首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A Spectral Approach for Determining Altimeter Wind Speed Model Functions   总被引:9,自引:0,他引:9  
We propose a new analytical algorithm for the estimation of wind speeds from altimeter data using the mean square slope of the ocean surface, which is obtained by integration of a widely accepted wind-wave spectrum including the gravity-capillary wave range. It indicates that the normalized radar cross section depends not only on the wind speed but also on the wave age. The wave state effect on the altimeter radar return becomes remarkable with increasing wind speed and cannot be neglected at high wind speeds. A relationship between wave age and nondimensional wave height based on buoy observational data is applied to compute the wave age using the significant wave height of ocean waves, which could be simultaneously obtained from altimeter data. Comparison with actual data shows that this new algorithm produces more reliable wind speeds than do empirical algorithms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Imaging altimeter (IALT) is a new type of radar altimeter system. In contrast to the conventional nadir-looking altimeters, such as HY-2A altimeter, Jason-1/2, and TOPEX/Poseidon, IALT observes the earth surface at low incident angles (2.5°–8°), so its swath is much wider and its spatial resolution is much higher than the previous altimeters. This paper presents a wind speed inversion method for the recently launched IALT onboard Tiangong-2 space station. Since the current calibration results of IALT do not agree well with the well-known wind geophysical model function at low incidence angles, a neural network is used to retrieve the ocean surface wind speed in this study. The wind speed inversion accuracy is evaluated by comparing with the ECMWF reanalysis wind speed, buoy wind speed, and in-situ ship measurements. The results show that the retrieved wind speed bias is about –0.21 m/s, and the root-mean-square (RMS) error is about 1.85 m/s. The wind speed accuracy of IALT meets the performance requirement.  相似文献   

3.
About 10 years ago, the advanced application flight experiment radiometer scatterometer (AAFE RADSCAT) made its first successful measurements of ocean radar scattering cross section from a NASA C-130 aircraft. This instrument was developed as a research tool to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind-speed information at the ocean's surface. The AAFE RADSCAT flight missions and analyses helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. Probably the most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross-section (NRCS) measurements as a function of the surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. Presented herein are analyses of data from the 26 RADSCAT flights during which the quality of the sensor and the surface wind measurements were felt to be understood. Subsets of this data base were used to model the relationship between theKu-band radar signature and the ocean-surface wind vector. The models developed partly from portions of this data base, supplemented with data from the Seasat (JASIN Report), were used for inversion of the Seasat-A Satellite Scatterometer (SASS) radar measurements to vector winds. This paper summarizes results from a comprehensive analysis of the RADSCAT/ocean wind signature deduced from this complete data set.  相似文献   

4.
以墨西哥湾同步高度计、浮标资料为例,研究了海浪成长状态对高度计风速反演的影响。同步的高度计风速和浮标风速比较显示,在墨西哥湾地区,海浪成长状态对高度计风速反演有较大影响。在考虑海浪成长状态影响的条件下,利用谱模型反演高度计风速,取得了较好的效果。与目前TOPEX/Poseidon高度计风速反演业务化算法相比,在海浪未充分成长条件下,考虑海浪成长状态影响后,根据谱模型反演获得的风速与浮标风速之间的均方根误差减小了30%,平均误差减小了83%。在利用谱模型算法反演高度计风速时,谱模型中的波龄因子(表示海浪成长状态)可以根据高度计测得的有效波高和风速获得,因此该方法具有广泛的适用性。  相似文献   

5.
针对现行业务运行的宙达高度计风速反演算法从考虑0~20 m/s的缺陷,提出了vc算法(Vandemark-Chapron Algorithm)与Young算法联合反演高度计海曲风速的方法,通过对Jason-1资料的统计试验,确定了后向散射截面临界点,当高度计后向散射截面大于等于该临界点时采用VC算法反演风速,反之采用Y...  相似文献   

6.
国内外对海上阵风的研究并不多,且大多集中在阵风预报和应用研究方面,对于海洋阵风数据的获取技术未见文献系统论述。本文利用HY-2B卫星雷达高度计观测的后向散射系数,结合校正微波辐射计观测的亮度温度信息,提出联合反演阵风风速的方法。两个遥感载荷联合反演得到的阵风风速与2019–2021年美国国家浮标数据中心(NDBC)浮标数据进行真实性检验,结果显示:阵风风速均方根误差(RMSE)为0.98 m/s,相关系数为0.82;基于本方法利用国外同类卫星Jason-3得到的阵风风速与2016–2018年NDBC浮标数据的RMSE为0.96 m/s,相关系数为0.88。本文在HY-2B卫星雷达高度计海面风速观测的基础上,纳入同一卫星平台校正微波辐射计的同步观测信息联合实现了海面阵风的观测,数据的比对结果证明文中方法具有较高的观测精度。同时,该方法对于具有相同观测体制的国内外卫星也适用。  相似文献   

