首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncertainty analysis of radar rainfall enables stakeholders and users have a clear knowledge of the possible uncertainty associated with the rainfall products. Long-term empirical modeling of the relationship between radar and gauge measurements is an efficient and practical method to describe the radar rainfall uncertainty. However, complicated variation of synoptic conditions makes the radar-rainfall uncertainty model based on historical data hard to extend in the future state. A promising solution is to integrate synoptic regimes with the empirical model and explore the impact of individual synoptic regimes on radar rainfall uncertainty. This study is an attempt to introduce season, one of the most important synoptic factor, into the radar rainfall uncertainty model and proposes a seasonal ensemble generator for radar rainfall using copula and autoregressive model. We firstly analyze the histograms of rainfall-weighted temperature, the radar-gauge relationships, and Box and Whisker plots in different seasons and conclude that the radar rainfall uncertainty has strong seasonal dependence. Then a seasonal ensemble generator is designed and implemented in a UK catchment under a temperate maritime climate, which can fully model marginal distribution, spatial dependence, temporal dependence and seasonal dependence of radar rainfall uncertainty. To test its performance, 12 typical rainfall events (4 for each season) are chosen to generate ensemble rainfall values. In each time step, 500 ensemble members are produced and the values of 5th to 95th percentiles are used to derive the uncertainty bands. Except several outliers, the uncertainty bands encompass the observed gauge rainfall quite well. The parameters of the ensemble generator vary considerably for each season, indicating the seasonal ensemble generator reflects the impact of seasons on radar rainfall uncertainty. This study is an attempt to simultaneously consider four key features of radar rainfall uncertainty and future study will investigate their impacts on the outputs of hydrological models with radar rainfall as input or initial conditions.  相似文献   

2.
This paper presents the development of a probabilistic multi‐model ensemble of statistically downscaled future projections of precipitation of a watershed in New Zealand. Climate change research based on the point estimates of a single model is considered less reliable for decision making, and multiple realizations of a single model or outputs from multiple models are often preferred for such purposes. Similarly, a probabilistic approach is preferable over deterministic point estimates. In the area of statistical downscaling, no single technique is considered a universal solution. This is due to the fact that each of these techniques has some weaknesses, owing to its basic working principles. Moreover, watershed scale precipitation downscaling is quite challenging and is more prone to uncertainty issues than downscaling of other climatological variables. So, multi‐model statistical downscaling studies based on a probabilistic approach are required. In the current paper, results from the three well‐reputed statistical downscaling methods are used to develop a Bayesian weighted multi‐model ensemble. The three members of the downscaling ensemble of this study belong to the following three broad categories of statistical downscaling methods: (1) multiple linear regression, (2) multiple non‐linear regression, and (3) stochastic weather generator. The results obtained in this study show that the new strategy adopted here is promising because of many advantages it offers, e.g. it combines the outputs of multiple statistical downscaling methods, provides probabilistic downscaled climate change projections and enables the quantification of uncertainty in these projections. This will encourage any future attempts for combining the results of multiple statistical downscaling methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Radar‐based estimates of rainfall are affected by many sources of uncertainties, which would propagate through the hydrological model when radar rainfall estimates are used as input or initial conditions. An elegant solution to quantify these uncertainties is to model the empirical relationship between radar measurements and rain gauge observations (as the ‘ground reference’). However, most current studies only use a fixed and uniform model to represent the uncertainty of radar rainfall, without consideration of its variation under different synoptic regimes. Wind is such a typical weather factor, as it not only induces error in rain gauge measurements but also causes the raindrops observed by weather radar to drift when they reach the ground. For this reason, as a first attempt, this study introduces the wind field into the uncertainty model and designs the radar rainfall uncertainty model under different wind conditions. We separate the original dataset into three subsamples according