首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lack of paleoecological records from the montane Atlantic Rainforest of coastal Brazil, a hotspot of biological diversity, has been a major obstacle to our understanding of the vegetational changes since the last glacial cycle. We present carbon isotope and pollen records to assess the impact of the glaciation on the native vegetation of the Serra do Mar rainforest in São Paulo, Brazil. From ca. 28,000 to  22,000 14C yr BP, a subtropical forest with conifer trees is indicative of cool and humid conditions. In agreement carbon isotopic data on soil organic matter suggest the presence of C3 plants and perhaps C4 plants from  28,000 to  19,000 14C yr BP. The significant increase in the sedimentation rate and algal spores from  19,450 to  19,000 14C yr BP indicates increasing humidity, associated to an erosion process between  19,000 and  15,600 14C yr BP. From  15,600 14C yr BP to present there is a substantial increase in arboreal elements and herbs, indicating more humid and warmer climate. From  19,000 to  1000 14C yr BP, δ13C values indicated the predominance of C3 plants. These results are in agreement with studies in speleothems of caves, which suggest humid conditions during the last glacial maximum.  相似文献   

2.
At a marsh on the hanging wall of the Seattle fault, fossil brackish water diatom and plant seed assemblages show that the marsh lay near sea level between 7500 and 1000 cal yr B.P. This marsh is uniquely situated for recording environmental changes associated with past earthquakes on the Seattle fault. Since 7500 cal yr B.P., changes in fossil diatoms and seeds record several rapid environmental changes. In the earliest of these, brackish conditions changed to freshwater 6900 cal yr B.P., possibly because of coseismic uplift or beach berm accretion. If coseismic uplift produced the freshening 6900 cal yr B.P., that uplift probably did not exceed 2 m. During another event about 1700 cal yr B.P., brackish plant and diatom assemblages changed rapidly to a tidal flat assemblage because of either tectonic subsidence or berm erosion. The site then remained a tideflat until the most recent event, when an abrupt shift from tideflat diatoms to freshwater taxa resulted from 7 m of uplift during an earthquake on the Seattle fault 1000 cal yr B.P. Regardless of the earlier events, no Seattle fault earthquake similar to the one 1000 cal yr B.P. occurred at any other time in the past 7500 years.  相似文献   

3.
The late Quaternary paleoclimate of eastern Beringia has primarily been studied by drawing qualitative inferences from vegetation shifts. To quantitatively reconstruct summer temperatures, we analyzed lake sediments for fossil chironomids, and additionally we analyzed the sediments for fossil pollen and organic carbon content. A comparison with the δ18O record from Greenland indicates that the general climatic development of the region throughout the last glaciation–Holocene transition differed from that of the North Atlantic region. Between  17 and 15 ka, mean July air temperature was on average 5°C colder than modern, albeit a period of near-modern temperature at  16.5 ka. Total pollen accumulation rates ranged between  180 and 1200 grains cm− 2 yr− 1. At  15 ka, approximately coeval with the Bølling interstadial, temperatures again reached modern values. At  14 ka, nearly 1000 yr after warming began, Betula pollen percentages increased substantially and mark the transition to shrub-dominated pollen contributors. Chironomid-based inferences suggest no evidence of the Younger Dryas stade and only subtle evidence of an early Holocene thermal maximum, as temperatures from  15 ka to the late Holocene were relatively stable. The most recognizable climatic oscillation of the Holocene occurred from  4.5 to 2 ka.  相似文献   

4.
Near Mesquite Spring on the southern edge of the Soda Lake basin in the Mojave Desert, there is a shoreline of an ancient lake at an elevation of 340 m above sea level. At present, Soda Lake would overflow at 280 m; a lake surface at 340 m would extend 240 km northward, to the northern end of Death Valley. Shorelines and lacustrine deposits near the Salt Spring and Saddle Peak Hills, 75 km north of Mesquite Spring, are at 180 m; a lake surface at this elevation today would also extend to the northern end of Death Valley. The most prominent shoreline of the pluvial lake that occupied Death Valley during the Pleistocene, Lake Manly, is that of the Blackwelder stand which ended 120,000 yr ago. This shoreline is 90 m above sea level. The Mesquite Spring and Salt Spring Hills shorelines were probably formed by the Blackwelder stand and subsequently displaced with respect to one another, tectonically, due to transpression in the northeastern Mojave Desert and NW–SE extension across Death Valley. This tectonic regime would result in subsidence of Death Valley and the Salt Spring Hills relative to Mesquite Spring. A reconstruction suggests that the topography at the time of the Blackwelder stand would have had a sill near the level of the highest lake, and also one 20 m lower, corresponding to the next most prominent shoreline in Death Valley. Expansion of the lake over these sills would have increased evaporation, thus possibly stabilizing the lake level.  相似文献   