7.
A high-frequency multifrequency coastal radar operating at four frequencies between 4.8 and 21.8 MHz was used as part of the third Chesapeake Bay Outflow Plume Experiment (COPE-3) during October and November, 1997. The radar system surveyed the open ocean east of the coast and just south of the mouth of Chesapeake Bay from two sites separated by about 20 km. Measurements were taken once an hour, and the eastward and northward components of ocean currents were estimated at four depths ranging from about 0.5 m to 2.5 m below the surface for each location on a 2 by 2 km grid. Direction of arrival of the signals was estimated using the MUSIC algorithm. The radar measurements were compared to currents measured by several moored acoustic Doppler current profilers (ADCPs) with range bins 2-14 m below the water surface. The vertical structure of the current was examined by utilizing four different radar wavelengths, which respond to ocean currents at different depths, and by using several ADCP range bins separated by 1-m intervals. The radar and ADCP current estimates were highly correlated and showed similar depth behavior, and there was significant correlation between radar current estimates at different wavelengths and wind speed  相似文献   

8.
本文利用角动量模式计算获得高风速资料,并通过气象观测站实测资料验证了风速资料的准确性,并将所得风速应用于Jason-1高度计风速反演模式函数研究,得到了一个新的风速反演模式函数。研究结果表明,本文提出的模式函数能更好地反映台风经过时海表面风速情况,实现了高度计对高风速(10~40 m/s)的反演,可作为Jason-1高度计风速反演业务化算法在高风速情况下的补充,以提高高度计风速反演精度。  相似文献   

9.
As well as range, the AltiKa altimeter provides estimates of wave height, Hs and normalized backscatter, σ0, that need to be assessed prior to statistics based on them being included in climate databases. An analysis of crossovers with the Jason-2 altimeter shows AltiKa Hs values to be biased high by only ?0.05m, with a standard deviation (s.d.) of ?0.1m for seven-point averages. AltiKa's σ0 values are 2.5–3 dB less than those from Jason-2, with a s.d. of ?0.3 dB, with these relatively large mismatches to be expected as AltiKa measures a different part of the spectrum of sea surface roughness. A new wind speed algorithm is developed through matching a histogram of σ0 values to that for Jason-2 wind speeds. The algorithm is robust to the use of short durations of data, with a consistency at roughly the 0.1 m/s level. Incorporation of Hs as a secondary input reduces the assessed error at crossovers from 0.82 m/s to 0.71 m/s. A comparison across all altimeter frequencies used to date demonstrates that the lowest wind speeds preferentially develop the shortest scales of roughness.  相似文献   

10.
Remote measurements of the spatial mean ocean wind speeds were obtained using Doppler spectra resolved to 0.08 Hz from high-resolution HF skywave-radar backscatter measurements of the ocean surface. A standard deviation of 2.4 m/s resulted from the correlation of observed winds over the ocean and the broadening of the Doppler spectra in the vicinity of the higher first-order Bragg line. This broadening, for Doppler spectra unperturbed by the ionospheric propagation, is proportional to the increase in power caused by higher order hydrodynamic and electromagnetic effects in the vicinity of the Bragg line and inversely proportional to the square root of the radio frequency. A lower bound on the measure of wind speed was established at 5 m/s by the low resolution spectral processing and low second-order power. An upper limit is suggested by the steep slope in the region of the sea backscatter spectrum outside the square root of two times the first-order Bragg line Doppler.  相似文献   

11.
因为星载雷达高度计风速资料有沿轨分辨率高、精度高的特点,对其进行深入研究有重要意义.在中国海洋二号动力环境卫星刚刚升空之际,对星载雷达高度计反演海面风速围内外研究进展作一个综述.首先介绍星载雷达高度计风速反演的理论依据及存在困难;然后以风速反演进展历程为主线,分别针对后向散射系数、波浪状态、降雨、白沫等物理量引入地球物...  相似文献   

12.
The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.  相似文献   

13.
The primary experiment on the Geodynamics Experimental Ocean Satellite‐3 (GEOS‐3) is the radar altimeter. This experiment's major objective is to demonstrate the utility of measuring the geometry of the ocean surface, i.e., the geoid. Results obtained from this experiment so far indicate that the planned objectives of measuring the topography of the ocean surface with an absolute accuracy of ±5 m can be met and perhaps exceeded. The GEOS‐3 satellite altimeter measurements have an instrument precision in the range of ±25 cm to ±50 cm when the altimeter is operating in the “short pulse”; mode. After one year's operations of the altimeter, data from over 5,000 altimeter passes have been collected. With the mathematical models developed and the altimeter data presently available, mapping of local areas of ocean topography has been realized to the planned accuracy levels and better. This paper presents the basic data processing methods employed and some interesting results achieved with the early data. Plots of mean sea surface heights as inferred by the altimeter measurements are compared with a detailed 1o × 1° gravimetric geoid.  相似文献   

