首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The dynamical behavior of asteroids inside the 2:1 and 3:2 commensurabilities with Jupiter presents a challenge. Indeed most of the studies, either analytical or numerical, point out that the two resonances have a very similar dynamical behavior. In spite of that, the 3:2 resonance, a little outside the main belt, hosts a family of asteroids, called the Hildas, while the 2:1, inside the main belt, is associated to a gap (the Hecuba gap) in the distribution of asteroids.In his search for a dynamical explanation for the Hecuba gap, Wisdom (1987) pointed out the existence of orbits starting with low eccentricity and inclination inside the 2:1 commensurability and going to high eccentricity, and thus to possible encounters with Mars. It has been shown later (Henrard et al.), that these orbits were following a path from the low eccentric belt of secondary resonances to the high eccentric domain of secular resonances. This path crosses a bridge, at moderate inclination and large amplitude of libration, between the two chaotic domains associated with these resonances.The 3:2 resonance being similar in many respects to the 2:1 resonance, one may wonder whether it contains also such a path. Indeed we have found that it exists and is very similar to the 2:1 one. This is the object of the present paper.  相似文献   

2.
We have investigated the pericentric resonances through which Miranda and Umbriel are believed to have passed when, due to tidal evolution, their orbital mean motions reached a 3 : 1 commensurability. Our investigation is based upon a perturbative treatment. The predictions of this theory are in good agreement with the results of numerical integrations concerning both the extend of the chaotic layers generated by the separatrices of the primary resonances and the location of the secondary resonances. The effect of tidal evolution is discussed on the bases of the adiatatic invariant theory and its extension to separatrix crossing. We recover qualitatively the mean features of the numerical experiments of Tittermore and Wisdom (1988–1989), Dermott et al (1988) and Malhotra and Dermott (1989).  相似文献   

3.
We present a 3-D symplectic mapping model that is valid at the 2:1 mean motion resonance in the asteroid motion, in the Sun-Jupiter-asteroid model. This model is used to study the dynamics inside this resonance and several features of the system have been made clear. The introduction of the third dimension, through the inclination of the asteroid orbit, plays an important role in the evolution of the asteroid and the appearance of chaotic motion. Also, the existence of the secondary resonances is clearly shown and their role in the appearance of chaotic motion and the slow diffusion of the elements of the orbit is demonstrated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
On the basis of a high-order (order 12) expansion of the perturbative potential in powers of the eccentricities and the inclinations, we analyze the secular interactions of two non-coplanar planets which are not in mean-motion resonance. The model is based on the planetary three-body problem which can be reduced to two degrees of freedom by the well-known elimination of the nodes [Jacobi, C.G.J., 1842. Astron. Nachr. XX, 81-102]. We introduce non-singular canonical variables which bring forward the symmetries of the problem. The main dynamical features depend on the location and stability of the equilibria which are easily found with our analytical model. We find that there exists an equilibrium when both eccentricities are zero. When the mutual inclination is small, this equilibrium is stable, but for larger mutual inclination it becomes unstable, generating a large chaotic zone and, by bifurcation, two regular regions, the so-called Kozai resonances. This analytical study which depends on only two parameters (the ratio of the semi-major axes and the mass ratio of the planets) makes possible a large survey of the problem and enables us to identify and quantify its main dynamical features, periodic orbits, regular and chaotic zones, etc. The results of our analytical model are illustrated and confirmed by numerical integrations.  相似文献   

5.
We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (σ-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (  Δϖ  -family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system.
The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low–moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions.
Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.  相似文献   

6.
It is known since the seminal study of Laskar (1989) that the inner planetary system is chaotic with respect to its orbits and even escapes are not impossible, although in time scales of billions of years. The aim of this investigation is to locate the orbits of Venus and Earth in phase space, respectively, to see how close their orbits are to chaotic motion which would lead to unstable orbits for the inner planets on much shorter time scales. Therefore, we did numerical experiments in different dynamical models with different initial conditions—on one hand the couple Venus–Earth was set close to different mean motion resonances (MMR), and on the other hand Venus’ orbital eccentricity (or inclination) was set to values as large as e = 0.36 (i = 40°). The couple Venus–Earth is almost exactly in the 13:8 mean motion resonance. The stronger acting 8:5 MMR inside, and the 5:3 MMR outside the 13:8 resonance are within a small shift in the Earth’s semimajor axis (only 1.5 percent). Especially Mercury is strongly affected by relatively small changes in initial eccentricity and/or inclination of Venus, and even escapes for the innermost planet are possible which may happen quite rapidly.  相似文献   