to wind speed, which are named as WDI (0–2 m/s), WDII (2–4 m/s) and WDIII (>4 m/s). The multivariate distributed ensemble generator is introduced and established for each subsample. Thirty typical events (10 at each wind range) are selected to explore the behaviours of uncertainty under different wind ranges. In each time step, 500 ensemble members are generated, and the values of 5th to 95th percentile values are used to produce the uncertainty bands. Two basic features of uncertainty bands, namely dispersion and ensemble bias, increase significantly with the growth of wind speed, demonstrating that wind speed plays a considerable role in influencing the behaviour of the uncertainty band. On the basis of these pieces of evidence, we conclude that the radar rainfall uncertainty model established under different wind conditions should be more realistic in representing the radar rainfall uncertainty. This study is only a start in incorporating synoptic regimes into rainfall uncertainty analysis, and a great deal of more effort is still needed to build a realistic and comprehensive uncertainty model for radar rainfall data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This study attempts to assess the uncertainty in the hydrological impacts of climate change using a multi-model approach combining multiple emission scenarios, GCMs and conceptual rainfall-runoff models to quantify uncertainty in future impacts at the catchment scale. The uncertainties associated with hydrological models have traditionally been given less attention in impact assessments until relatively recently. In order to examine the role of hydrological model uncertainty (parameter and structural uncertainty) in climate change impact studies a multi-model approach based on the Generalised Likelihood Uncertainty Estimation (GLUE) and Bayesian Model Averaging (BMA) methods is presented. Six sets of regionalised climate scenarios derived from three GCMs, two emission scenarios, and four conceptual hydrological models were used within the GLUE framework to define the uncertainty envelop for future estimates of stream flow, while the GLUE output is also post processed using BMA, where the probability density function from each model at any given time is modelled by a gamma distribution with heteroscedastic variance. The investigation on four Irish catchments shows that the role of hydrological model uncertainty is remarkably high and should therefore be routinely considered in impact studies. Although, the GLUE and BMA approaches used here differ fundamentally in their underlying philosophy and representation of error, both methods show comparable performance in terms of ensemble spread and predictive coverage. Moreover, the median prediction for future stream flow shows progressive increases of winter discharge and progressive decreases in summer discharge over the coming century.  相似文献   

5.
Model uncertainty is rarely considered in the field of biogeochemical modeling. The standard biogeochemical modeling approach is to proceed based on one selected model with the “right” complexity level based on data availability. However, other plausible models can result in dissimilar answer to the scientific question in hand using the same set of data. Relying on a single model can lead to underestimation of uncertainty associated with the results and therefore lead to unreliable conclusions. Multi-model ensemble strategy is a means to exploit the diversity of skillful predictions from different models with multiple levels of complexity. The aim of this paper is two fold, first to explore the impact of a model’s complexity level on the accuracy of the end results and second to introduce a probabilistic multi-model strategy in the context of a process-based biogeochemical model. We developed three different versions of a biogeochemical model, TOUGHREACT-N, with various complexity levels. Each one of these models was calibrated against the observed data from a tomato field in Western Sacramento County, California, and considered two different weighting sets on the objective function. This way we created a set of six ensemble members. The Bayesian Model Averaging (BMA) approach was then used to combine these ensemble members by the likelihood that an individual model is correct given the observations. Our results demonstrated that none of the models regardless of their complexity level under both weighting schemes were capable of representing all the different processes within our study field. Later we found that it is also valuable to explore BMA to assess the structural inadequacy inherent in each model. The performance of BMA expected prediction is generally superior to the individual models included in the ensemble especially when it comes to predicting gas emissions. The BMA assessed 95% uncertainty bounds bracket 90–100% of the observations. The results clearly indicate the need to consider a multi-model ensemble strategy over a single model selection in biogeochemical modeling study.  相似文献   

6.