5.
The Magnitude and Proximate Cause of Ice-Sheet Growth Since 35,000 yr B.P.   总被引:1,自引:0,他引:1  
The magnitude of late Wisconsinan (post-35,000 yr B.P.) ice-sheet growth in the Northern Hemisphere is not well known. Ice volume at 35,000 yr B.P. may have been as little as 20% or as much as 70% of the volume present at the last glacial maximum (LGM). A conservative evaluation of glacial–geologic, sea level, and benthic δ18O data indicates that ice volume at 35,000 yr B.P. was approximately 50% of that extant at the LGM (20,000 yr B.P.); that is, it doubled in about 15,000 yr. On the basis of literature for the North Atlantic and a sea-surface temperature (SST) data compilation, it appears that this rapid growth may have been forced by low-to-mid-latitude SST warming in both the Atlantic and Pacific Oceans, with attendant increased moisture transport to high latitudes. The SST ice-sheet growth notion also explains the apparent synchroneity of late Wisconsinan mountain glaciation in both hemispheres.  相似文献   

6.
Numerous cirques of the Lofoten–Vesterålen archipelago in northern Norway have distinct moraine sequences that previously have been assigned to the Allerød-Younger Dryas ( 13,400 to 11,700 yr BP) interval, constraining the regional distribution of the equilibrium-line altitude (ELA) of cirque and valley glaciers. Here we present evidence from a once glacier-fed lake on southern Andøya that contests this view. Analyses of radiocarbon dated lacustrine sediments including rock magnetic parameters, grain size, organic matter, dry bulk density and visual interpretation suggest that no glacier was present in the low-lying cirque during the Younger Dryas-Allerød. The initiation of the glacial retreat commenced with the onset of the Bølling warming ( 14,700 yr BP) and was completed by the onset of Allerød Interstade ( 13,400 yr BP). The reconstructed glacier stages of the investigated cirque coincide with a cool and dry period from  17,500 to 14,700 yr BP and a somewhat larger Last Glacial Maximum (LGM) advance possibly occurring between  21,050 and 19,100 yr BP.  相似文献   

7.
The Xainza-Dinggye rift is one of several north-south trending rifts in central and southern Tibet created by Cenozoic east-west extension during Indo-Asian convergence. The southern part of the rift cuts through the Tethyan and High Himalayas. In the Tethyan Himalaya, this rift consists of an early domal structure and a late normal fault developed during the progressive deformation. The dome is cored by leucogranitic plutons that intruded during extension. Muscovite 40Ar/39Ar ages of the mylonitic leucogranite indicate that extension in the Tethyan Himalaya began at 8 Ma or before. In the High Himalaya, the rift is controlled by a normal fault dipping to the southeast. This fault has a structural constitution similar to a detachment fault. Its lower block is made up of mylonitic High Himalayan gneiss, intruded by early mylonitic leucogranite sills and late less-deformed biotite-bearing leucogranite dikes. Mica 40Ar/39Ar ages of these leucogranites and the retrograded metamorphosed gneiss of the lower block range from 13 to 10 Ma. In the study area, the south Tibetan detachment system (STDS) is a ductile shear zone composed of mylonitic leucogranite that is intruded by less-deformed leucogranite and overlain by low grade metamorphic rocks. Mica 40Ar/39Ar ages of leucogranites in the shear zone and schist from the detachment hanging wall indicate a protracted deformation history of the STDS from 19 to 13 Ma. The Xainza-Dinggye rift is younger than the STDS because it offsets the STDS; this north-south trending rift belongs to a different tectonic system from the east-west striking STDS, and may be caused by geological process related to India–Asia convergence. This temporal and spatial relationship of the STDS to the rift may indicate an important change in tectonic regime at 13 Ma in the building of the plateau.  相似文献   