7.
Earlier work indicates a comparatively rapid chaotic evolution of the orbits of some Hilda asteroids that move at the border of the domain occupied by the characteristic parameters of the objects at the 3/2 mean motion resonance. A simple Jupiter–Saturn model of the forces leads to numerical results on some of these cases and allows a search for additional resonances that can contribute to the chaotic evolution. In this context the importance of the secondary resonances that depend on the period of revolution of the argument of perihelion is pointed out. Among the studied additional resonances there are three-body resonances with arguments that depend on the mean longitudes of Jupiter, Saturn, and asteroid, but on slowly circulating angular elements of the asteroid as well, and the frequency of these arguments is close to a rational ratio with respect to the frequency of the libration due to the basic resonance.  相似文献   

8.
A symplectic mapping is constructed for the study of the dynamical evolution of Edgeworth-Kuiper belt objects near the 2:3 mean motion resonance with Neptune. The mapping is six-dimensional and is a good model for the Poincaré map of the real system, that is, the spatial elliptic restricted three-body problem at the 2:3 resonance, with the Sun and Neptune as primaries. The mapping model is based on the averaged Hamiltonian, corrected by a semianalytic method so that it has the basic topological properties of the phase space of the real system both qualitatively and quantitatively. We start with two dimensional motion and then we extend it to three dimensions. Both chaotic and regular motion is observed, depending on the objects' initial inclination and phase. For zero inclination, objects that are phase-protected from close encounters with Neptune show ordered motion even at eccentricities as large as 0.4 and despite being Neptune-crossers. On the other hand, not-phase-protected objects with eccentricities greater than 0.15 follow chaotic motion that leads to sudden jumps in their eccentricity and are removed from the 2:3 resonance, thus becoming short period comets. As inclination increases, chaotic motion becomes more widespread, but phase-protection still exists and, as a result, stable motion appears for eccentricities up to e = 0.3 and inclinations as high as i = 15°, a region where plutinos exist.  相似文献   

9.
Classical trans-Neptunian objects (TNOs) are believed to represent the most dynamically pristine population in the trans-Neptunian belt (TNB) offering unprecedented clues about the formation of our Solar System. The long term dynamical evolution of classical TNOs was investigated using extensive simulations. We followed the evolution of more than 17000 particles with a wide range of initial conditions taking into account the perturbations from the four giant planets for 4 Gyr. The evolution of objects in the classical region is dependent on both their inclination and semimajor axes, with the inner (a<45 AU) and outer regions (a>45 AU) evolving differently. The reason is the influence of overlapping secular resonances with Uranus and Neptune (40–42 AU) and the 5:3 (a∼ ∼42.3 AU), 7:4 (a∼ ∼43.7 AU), 9:5 (a∼ ∼44.5 AU) and 11:6 (a∼ ∼ 45.0 AU) mean motion resonances strongly sculpting the inner region, while in the outer region only the 2:1 mean motion resonance (a∼ ∼47.7 AU) causes important perturbations. In particular, we found: (a) A substantial erosion of low-i bodies (i<10°) in the inner region caused by the secular resonances, except those objects that remained protected inside mean motion resonances which survived for billion of years; (b) An optimal stable region located at 45 AU<a<47 AU, q>40 AU and i>5° free of major perturbations; (c) Better defined boundaries for the classical region: 42–47.5 AU (q>38 AU) for cold classical TNOs and 40–47.5 AU (q>35 AU) for hot ones, with i=4.5° as the best threshold to distinguish between both populations; (d) The high inclination TNOs seen in the 40–42 AU region reflect their initial conditions. Therefore they should be classified as hot classical TNOs. Lastly, we report a good match between our results and observations, indicating that the former can provide explanations and predictions for the orbital structure in the classical region.  相似文献   