Land use evaluation involves careful consideration of several environmental factors and their relative importance quantified by factor weights. Local multi-criteria evaluation provides a mechanism for computing factor (criteria) weights within local neighborhoods that capture spatial heterogeneity and contribute to more accurate evaluation results. The accuracy of results, however, is tempered by the potential uncertainty of criteria weights. The paper presents a spatially explicit approach to uncertainty and sensitivity analysis of local criteria weights and modeling scale on the variability of model output. The efficacy of the approach is presented on the example of Environmental Benefit Index (EBI) model used by the U.S. Department of Agriculture Conservation Reserve Program (CRP) to select environmentally sensitive agricultural areas for conservation. The uncertainty analysis resulted in identifying robust areas for CRP selection characterized by high suitability and low uncertainty. The sensitivity analysis focused on the next-best group of candidates characterized by high suitability and high uncertainty. The results show that there is a relationship between spatial heterogeneity, data representation scale, and the level of uncertainty in the results of EBI model. The sensitivity of model output can be attributed to both the uncertainty of criteria weights and the modeling scale. A potential practical value of this approach is the improved analytical support for land suitability evaluation requiring a consideration of sub-optimal land units (high suitability/high uncertainty). Also, this approach can guide modelling effort by allowing the analyst to visualize spatial distribution and patterns of model output uncertainty and focus data collection on influential model input factors.  相似文献   

7.
Coupled atmosphere–ocean general circulation models are key tools to investigate climate dynamics and the climatic response to external forcings, to predict climate evolution and to generate future climate projections. Current general circulation models are, however, undisputedly affected by substantial systematic errors in their outputs compared to observations. The assessment of these so-called biases, both individually and collectively, is crucial for the models’ evaluation prior to their predictive use. We present a Bayesian hierarchical model for a unified assessment of spatially referenced climate model biases in a multi-model framework. A key feature of our approach is that the model quantifies an overall common bias that is obtained by synthesizing bias across the different climate models in the ensemble, further determining the contribution of each model to the overall bias. Moreover, we determine model-specific individual bias components by characterizing them as non-stationary spatial fields. The approach is illustrated based on the case of near-surface air temperature bias in the tropical Atlantic and bordering regions from a multi-model ensemble of historical simulations from the fifth phase of the Coupled Model Intercomparison Project. The results demonstrate the improved quantification of the bias and interpretative advantages allowed by the posterior distributions derived from the proposed Bayesian hierarchical framework, whose generality favors its broader application within climate model assessment.  相似文献   

8.
This work examines future flood risk within the context of integrated climate and hydrologic modelling uncertainty. The research questions investigated are (1) whether hydrologic uncertainties are a significant source of uncertainty relative to other sources such as climate variability and change and (2) whether a statistical characterization of uncertainty from a lumped, conceptual hydrologic model is sufficient to account for hydrologic uncertainties in the modelling process. To investigate these questions, an ensemble of climate simulations are propagated through hydrologic models and then through a reservoir simulation model to delimit the range of flood protection under a wide array of climate conditions. Uncertainty in mean climate changes and internal climate variability are framed using a risk‐based methodology and are explored using a stochastic weather generator. To account for hydrologic uncertainty, two hydrologic models are considered, a conceptual, lumped parameter model and a distributed, physically based model. In the conceptual model, parameter and residual error uncertainties are quantified and propagated through the analysis using a Bayesian modelling framework. The approach is demonstrated in a case study for the Coralville Dam on the Iowa River, where recent, intense flooding has raised questions about potential impacts of climate change on flood protection adequacy. Results indicate that the uncertainty surrounding future flood risk from hydrologic modelling and internal climate variability can be of the same order of magnitude as climate change. Furthermore, statistical uncertainty in the conceptual hydrological model can capture the primary structural differences that emerge in flood damage estimates between the two hydrologic models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
10.