14.
A semi-empirical sea-spectrum model for scattering coefficient estimation   总被引:2,自引:0,他引:2  
A semi-empirical sea-spectrum model is proposed to be used in a two-scale radar sea scatter model to obtain estimates of radar backscatter over the frequency bandsLtoKu, the incidence angular range20deg-65deg, the azimuth angular range0deg-180degfrom the wind direction and wind speed range 3.5-30 m/s at 19.5 m above the mean sea level. It is shown that the theoretical estimates obtained are consistent with the existing measurements.  相似文献   

15.
全球有效波高和风速的时空变化及相关关系研究   总被引:2,自引:1,他引:1  
The climatology of significant wave height(SWH) and sea surface wind speed are matters of concern in the fields of both meteorology and oceanography because they are very important parameters for planning offshore structures and ship routings. The TOPEX/Poseidon altimeter, which collected data for about 13 years from September 1992 to October 2005, has measured SWHs and surface wind speeds over most of the world's oceans. In this paper, a study of the global spatiotemporal distributions and variations of SWH and sea surface wind speed was conducted using the TOPEX/Poseidon altimeter data set. The range and characteristics of the variations were analyzed quantitatively for the Pacific, Atlantic, and Indian oceans. Areas of rough waves and strong sea surface winds were localized precisely, and the correlation between SWH and sea surface wind speed analyzed.  相似文献   

16.
本文选取142幅RADARSAT-2全极化合成孔径雷达(SAR)影像,在没有入射角输入的情况下,首先利用C-2PO模型进行海面风速反演。随后,将同一时空下的ASCAT散射计风向作为初始风向,提取相应雷达入射角,利用地球物理模式函数(GMF) CMOD5.N对142幅SAR影像进行风速计算。反演结果与美国国家资料浮标中心海洋浮标风速数据对比,结果显示:CMOD5.N GMF和C-2PO模型均可反演出较高精确度的海面风速,其均方根误差分别为1.68 m/s和1.74 m/s。此外,研究发现,在低风速段,CMOD5.N GMF的风速反演精度要明显优于C-2PO模型。针对这一现象,本文以SAR系统成像机理为基础,以低风速SAR图像为具体案例,给出了3种造成这一现象的原因。  相似文献   

17.
Microwave scattering signatures of the ocean have been measured over a range of surface wind speeds from 3 m/s to 23.6 m/s using the AAFE RADSCAT scatterometer in an aircraft. Normalized scattering coefficients are presented for vertical and horizontal polarizations as a function of incidence angle (nadir to55deg) and radar azimuth angle (0degto360deg) relative to surface wind direction. For a given radar polarization, incidence angle, and azimuth angle relative to the wind direction, these scattering data exhibit a power law dependence on surface wind speed. The relation of the scattering coefficient to azimuth angle obtained during aircraft circles (antenna conical scans) is anisotropic and suggests that microwave scatterometers can be used to infer both wind speed and direction. These results have been used for the design of the Seasat-A Satellite Scatterometer (SASS) to be flown in 1978 on this first NASA oceanographic satellite.  相似文献   

18.
Microwave remote sensing is one of the most useful methods for observing the ocean parameters. The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars. While the effect of the ocean currents and waves is interactional. It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly. In order to study the relationship between the ocean surface current speed and the Doppler frequency shift, a numerical ocean surface Doppler spectrum model is established and validated with a reference. The input parameters of ocean Doppler spectrum include an ocean wave elevation model, a directional distribution function, and wind speed and direction. The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function(CDOP). What is more, the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed. All these simulations are in Ku band. The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors. With VV polarization, the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s, and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction.  相似文献   

19.
Wind-velocity data obtained from in situ measurements at the Golitsyno-4 marine stationary platform have been compared with QuikSCAT scatterometer data; NCEP, MERRA, and ERA-Interim global reanalyses and MM5 regional atmospheric reanalysis. In order to adjust wind velocity measured at a height of 37 m above the sea surface to a standard height of 10 m with stratification taken into account, the Monin–Obukhov theory and regional atmospheric reanalysis data are used. Data obtained with the QuikSCAT scatterometer most adequately describe the real variability of wind over the Black Sea. Errors in reanalysis data are not high either: the regression coefficient varies from 0.98 to 1.06, the rms deviation of the velocity amplitude varies from 1.90 to 2.24 m/s, and the rms deviation of the direction angle varies from 26° to 36°. Errors in determining the velocity and direction of wind depend on its amplitude: under weak winds (<3 m/s), the velocity of wind is overestimated and errors significantly increase in determining its direction; under strong winds (>12 m/s), its velocity is underestimated. The influence of these errors on both spatial and temporal estimates of the characteristics of wind over the Black Sea is briefly considered.  相似文献   

20.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as ±0.3 m, and surface wind speed of ±1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ ±1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号