8.
High velocity (1 m/s) friction experiments on bituminous coal gouge display several earthquake-related phenomena, including devolatilization by frictional heating, gas pressurization, and slip weakening. Stage I is characterized by sample shortening and reduction in the coefficient of friction (μ) from  1 to 0.6. Stage II is characterized by high frequency ( 5 Hz) oscillations in stress and strain records and by gas emissions. Stage III is marked by rapid weakening (μ  0.1 to 0.35) and sample shortening, together with continued gas emissions. Stage IV produces stable stress records and continued weakness (μ  0.2), but without gas emission. Stage I shortening is due to compaction of the gouge and the weakening is attributed to mechanical or thermal effects. Stage II behavior is interpreted as due to coal gasification and fluctuations in fluid pressure, resulting in high frequency stick-slip type behavior. Dramatic reduction in shear stress in stage III is attributed to gas pressurization by pore collapse and corresponds to a frictional instability, analogous to nucleation of an earthquake. Microstructural observations indicate the deformation was brittle during stages I and II but ductile during stages III and IV. Time dependent finite element frictional heat models indicate the center of the samples became hot ( 900 °C) during stage II, whereas the edge of samples remained relatively cold (< 300 °C). Vitrinite reflectance of coal samples shows an increase in reflectance from  0.5 to  0.8% over the displacement interval 20–40 m (20–40 s), indicating that the reflectance responds to frictional heating on a short time scale. The energy expended per unit area in these low stress, large displacement experiments is similar to that of higher stress ( 50 MPa), short displacement ( 1 m) earthquakes ( 107 J/m2).  相似文献   

9.
A detailed study of uplifted Middle–Late Pleistocene marine terraces on the eastern side of northern Calabria, southern Italy, provides insights into the temporal and spatial scale variability of vertical displacement rates over a time span of 400 ka. Calabria is located in the frontal orogen of southern Italy above the westerly-plunging Ionian slab, and a combination of lithospheric, crustal, and surface processes concurred to rapid Late Quaternary uplift. Eleven terrace orders and a raised Holocene beach were mapped up to 480 m a.s.l., and were correlated between the coastal slopes of Pollino and Sila mountain ranges across the Sibari Plain, facing the Ionian Sea side of northeastern Calabria. Precise corrections were applied to the measured shoreline angles in order to account for uncertainty in measurement, erosion of marine deposits, recent debris shedding, and bathymetric range of markers. Radiometric (ESR and 14C) dating of shells provides a crono-stratigraphic scheme, although many samples were found to be resedimented in younger terraces. Terrace T4, whose inner margin stands at elevations of 94–130 m, is assigned to MIS 5.5 (124 ka), based on new ESR dating and previous amino acid racemization estimations. The underlying terraces T3, T2 and T1 are attributed to MIS 5.3 (100 ka), 5.1 (80 ka) and 3 (60 ka), as inferred from their relative position supplemented by ESR and 14C age determinations. The age of higher terraces is poorly constrained, but conceivably is tracked back to MIS 11 (400 ka). The reconstructed depositional sequence of terraces attributed to MIS 5.5 and 7 reveals two regressive marine cycles separated by an alluvial fanglomerate, which, given the steady uplift regime, points to minor sub-orbital sea-level changes during interstadial highstands. Based on the terrace chronology, uplift in the last 400 ka occurred at an average rate of 1 mm/a, but was characterized by the alternation of more rapid (up to 3.5 mm/a) and slower (down to 0.5 mm/a) periods of displacement. Spatial variability in uplift rates is recorded by the deformation profile of terraces parallel to the coast, which document the growth of local fold structures.  相似文献   

