on average. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Hyperconcentrated floods, with sediment concentrations higher than 200 kg/m3, occur frequently in the Yellow River and its tributaries on the Loess Plateau. This paper studies the fluvial hydraulics of hyperconcentrated floods by statistical analysis and comparison with low sediment concentration floods. The fluvial process induced by hyperconcentrated floods is extremely rapid. The river morphology may be altered more at a faster rate by one hyperconcentrated flood than by low sediment concentration floods over a decade. The vertical sediment concentration distribution in hyperconcentrated floods is homogeneous. The Darcy–Weisbach coefficient of hyperconcentrated floods varies with the Reynolds number in the same way as normal open channel flows but a representative viscosity is used to replace the viscosity, η. If the concentration is not extremely high and the Reynolds number is larger than 2000, the flow is turbulent and the Darcy–Weisbach coefficient for the hyperconcentrated floods is almost the same as low sediment concentration floods. Serious channel erosion, which is referred to as ‘ripping up the bottom’ in Chinese, occurs in narrow‐deep channels during hyperconcentrated floods. However, in wide‐shallow channels, hyperconcentrated floods may result in serious sedimentation. Moreover, a hyperconcentrated flood may cause the channel to become narrower and deeper, thus, reducing the flood stage by more than 1 m if the flood event lasts longer than one day. The fluvial process during hyperconcentrated floods also changes the propagation of flood waves. Successive waves may catch up with and overlap the first wave, thus, increasing the peak discharge of the flood wave during flood propagation along the river course. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Much research has been done on water‐rich mass flows, but the distinction between hyperconcentrated flows and debris flows, and whether the two are indeed different processes, continue to be debated. Here, we contribute to the ongoing discussion of these phenomena by describing and interpreting the deposit of a large landslide‐induced mass flow in the eastern Swiss Alps. About 9400 years ago, 10‐12 km3 of limestone detached from the wall of the Vorderrhein River valley and rapidly fragmented while sliding towards the valley bottom. The rock mass struck the valley floor with enormous force and liquefied at least 1 km3 of valley‐fill sediments. A slurry of liquefied sediment – the ‘Bonaduz gravel’ – traveled tens of kilometres down the Vorderrhein valley from the impact site, carrying huge fragments of rockslide debris that became stranded on the valley floor, forming hills termed ‘tomas’. Part of the flow was deflected by a cross‐valley barrier and traveled 14 km up a tributary of the Vorderrhein valley. The Bonaduz gravel is >65 m thick and fines upward from massive sandy cobble gravel at its base to silty sand at its top. Sedimentologic and geomorphic evidence indicates that Bonaduz gravel was transported as a hyperconcentated flow, likely above a basal carpet of coarse diamictic sediment that behaved as a debris flow. The large amount of water involved in the flow indicates that at least part of the Flims rockslide entered a lake. The Bonaduz deposit shares many properties with sediments left by hyperconcentrated flows generated in flumes, including normal grading and elutriation pipes produced by the rapid escape of fluids when the flow comes to rest. These properties are characteristic of non‐Newtonian laminar flows with high sediment concentrations. Our study reinforces laboratory and theoretical studies showing that debris flows and hyperconcentrated flows are different processes. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号