首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
水动力条件下底泥中氮磷释放通量   总被引:28,自引:4,他引:24  
在环形水槽内模拟了水动力条件下底泥的起动规律,分析了底泥运动的不同状态。该环形水槽内水体流速基本均匀,水槽转速与槽内水体流速能够精确的相互转换,实验中通过改变水槽转速模拟了不同扰动强度下底泥悬浮和释放的规律.以太湖底泥为例,通过上覆水中TN、TP浓度的变化,建立了底泥中TN、TP的释放通量(y)与水流(x)的关系,其表达式为TN:y=137.88e^0.06x(R^2=0.94);TP:y=36.78e^0.56x(R^2=0.97);并将该实验结果应用在太湖的水量水质模型中,取得了比较满意的效果.  相似文献   

3.
Microcosms were constructed with sediment from beneath a landfill that received waste containing PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonate). The microcosms were amended with PFOA and PFOS, and sampled after 91, 210, 343, 463, 574, and 740 d of incubation. After 740 d, selected microcosms were extracted to determine the mass of PFOA and PFOS remaining. There was no evidence for degradation of PFOA or PFOS. Over time, the aqueous concentrations of PFOA and PFOS increased in the microcosms, indicating that PFOA and PFOS that had originally sorbed to the sediment was desorbing. At the beginning of the experiment, the adsorption coefficient, Kd, averaged 0.27 L/kg for PFOA and 1.2 L/kg for PFOS. After 740 d of incubation, sorption of PFOA was not detectable and the Kd of PFOS was undetectable in two microcosms and was 0.08 L/kg in a third microcosm. During incubation, the pH of the pore water in the microcosms increased from pH 7.2 to pH ranging from 8.1 to 8.8. The zeta potential of the sediment decreased with increasing pH. These observations suggest that the sorption of PFOA and PFOS at near neutral pH was controlled by the electrostatic sorption on ferric oxide minerals, and not by the sorption to organic carbon. Accurate predictions of PFOA and PFOS mobility in ground water should be based on empirical estimates of sorption using affected aquifer sediment.  相似文献   

4.
Sediment cores from the western Gulf of Lions France were subject to known bottom shear stresses with the goal of understanding size-specific sediment erodibility. On cruises in October 2004, February and April 2005, cores with an undisturbed sediment–water interface were collected along a transect extending seaward from the Tet river mouth. The cores were exposed to increasing shear stresses (0.01–0.4 Pa) onboard the vessel shortly after collection by using a Gust erosion chamber. Samples of the suspensate were collected during the erosion experiments and analyzed for disaggregated inorganic grain size (DIGS) using a Coulter Multisizer IIe. Size-specific mobility plots were generated by dividing the proportion of each grain size in suspension at each shear stress by its proportion in the sediment before erosion. If all grain sizes that make up the bottom sediment are eroded equally from the bed, then mobility equals one for all grain sizes. Values >1 indicate that the suspended sediment is enriched in the size class and values <1 indicate that the size class is enriched in the bed. Results show that in non-cohesive, sandy silts, fine grains (clays and fine silts) are eroded preferentially from the bed at low shear stresses. With increasing bottom stress progressively larger grains are eroded from the bed. In cohesive silts, preferential erosion of the finer sizes no longer occurs, with all sizes up to medium silts eroding at approximately the same rate. Effectively, a sandy silt can be winnowed of its fine grain fraction during erosion while cohesive silts cannot. This difference in the sortability of cohesive and non-cohesive sediment during erosion may control the position and maintenance of the sand–mud transition and the sequestration of surface-adsorbed contaminants.  相似文献   

5.
The use of antidepressants is widespread in modern times. Thus, they present a potential risk for ecosystems due to occurrence in domestic sewage containing unaltered metabolites and structures, even after the treatment plants have processed the sewage. The current research investigated the sorption and desorption of antidepressants(citalopram, venlafaxine, fluoxetine, sertraline, and amitriptyline) and caffeine from freshwater sediment and sewage sludge. The samples of freshwater sediment were ...  相似文献   

6.
The results of laboratory modeling of transformations of the ionic forms of Hg and Cu are discussed. The processes considered include the formation of organic and inorganic complexes, sorption on mineral suspension and bottom sediment. A peak in the concentration of organic complex of metals is found to exist. Published data are used to study the physicochemical mechanism of metal transformations in the water–bottom sediment system and to develop a mathematical model of these processes. An explanation is given to the metal concentration peak, which forms in water as a result of the competition between complex formation and sorption processes. Comparison of the experimental and model curves allowed the evaluation of the kinetic coefficients of the complex formation and sorption stages.  相似文献   