10.
The small granite plutons occurring at the contact of the Singhbhum-Orissa Iron Ore craton (IOC) to the north and the Eastern Ghat Granulite Belt (EGGB) to the south in eastern Indian shield are characterised by the presence of enclaves of the granulites of EGGB and the greenschist facies rocks of IOC. These granites also bear the imprints of later cataclastic deformation which is present at the contact of the IOC and the EGGB. In situ Pb-Pb zircon dating of these granites gives minimum age of their formation 2.80 Ga. A whole-rock three point Rb-Sr isochron age of this rock is found to be 2.90 Ga. Therefore, the true age of formation of these granites will be around 2.90–2.80 Ga. These granitic rocks also contain xenocrystic zircon components of 3.50 Ga and show a later metasomatic or metamorphic effect 2.48 Ga obtained from the analyses on overgrowths developed on 2.80 Ga old zircon cores. The presence of granulitic enclaves within these contact zone granite indicates that the granulite facies metamorphism of the EGGB is 2.80 Ga or still older in age. The cataclastic deformations observed at the contact zone of the two adjacent cratons is definitely younger than 2.80 Ga and possibly related to 2.48 Ga event observed from the overgrowths. As 2.80 Ga granite plutons of small dimensions are also observed at the western margin of the IOC; it can be concluded that a geologic event occurred 2.80 Ga over the IOC when small granite bodies evolved at the marginal part of this craton after its stabilisation at 3.09 Ga.  相似文献   

11.
A pollen record from Lake Xere Wapo, southeast New Caledonia, is the longest continuous terrestrial record to be recovered from the tropical southwest Pacific and reveals a series of millennial scale changes in vegetation over the last 130,000 yr. A comparison of the Lake Xere Wapo record with the key northeast Australian record of Lynch's Crater reveals regional patterns of change. From 120,000 to 50,000 yr ago the vegetation around Lake Xere Wapo alternated between rainforest and maquis with fire an important disturbance factor. In the last 50,000 yr fire is almost absent from the record and the vegetation assumes a character unprecedented in the preceding 100,000 yr, dominated by Dacrydium and Podocarpus pollen. The most compelling aspect of the comparison with Lynch's Crater is that the much-discussed Araucaria decline at around 45,000 yr ago in northern Queensland is matched by a similar decline in the Lake Xere Wapo record.  相似文献   

12.
Numerical modelling, incorporating coupling between surface processes and induced flow in the lower continental crust, is used to address the Quaternary evolution of the Gulf of Corinth region in central Greece. The post-Early Pleistocene marine depocentre beneath this Gulf overlies the northern margin of an older (Early Pleistocene and earlier) lacustrine basin, the Proto Gulf of Corinth Basin or PGCB. In the late Early Pleistocene, relief in this region was minimal but, subsequently, dramatic relief has developed, involving the creation of  900 m of bathymetry within the Gulf and the uplift by many hundreds of metres of the part of the PGCB, south of the modern Gulf, which forms the Gulf's main sediment supply. It is assumed that, as a result of climate change around 0.9 Ma, erosion of this sediment source region and re-deposition of this material within the Gulf began, both processes occurring at spatial average rates of  0.2 mm a− 1. Modelling of the resulting isostatic response indicates that the local effective viscosity of the lower crust is  4 × 1019 Pa s, indicating a Moho temperature of  560 °C. It predicts that the  10 mm a− 1 of extension across this  70 km wide model region, at an extensional strain rate of  0.15 Ma− 1, is partitioned with  3 mm a− 1 across the sediment source,  2 mm a− 1 across the depocentre, and  5 mm a− 1 across the ‘hinge zone’ in between, the latter value being an estimate of the extension rate on normal faults forming the major topographic escarpment at the southern margin of the Gulf. This modelling confirms the view, suggested previously, that coupling between this depocentre and sediment source by lower-crustal flow can explain the dramatic development in local relief since the late Early Pleistocene. The effective viscosity of the lower crust in this region is not particularly low; the strong coupling interpreted between the sediment source and depocentre results instead from their close proximity. In detail, the effective viscosity of the lower crust is expected to decrease northward across this model region, due to the northward increase in exposure of the base of the continental lithosphere to the asthenosphere; in the south the two are separated by the subducting Hellenic slab. The isostatic consequences of such a lateral variation in viscosity provide a natural explanation for why, since  0.9 Ma, the modern Gulf has developed asymmetrically over the northern part of the PGCB, leaving the rest of the PGCB to act as its sediment source.  相似文献   