This paper examines the impacts of climate change on future water yield with associated uncertainties in a mountainous catchment in Australia using a multi‐model approach based on four global climate models (GCMs), 200 realisations (50 realisations from each GCM) of downscaled rainfalls, 2 hydrological models and 6 sets of model parameters. The ensemble projections by the GCMs showed that the mean annual rainfall is likely to reduce in the future decades by 2–5% in comparison with the current climate (1987–2012). The results of ensemble runoff projections indicated that the mean annual runoff would reduce in future decades by 35%. However, considerable uncertainty in the runoff estimates was found as the ensemble results project changes of the 5th (dry scenario) and 95th (wet scenario) percentiles by ?73% to +27%, ?73% to +12%, ?77% to +21% and ?80% to +24% in the decades of 2021–2030, 2031–2040, 2061–2070 and 2071–2080, respectively. Results of uncertainty estimation demonstrated that the choice of GCMs dominates overall uncertainty. Realisation uncertainty (arising from repetitive simulations for a given time step during downscaling of the GCM data to catchment scale) of the downscaled rainfall data was also found to be remarkably high. Uncertainty linked to the choice of hydrological models was found to be quite small in comparison with the GCM and realisation uncertainty. The hydrological model parameter uncertainty was found to be lowest among the sources of uncertainties considered in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Climate change will most likely cause an increase in extreme precipitation and consequently an increase in soil erosion in many locations worldwide. In most cases, climate model output is used to assess the impact of climate change on soil erosion; however, there is little knowledge of the implications of bias correction methods and climate model ensembles on projected soil erosion rates. Using a soil erosion model, we evaluated the implications of three bias correction methods (delta change, quantile mapping and scaled distribution mapping) and climate model selection on regional soil erosion projections in two contrasting Mediterranean catchments. Depending on the bias correction method, soil erosion is projected to decrease or increase. Scaled distribution mapping best projects the changes in extreme precipitation. While an increase in extreme precipitation does not always result in increased soil loss, it is an important soil erosion indicator. We suggest first establishing the deviation of the bias-corrected climate signal with respect to the raw climate signal, in particular for extreme precipitation. Furthermore, individual climate models may project opposite changes with respect to the ensemble average; hence climate model ensembles are essential in soil erosion impact assessments to account for climate model uncertainty. We conclude that the impact of climate change on soil erosion can only accurately be assessed with a bias correction method that best reproduces the projected climate change signal, in combination with a representative ensemble of climate models. © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
State-of-the-art hydrological climate impact assessment involves ensemble approaches to address uncertainties. For precipitation, a wide range of climate model runs is available. However, for particular meteorological variables used for the calculation of potential evapotranspiration (ETo), availability of climate model runs is limited. It is preferred that climate model runs are considered coupled when calculating changes in precipitation and ETo amounts, in order to preserve the internal physical consistency. This results in constraints on the maximum ensemble size. In this paper, we investigate the correlation between climate change signals of precipitation and ETo. It is found that, for two medium-sized catchments in Belgium, uncoupling climate model runs used for calculation of change signals of precipitation and ETo amounts does not result in a significant bias for changes in extreme flow. With these results, future impact studies can be conducted with larger ensemble sizes, resulting in a more complete uncertainty estimation.  相似文献   

14.