7.
8.
Interactions between waves, current, mud and turbulence are very complicated in the coastal and estuarine turbid waters. It is still necessary to improve our understanding of the fundamental physical processes governing the cohesive sediment transport in the coastal and estuarine waters. A numerical model is developed to study the interactions among waves, current, and mud. An eddy viscosity model for wave and current is proposed in order to close the equations of wave motion or of current motion in a combined flow, respectively. The equations of mud transport are derived based on the visco-elastic properties of mud. Coupling the equations of wave motion or of current motion for water layer with those of mud layer can give (1) wave height; (2) distributions of current velocities in the water layer; (3) distributions of transport velocities at the water–mud interface; and (4) distributions of mass transport velocities within the mud layer. These modeled results are in a reasonable agreement with experimental results. Results suggest that (1) the rate of wave attenuation increases in the opposing currents (currents against in the direction in which the waves propagate) and decreases in the following currents (currents in the same direction as that in which the waves propagate); (2) the opposing currents would have more significant effects on the rate of wave height attenuation than the following currents; (3) the effect of current on the rate of wave attenuation on the muddy bottom is larger than that on the rigid bottom; (4) mud transport rate increased in the following currents but decreased in the opposing currents; and (5) the rate of wave height attenuation on the mud bottom is one order of magnitude larger than that on the rigid bottom.  相似文献   

9.
The fate of mud in an estuary over an entire year was unravelled using complementary, independent, spatially explicit techniques. Sequential ERS-2 SAR and Envisat MERIS-FR data were used to derive synoptic changes in intertidal bottom mud and suspended particulate matter (SPM) in the top of the water column, respectively. These satellite data were combined with in situ measurements and with a high resolution three-dimensional cohesive sediment model, simulating mud transport, resuspension, settling and deposition under the influence of tides, wind, waves and freshwater discharge. The spatial distribution of both bottom mud and SPM as observed by in situ and satellite techniques was largely explained by modelled estuarine circulation, tidal and wind-induced variations in vertical mixing and horizontal advection. The three data sources also showed similar spring-neap and seasonal variations in SPM (all factor 1.5 to 2), but semi-diurnal tidal variations were underestimated by the model. Satellite data revealed that changes in intertidal bottom mud were spatially heterogeneous, but on average mud content doubled during summer, which was confirmed by in situ data. The model did not show such seasonal variation in bed sediment, suggesting that seasonal dynamics are not well explained by the physical factors presently implemented in the model, but may be largely attributed to other (internal) factors, including increased floc size in summer, temporal stabilisation of the sediment by microphytobenthos and a substantially lower roughness of the intertidal bed in summer as observed by the satellite. The effects of such factors on estuarine mud dynamics were evaluated.  相似文献   

10.
Shallow water depths on steep slopes of as much as fifty per cent can be measured easily by weighing a light flume and the water it contains. Because water accelerates along the flume, a good approximation of the steady state depth is obtained when the recording balance is fixed to its bottom end. From the unit discharge and the depth, and not from measurements of the surface velocity, the Darcy-Weisbach friction coefficient can be calculated. The present results show that this friction coefficient is larger in thin sheet flows than that calculated from the equation for rough turbulent flow. This latter could fit at a Reynolds Number of 50,000. When the regime is laminar (Re < 2,440) the Darcy-Weisbach friction coefficient always exceeds the theoretical value of 96/Re. The great relative depth of standing and travelling waves could account for this discrepancy together with turbulence and wake formation around bottom grains. Herein it is assumed that a regime can prevail where a laminar superlayer glides over a turbulent sublayer in the vicinity of bottom grains, because the ratio of the surface velocity to the mean velocity can greatly exceed 1.5, especially on steep slopes. Until photographs of the streamlines are taken, no statement about flow regimes in supercritical sheet flow can be made.  相似文献   