13.
Integration of on-land and offshore geomorphological and structural investigations coupled to extensive radiometric dating of co-seismically uplifted Holocene beaches allows characterization of the geometry, kinematics and seismotectonics of the Scilla Fault, which borders the eastern side of the Messina Strait in Calabria, Southern Italy. This region has been struck by destructive historical earthquakes, but knowledge of geologically-based source parameters for active faults is relatively poor, particularly for those running mostly offshore, as the Scilla Fault does. The  30 km-long normal fault may be divided into three segments of  10 km individual length, with the central and southern segments split in at least two strands. The central and northern segments are submerged, and in this area marine geophysical data indicate a youthful morphology and locally evidence for active faulting. The on-land strand of the western segment displaces marine terraces of the last interglacial (124 to 83 ka), but seismic reflection profiles suggest a full Quaternary activity. Structural data collected on bedrock faults exposed along the on-land segment provide evidence for normal slip and  NW-SE extension, which is consistent with focal mechanisms of large earthquakes and GPS velocity fields in the region. Detailed mapping of raised Holocene marine deposits exposed at the coastline straddling of the northern and central segments supplies evidence for two co-seismic displacements at  1.9 and  3.5 ka, and a possible previous event at  5 ka. Co-seismic displacements show a consistent site value and pattern of along-strike variation, suggestive of characteristic-type behaviour for the fault. The  1.5–2.0 m average co-seismic slips during these events document Me  6.9–7.0 earthquakes with  1.6–1.7 ka recurrence time. Because hanging-wall subsidence cannot be included into slip magnitude computation, these slips reflect footwall uplift, and represent minimum average estimates. The palaeoseismological record based on the palaeo-shorelines suggests that the last rupture on the Scilla Fault during the February 6, 1783 Mw = 5.9–6.3 earthquake was at the expected time but it may have not entirely released the loaded stress since the last great event at  1.9 ka. Comparison of the estimated co-seismic extension rate based on the Holocene shoreline record with available GPS velocities indicates that the Scilla Fault accounts for at least  15–20% of the contemporary geodetic extension across the Messina Strait.  相似文献   

14.
This paper documents a continuous  44,000-yr pollen record derived from the Mfabeni Peatland on the Maputaland Coastal Plain. A detailed fossil pollen analysis indicates the existence of extensive Podocarpus-abundant coastal forests before  33,000 cal yr BP. The onset of wetter local conditions after this time is inferred from forest retreat and the development of swampy conditions. Conditions during the last glacial maximum ( 21,000 cal yr BP) are inferred to have been colder and drier than the present, as evidenced by forest retreat and replacement of swampy reed/sedge communities by dry grassland. Forest growth and expansion during the Holocene Altithermal ( 8000–6000 cal yr BP) indicates warm, relatively moist conditions. Previous records from Maputaland have suggested a northward migration of Podocarpus forest during the late Holocene. However, we interpret a mid-Holocene decline in Podocarpus at Mfabeni as evidence of deforestation. Forest clearance during the mid-Holocene is supported by the appearance of Morella serrata, suggesting a shift towards more open grassland/savanna, possibly due to burning. These signals of human impact are coupled with an increase in Acacia, indicative of the development of secondary forest and hence disturbance.  相似文献   