Hui Wang 《水文研究》2014,28(15):4472-4486
As a test bed, the National Multi‐model Ensemble (NMME) comprises seven climate models from different sources, including the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the National Center for Atmospheric Research and the International Research Institute for Climate and Society. It provides 89 ensemble members of precipitation forecasts at different lead times. Precipitation forecasting from climate models has been applied to provide streamflow forecasts, and its utility in water resource system operation has been demonstrated in the literature. In this study, 1‐month‐ahead precipitation forecasts from NMME are evaluated for 945 grid points of 1°‐by‐1° resolution over the continental USA using mean square error and rank probability score. The temporal and spatial variabilities of the forecasting skill over different months of the summer season are discussed. The relation between forecasting uncertainty and observed precipitation is investigated. Such analyses have implications for monthly operational forecasts and water resource management at the watershed scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
How can spatially explicit nonlinear regression modelling be used for obtaining nonpoint source loading estimates in watersheds with limited information? What is the value of additional monitoring and where should future data‐collection efforts focus on? In this study, we address two frequently asked questions in watershed modelling by implementing Bayesian inference techniques to parameterize SPAtially Referenced Regressions On Watershed attributes (SPARROW), a model that empirically estimates the relation between in‐stream measurements of nutrient fluxes and the sources/sinks of nutrients within the watershed. Our case study is the Hamilton Harbour watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario, Canada. The proposed Bayesian approach explicitly accounts for the uncertainty associated with the existing knowledge from the system and the different types of spatial correlation typically underlying the parameter estimation of watershed models. Informative prior parameter distributions were formulated to overcome the problem of inadequate data quantity and quality, whereas the potential bias introduced from the pertinent assumptions is subsequently examined by quantifying the relative change of the posterior parameter patterns. Our modelling exercise offers the first estimates of export coefficients and delivery rates from the different subcatchments and thus generates testable hypotheses regarding the nutrient export ‘hot spots’ in the studied watershed. Despite substantial uncertainties characterizing our calibration dataset, ranging from 17% to nearly 400%, we arrived at an uncertainty level for the whole‐basin nutrient export estimates of only 36%. Finally, we conduct modelling experiments that evaluate the potential improvement of the model parameter estimates and the decrease of the predictive uncertainty if the uncertainty associated with the current nutrient loading estimates is reduced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Simulation of future climate scenarios with a weather generator   总被引:4,自引:0,他引:4  
Numerous studies across multiple disciplines search for insights on the effects of climate change at local spatial scales and at fine time resolutions. This study presents an overall methodology of using a weather generator for downscaling an ensemble of climate model outputs. The downscaled predictions can explicitly include climate model uncertainty, which offers valuable information for making probabilistic inferences about climate impacts. The hourly weather generator that serves as the downscaling tool is briefly presented. The generator is designed to reproduce a set of meteorological variables that can serve as input to hydrological, ecological, geomorphological, and agricultural models. The generator is capable of reproducing a wide set of climate statistics over a range of temporal scales, from extremes, to low-frequency interannual variability; its performance for many climate variables and their statistics over different aggregation periods is highly satisfactory. The use of the weather generator in simulations of future climate scenarios, as inferred from climate models, is described in detail. Using a previously developed methodology based on a Bayesian approach, the stochastic downscaling procedure derives the frequency distribution functions of factors of change for several climate statistics from a multi-model ensemble of outputs of General Circulation Models. The factors of change are subsequently applied to the statistics derived from observations to re-evaluate the parameters of the weather generator. Using embedded causal and statistical relationships, the generator simulates future realizations of climate for a specific point location at the hourly scale. Uncertainties present in the climate model realizations and the multi-model ensemble predictions are discussed. An application of the weather generator in reproducing present (1961-2000) and forecasting future (2081-2100) climate conditions is illustrated for the location of Tucson (AZ). The stochastic downscaling is carried out using simulations of eight General Circulation Models adopted in the IPCC 4AR, A1B emission scenario.  相似文献   

17.
Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario and downscaling uncertainties. The Dempster–Shafer (D–S) evidence theory is used for representing and combining uncertainty from various sources. A significant advantage of the D–S framework over the traditional probabilistic approach is that it allows for the allocation of a probability mass to sets or intervals, and can hence handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how the D–S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The D–S approach has been used in this work for information synthesis using various evidence combination rules having different conflict modeling approaches. A case study is presented for hydrologic drought prediction using downscaled streamflow in the Mahanadi River at Hirakud in Orissa, India. Projections of n most likely monsoon streamflow sequences are obtained from a conditional random field (CRF) downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment (bpa) for a Dempster–Shafer structure, which represents uncertainty associated with each of the SSFI-4 classifications. These uncertainties are then combined across GCMs and scenarios using various evidence combination rules given by the D–S theory. A Bayesian approach is also presented for this case study, which models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D–S and Bayesian approaches are compared, and relative merits of each approach are discussed. Both approaches show an increasing probability of extreme, severe and moderate droughts and decreasing probability of normal and wet conditions in Orissa as a result of climate change.  相似文献   

18.