11.
Within a wave-exposed mangrove forest, novel field observations are presented, comparing millimeter-scale turbulent water velocity fluctuations with contemporaneous subtidal bed elevation changes. High-resolution velocity and bed level measurements were collected from the unvegetated mudflat, at the mangrove forest fringe, and within the forest interior over multiple tidal cycles (flood–ebb) during a 2-week period. Measurements demonstrated that the spatial variability in vegetation density is a control on sediment transport at sub-meter scales. Scour around single and dense clusters of pneumatophores was predicted by a standard hydraulic engineering equation for wave-induced scour around regular cylinders, when the cylinder diameter in the equations was replaced with the representative diameter of the dense pneumatophore clusters. Waves were dissipated as they propagated into the forest, but dissipation at infragravity periods (> 30 s) was observed to be less than dissipation at shorter periods (< 30 s), consistent with the predictions of a simple model. Cross-wavelet analysis revealed that infragravity-frequency fluctuations in the bed level were occasionally coherent with velocity, possibly indicating scour upstream of dense pneumatophore patches when infragravity waves reinforced tidal currents. Consequently, infragravity waves were a likely driver of sediment transport within the mangrove forest. Near-bed turbulent kinetic energy, estimated from the turbulent dissipation rate, was also correlated with bed level changes. Specifically, within the mangrove forest and over the unvegetated mudflat, high-energy events were associated with erosion or near-zero bed level change, whereas low-energy events were associated with accretion. In contrast, no single relationship between bed level changes and mean current velocity was applicable across both vegetated and unvegetated regions. These observations support the theory that sediment mobilization scales with turbulent energy, rather than mean velocity, a distinction that becomes important when vegetation controls the development of turbulence.  相似文献   

12.
Sediment transport in ice-covered channels   总被引:1,自引:0,他引:1  
The existence of ice cover has important effects on sediment transport and channel morphology for rivers in areas with an annual occurrence of an ice season. The interaction of sediment transport and s...  相似文献   

13.
The use of rice husk as a low cost adsorbent for the removal of copper from wastewater has been explored in a laboratory scale experiment. The rice husk used for the study was treated with alkali to increase the sorption properties. The influence of metal ion concentration, weight of biosorbent, stirring rates, temperature and pH were also evaluated, and the results are fitted using adsorption isotherm models. From the experimental results it was observed that almost 90–98% of the copper could be removed using treated rice husk. The Langmuir adsorption isotherm, Freundlich isotherm and Tempkin isotherm models were used to describe the distribution of copper between the liquid and solid phases in batch studies, and it was observed that the Langmuir isotherm better represented the adsorption phenomenon. The experimental rate constant, activation energy, Gibbs free energy, enthalpy and entropy of the reaction were calculated in order to determine the mechanism of the sorption process.  相似文献   

14.
Experimental investigations have been done to analyze turbulent structures in curved sand bed channels with and without seepage. Measures of turbulent statistics such as time‐averaged near‐bed velocities, Reynolds stresses, thickness of roughness sublayer and shear velocities were found to increase with application of downward seepage. Turbulent kinetic energy and Reynolds normal stresses are increased in the streamwise direction under the action of downward seepage, causing bed particles to move rapidly. Analysis of bursting events shows that the relative contributions of all events (ejections, sweeps and interactions) increase throughout the boundary layer, and the thickness of the zone of dominance of sweep events, which are responsible for the bed material movement, increases in the case of downward seepage. The increased sediment transport rate due to downward seepage deforms the cross‐sectional geometry of the channel made of erodible boundaries, which is caused by an increase in flow turbulence and an associated decrease in turbulent kinetic energy dissipation and turbulent diffusion.  相似文献   

15.
Experiments were undertaken to study the nature of granular interaction in running water by examining the influence of fine grain inputs to a coarser sediment bed with a mobile surface. Video recordings of grain sorting by both kinetic sieving and spontaneous percolation are used to diagnose the critical processes controlling the overall bed response. Kinetic sieving takes place in the mobile bed surface, with the finer sediment moving to the bottom of the bedload transport layer at the interface with the underlying quasi‐static coarse bed. We show that the behavior at this interface dictates how a channel responds to a fine sediment input. If, by spontaneous percolation, the fine sediment is able to infiltrate into the underlying quasi‐static bed, the total transport increases and the channel degrades. However, if the fine sediment input rate exceeds the transport capacity or is geometrically unable to infiltrate into the underlying bed, it forms a quasi‐static layer underneath the transport layer that inhibits entrainment from the underlying bed, resulting in aggradation and an increase in bed slope. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Bedload transport generally depends on the bed shear stress and Reynolds number. Many studies conducted for the condition of turbulent flows have revealed the dependence of the transport rate on the bed shear stress, while knowledge of the Reynolds number effect on the transport rate is very limited. As an extreme case to reflect the viscous effect on sediment transport, sediment transport in laminar flows is considered in this paper. A stochastic approach is adopted to explore how the transport rate can be associated with characteristics of laminar flows. First, the probability of erosion in the absence of turbulence is assumed to depend only on the randomness of bed particles. The probability is then applied to formulate the sediment transport rate, of which the derivation is made largely based on Einstein’s bedload theory. The theoretical result indicates that the dimensionless transport rate for laminar flows is dependent on the dimensionless shear stress and dimensionless particle diameter or the shear Reynolds number. Comparisons are finally made between the derived formula and an empirical correlation available in the literature.  相似文献   