15.
The crystalline terrane of the Tongbai–Dabie region, central China, comprising the Earth's largest ultrahigh-pressure (UHP) exposure was formed during Triassic collision between the Sino–Korean and Yangtze cratons. New apatite fission-track (AFT) data presented here from the UHP terrane, extends over a significantly greater area than reported in previous studies, and includes the (eastern) Dabie, the Hong'an (northwestern Dabie) and Tongbai regions. The new data yield ages ranging from 44 ± 3 to 142 ± 36 Ma and mean track lengths between 10 and 14.4 μm. Thermal history models based on the AFT data taken together with published 40Ar/39Ar, K–Ar, apatite and zircon (U–Th)/He and U–Pb data, exhibit a three-stage cooling pattern that is similar across the study region, commencing with an Early Cretaceous rapid cooling event, followed by a period of relative thermal stability during which rocks remained at temperatures within the AFT partial annealing zone (60–110 °C) and ending with a possible renewed phase of accelerated cooling during Pliocene to Recent time. The first cooling phase followed large-scale transtensional deformation between 140 and 110 Ma and is related to Early Cretaceous eastward tectonic escape and Pacific back arc extension. Between this phase and the subsequent slow cooling phase, a transition period from 120 to 80 Ma (to 70 to 45 Ma along the Tan–Lu fault) was characterised by a relatively low cooling rate (3–5 °C/Ma). This transition is likely related to a tectonic response associated with the mid-Cretaceous subduction of the Izanagi–Pacific plate as well as lithospheric extension and thinning in eastern Asia. The present regional AFT age pattern is therefore basically controlled by the Early Cretaceous rapid cooling event, but finally shaped through active Cenozoic faulting. Following the transition phase the subsequent slow cooling phase pattern implies a net reduction in horizontal compressional stress corresponding to increased extension rates along the continental margin due to the decrease in plate convergence. Modelling of the AFT data suggests a possible Pliocene–Recent cooling episode, which may be supported by increased rates of sedimentation observed in adjacent basins. This cooling phase may be interpreted as a response to the far-field effects of the frontal India–Eurasia collision to the west. Approximate estimates suggest that the total amount of post 120 Ma denudation across the UHP orogen ranged from 2.4 to 13.2 km for different tectonic blocks and ranged from 0.8 to 9.7 km during the Cretaceous to between 1.7 and 3.8 km during the Cenozoic.  相似文献   

16.
Pollen analysis of sediments from a high-altitude (4215 m), Neotropical (9°N) Andean lake was conducted in order to reconstruct local and regional vegetation dynamics since deglaciation. Although deglaciation commenced 15,500 cal yr B.P., the area around the Laguna Verde Alta (LVA) remained a periglacial desert, practically unvegetated, until about 11,000 cal yr B.P. At this time, a lycopod assemblage bearing no modern analog colonized the superpáramo. Although this community persisted until 6000 cal yr B.P., it began to decline somewhat earlier, in synchrony with cooling following the Holocene thermal maximum of the Northern Hemisphere. At this time, the pioneer assemblage was replaced by a low-diversity superpáramo community that became established 9000 cal yr B.P. This replacement coincides with regional declines in temperature and/or available moisture. Modern, more diverse superpáramo assemblages were not established until 4600 cal yr B.P., and were accompanied by a dramatic decline in Alnus, probably the result of factors associated with climate, humans, or both. Pollen influx from upper Andean forests is remarkably higher than expected during the Late Glacial and early to middle Holocene, especially between 14,000 and 12,600 cal yr B.P., when unparalleled high values are recorded. We propose that intensification of upslope orographic winds transported lower elevation forest pollen to the superpáramo, causing the apparent increase in tree pollen at high altitude. The association between increased forest pollen and summer insolation at this time suggests a causal link; however, further work is needed to clarify this relationship.  相似文献   

17.
We have studied seismic surface waves of 255 shallow regional earthquakes recently recorded at GEOFON station ISP (Isparta, Turkey) and have selected these 52 recordings with high signal-to-noise ratio for further analysis. An attempt was made by the simultaneous use of the Rayleigh and Love surface wave data to interpret the planar crust and uppermost mantle velocity structure beneath the Anatolian plate using a differential least-square inversion technique. The shear-wave velocities near the surface show a gradational change from approximately 2.2 to 3.6 km s− 1 in the depth range 0–10 km. The mid-crustal depth range indicating a weakly developed low velocity zone has shear-wave velocities around 3.55 km s− 1. The Moho discontinuity characterizing the crust–mantle velocity transition appears somewhat gradual between the depth range  25–45 km. The surface waves approaching from the northern Anatolia are estimated to travel a crustal thickness of  33 km whilst those from the southwestern Anatolia and part of east Mediterranean Sea indicate a thicker crust at  37 km. The eastern Anatolia events traveled even thicker crust at  41 km. A low sub-Moho velocity is estimated at  4.27 km s− 1, although consistent with other similar studies in the region. The current velocities are considerably slower than indicated by the Preliminary Reference Earth Model (PREM) in almost all depth ranges.  相似文献   