Approaches to modeling the continuous hydrologic response of ungauged basins use observable physical characteristics of watersheds to either directly infer values for the parameters of hydrologic models, or to establish regression relationships between watershed structure and model parameters. Both these approaches still have widely discussed limitations, including impacts of model structural uncertainty. In this paper we introduce an alternative, model independent, approach to streamflow prediction in ungauged basins based on empirical evidence of relationships between watershed structure, climate and watershed response behavior. Instead of directly estimating values for model parameters, different hydrologic response behaviors of the watershed, quantified through model independent streamflow indices, are estimated and subsequently regionalized in an uncertainty framework. This results in expected ranges of streamflow indices in ungauged watersheds. A pilot study using 30 UK watersheds shows how this regionalized information can be used to constrain ensemble predictions of any model at ungauged sites. Dominant controlling characteristics were found to be climate (wetness index), watershed topography (slope), and hydrogeology. Main streamflow indices were high pulse count, runoff ratio, and the slope of the flow duration curve. This new approach provided sharp and reliable predictions of continuous streamflow at the ungauged sites tested.  相似文献   

19.
In this study, uncertainty in model input data (precipitation) and parameters is propagated through a physically based, spatially distributed hydrological model based on the MIKE SHE code. Precipitation uncertainty is accounted for using an ensemble of daily rainfall fields that incorporate four different sources of uncertainty, whereas parameter uncertainty is considered using Latin hypercube sampling. Model predictive uncertainty is assessed for multiple simulated hydrological variables (discharge, groundwater head, evapotranspiration, and soil moisture). Utilizing an extensive set of observational data, effective observational uncertainties for each hydrological variable are assessed. Considering not only model predictive uncertainty but also effective observational uncertainty leads to a notable increase in the number of instances, for which model simulation and observations are in good agreement (e.g., 47% vs. 91% for discharge and 0% vs. 98% for soil moisture). Effective observational uncertainty is in several cases larger than model predictive uncertainty. We conclude that the use of precipitation uncertainty with a realistic spatio‐temporal correlation structure, analyses of multiple variables with different spatial support, and the consideration of observational uncertainty are crucial for adequately evaluating the performance of physically based, spatially distributed hydrological models.  相似文献   

20.
The impacts of climate change on future river flows are a growing concern. Typically, impacts are simulated by driving hydrological models with climate model ensemble data. The U.K. Climate Projections 2009 (UKCP09) provided probabilistic projections, enabling a risk-based approach to decision-making under climate change. Recently, an update was released—UKCP18—so there is a need for information on how impacts may differ. The probabilistic projections from UKCP18 and UKCP09 are here applied using the change factor method with catchment-based hydrological modelling for 10 catchments across England. Projections of changes in median, mean, high, and low flows are made for the 2050s, using the A1B emissions scenario from UKCP09 and UKCP18 as well as the RCP4.5 and RCP8.5 emissions scenarios from UCKP18. The results show that, in all catchments for all flow measures, the central estimate of change under UKCP18 is similar to that from UKCP09 (A1B emissions). However, the probabilistic uncertainty ranges from UKCP18 are, in all cases, greater than from UKCP09, despite UKCP18 having a smaller ensemble size than UKCP09. Although there are differences between the central estimates of change using UKCP18 RCP4.5, RCP8.5 and A1B emissions, there is considerable overlap in the uncertainty ranges. The results suggest that existing assessments of hydrological impacts remain relevant, though it will be necessary to evaluate sensitive decisions using the latest projections. The analysis will aid development of advice to users of current guidance based on UKCP09 and help make decisions about the prioritization of further hydrological impacts work using UKCP18, which should also apply other products from UKCP18 like the 12-km regional data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号