17.
The permeability of river beds is an important control on hyporheic flow and the movement of fine sediment and solutes into and out of the bed. However, relatively little is known about the effect of bed permeability on overlying near‐bed flow dynamics, and thus on fluid advection at the sediment–water interface. This study provides the first quantification of this effect for water‐worked gravel beds. Laboratory experiments in a recirculating flume revealed that flows over permeable beds exhibit fundamental differences compared with flows over impermeable beds of the same topography. The turbulence over permeable beds is less intense, more organised and more efficient at momentum transfer because eddies are more coherent. Furthermore, turbulent kinetic energy is lower, meaning that less energy is extracted from the mean flow by this turbulence. Consequently, the double‐averaged velocity is higher and the bulk flow resistance is lower over permeable beds, and there is a difference in how momentum is conveyed from the overlying flow to the bed surface. The main implications of these results are three‐fold. First, local pressure gradients, and therefore rates of material transport, across the sediment–water interface are likely to differ between impermeable and permeable beds. Second, near‐bed and hyporheic flows are unlikely to be adequately predicted by numerical models that represent the bed as an impermeable boundary. Third, more sophisticated flow resistance models are required for coarse‐grained rivers that consider not only the bed surface but also the underlying permeable structure. Overall, our results suggest that the effects of bed permeability have critical implications for hyporheic exchange, fluvial sediment dynamics and benthic habitat availability. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

18.
We present results from laboratory experiments on flow through submerged arrays of rigid cylinders embedded in a sandy bed. Using rigid, cylindrical elements to mimic vegetation and benthos, we account for only the physical effects resulting from their presence, eliminating biological factors, such as biofilms and root systems. In line with previous findings, rigid arrays modify the flow mean and turbulent velocity statistics. However, even if the flow speed is significantly damped within dense arrays, the amount of sediment that gets lifted into suspension increases as the density of the array increases due to array– and cylinder-scale turbulence. We present a first attempt to provide predictive relationships of suspended sediment concentration using an alternative approach for the Shields parameter with an empirical coefficient to account for turbulence generated by submerged arrays of rigid cylinders. A similar analysis, using a ratio of populated to non-populated Shields parameter, is conducted to predict resuspension as a function of array density.  相似文献   

19.
Data collected from the York River estuary demonstrate the importance of asymmetries in stratification to the suspension and transport of fine sediment. Observations collected during two 24-h deployments reveal greater concentrations of total suspended solids during the flood phase of the tide despite nearly symmetric near-bed tidal current magnitude. In both cases, tidally averaged net up-estuary sediment transport near the bed was clearly observed despite the fact that tidally averaged residual near-bed currents were near zero. Tidal straining of the along-channel salinity gradient resulted in a stronger pycnocline lower in the water column during the ebb phase of the tide and appeared to limit sediment suspension. Indirect measurements suggest that the lower, more intense, pycnocline on the ebb acted as a barrier, limiting turbulent length scales and reducing eddy diffusivity well below the pycnocline, even though the lower water column was locally well mixed. In order to more conclusively link changes in stratification to properties of near-bed eddy viscosity and diffusivity, longer duration tripod and mooring data from an additional experiment are examined, that included direct measurement of turbulent velocities. These additional data demonstrate how slight increases in stratification can limit vertical mixing near the bed and impact the structure of the eddy viscosity below the pycnocline. We present evidence that the overlying pycnocline can remotely constrain the vertical turbulent length scale of the underlying flow, limiting sediment resuspension. As a result, the relatively small changes in stratification caused by tidal straining of the pycnocline allow sediment to be resuspended higher in the water column during the flood phase of the tide, resulting in preferential up-estuary transport of sediment.Responsible Editor: Iris Grabemann  相似文献   

20.
Sediment erosion results from hydrodynamic forcing, represented by the bottom shear stress (BSS), and from the erodability of the sediment, defined by the critical erosion shear stress and the erosion rate. Abundant literature has dealt with the effects of biological components on sediment erodability and concluded that sediment processes are highly sensitive to the biota. However, very few sediment transport models account for these effects. We provide some background on the computation of BSS, and on the classical erosion laws for fine sand and mud, followed by a brief review of biota effects with the aim of quantifying the latter into generic formulations, where applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号