18.
Coaly source rocks are sufficiently different from marine and lacustrine source rocks in their organic matter characteristics to warrant separate guidelines for their assessment using Rock-Eval pyrolysis. The rank threshold for oil generation is indicated by the increase in BI (S1/TOC) at Rank(Sr)9–10 (Tmax 420–430 °C, Ro 0.55–0.6%), and the threshold for oil expulsion is indicated by the peak in QI ([S1+S2]/TOC) at Rank(Sr)11–12.5 (Tmax 430–440 °C, Ro 0.65–0.85%). The pronounced rank-related increase in HI (S2/TOC) prior to oil expulsion renders the use of immature samples inappropriate for source rock characterisation. A more realistic indication of the petroleum generative potential and oil expulsion efficiency of coaly source rocks can be gained from samples near the onset of expulsion. Alternatively, effective HI′ values (i.e. HIs near the onset of expulsion) can be estimated by translating the measured HIs of immature samples along the maturation pathway defined by the New Zealand (or other defined) Coal Band. Coaly source rocks comprise a continuum of coaly lithologies, including coals, shaly coals and coaly mudstones. Determination of the total genetic potential of coaly source rock sequences is best made using lithology-based samples near the onset of expulsion.  相似文献   

19.
The Iberian Peninsula and the Maghreb experience moderate earthquake activity and oblique,  NW–SE convergence between Africa and Eurasia at a rate of  5 mm/yr. Coeval extension in the Alboran Basin and a N35°E trending band of active, left-lateral shear deformation in the Alboran–Betic region are not straightforward to understand in the context of regional shortening, and evidence complexity of deformation at the plate contact. We estimate 86 seismic moment tensors (MW 3.3 to 6.9) from time domain inversion of near-regional waveforms in an intermediate period band. Those and previous moment tensors are used to describe regional faulting style and calculate average stress tensors. The solutions associated to the Trans-Alboran shear zone show predominantly strike-slip faulting, and indicate a clockwise rotation of the largest principal stress orientation compared to the regional convergence direction (σ1 at N350°E). At the N-Algerian and SW-Iberian margins, reverse faulting solutions dominate, corresponding to N350°E and N310°E compression, respectively. Over most of the Betic range and intraplate Iberia, we observe predominately normal faulting, and WSW–ENE extension (σ3 at N240°E). From GPS observations we estimate that more than 3 mm/yr of African (Nubian)–Eurasian plate convergence are currently accommodated at the N-Algerian margin,  2 mm/yr in the Moroccan Atlas, and  2 mm/yr at the SW-Iberian margin. 2 mm/yr is a reasonable estimate for convergence within the Alboran region, while Alboran extension can be quantified as  2.5 mm/yr along the stretching direction (N240°E). Superposition of both motions explains the observed left-lateral transtensional regime in the Trans-Alboran shear zone. Two potential driving mechanisms of differential motion of the Alboran–Betic–Gibraltar domain may coexist in the region: a secondary stress source other than plate convergence, related to regional-scale dynamic processes in the upper mantle of the Alboran region, as well as drag from the continental-scale motion of the Nubian plate along the southern limit of the region. In the Atlantic Ocean, the  3.5 mm/yr, westward motion of the Gibraltar Arc relative to intraplate Iberia can be accommodated at the transpressive SW-Iberian margin, while available GPS observations do not support an active subduction process in this area.  相似文献   

20.
Luminescence geochronology, especially infrared stimulated luminescence analyses on marsh mud, shows that a relatively deep lake reached its peak (1340 m above sea level) in the Bonneville basin 59,000±5000 yr ago. The age is consistent with nonfinite 14C ages and with amino acid geochronology on ostracodes. The Cutler Dam Alloformation was deposited during this lake cycle, which, like the subsequent Bonneville lake cycle, appears to have reached its maximum highstand following the peak of a global glacial stage (marine oxygen-isotope stage 4) but at a time when other records from North America show evidence for cold climate and expanded glacier ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号