10.
For both asteroids and meteor streams, and also for comets, resonances play a major role for their orbital evolutions but on different time scales. For asteroids both mean motion resonances and secular resonances not only structure the phase space of regular orbits but are mainly at the origin for the inherent chaos of planet crosser objects.For comets and their chaotic routes temporary trapping into orbital resonances is a well known phenomenon. In addition for slow diffusion through the Kuiper belt resonances are the only candidates for originating a slow chaos.Like for asteroids, resonances with Jupiter play a major role for the orbital evolution of meteor streams. Crossing of separatrix like zones appears to be crucial for the formation of arcs and for the dissolution of streams. In particular the orbital inclination of a meteor stream appears to be a critical parameter for arc formation. Numerical results obtained in an other context show that the competition between the Poynting-Robertson drag and the gravitational interaction of grains near the 2/1 resonance might be very important in the long run for the structure of meteor streams.  相似文献   

11.
The stability of Trojan type orbits around Neptune is studied. As the first part of our investigation, we present in this paper a global view of the stability of Trojans on inclined orbits. Using the frequency analysis method based on the fast Fourier transform technique, we construct high-resolution dynamical maps on the plane of initial semimajor axis a 0 versus inclination i 0. These maps show three most stable regions, with i 0 in the range of  (0°, 12°), (22°, 36°)  and  (51°, 59°),  respectively, where the Trojans are most probably expected to be found. The similarity between the maps for the leading and trailing triangular Lagrange points L 4 and L 5 confirms the dynamical symmetry between these two points. By computing the power spectrum and the proper frequencies of the Trojan motion, we figure out the mechanisms that trigger chaos in the motion. The Kozai resonance found at high inclination varies the eccentricity and inclination of orbits, while the  ν8  secular resonance around   i 0∼ 44°  pumps up the eccentricity. Both mechanisms lead to eccentric orbits and encounters with Uranus that introduce strong perturbation and drive the objects away from the Trojan like orbits. This explains the clearance of Trojan at high inclination  (>60°)  and an unstable gap around  44°  on the dynamical map. An empirical theory is derived from the numerical results, with which the main secular resonances are located on the initial plane of  ( a 0, i 0)  . The fine structures in the dynamical maps can be explained by these secular resonances.  相似文献   

12.
In Wisdom (2017), I presented new simulations of meteorite transport from the chaotic zones associated with major resonances in the asteroid belt: the ν6 secular resonance, the 3:1 mean motion resonance with Jupiter, and the 5:2 mean motion resonance with Jupiter. I found that the observed afternoon excess (the fact that approximately twice as many meteorites fall in the afternoon as in the morning) of the ordinary chondrites is consistent with chaotic transport from the 3:1 resonance, contradicting prior reports. Here I report an additional study of the transport of meteorites from ν6 secular resonance and the 3:1 mean motion resonance. I use an improved integration algorithm, and study the evolution of more particles. I confirm that the afternoon excess of the ordinary chondrites is consistent with transport from the 3:1 resonance.  相似文献   

13.
14.
In the last three years we have carried out numerical and semi-analytical studies on the secular dynamical mechanisms in the region (semimajor axis a < 2 AU) where the NEA orbits evolve. Our numerical integrations (over a time span of a few Myr) have shown that: (i) the linear secular resonances with both the inner and the outer planets may play an important role in the dynamical evolution of NEAs; (ii) the apsidal secular resonance with Mars could provide an important dynamical transport mechanism by which asteroids in the Mars-crossing region eventually achieve Earth-crossing orbits; (iii) in this region, due to the interaction with the terrestrial planets, the Kozai resonance can occur at small inclinations, with the argument of perihelion ω librating around 0° or 180°, providing a temporary protection mechanism against close approaches to the planets. The location of the linear secular resonances in this zone has also been obtained by an automatic procedure using a semi-numerical method valid for all values of the inclinations and eccentricities of the small bodies, and also in the case of libration of the argument of perihelion. A map of the secular resonances in the (a, i) plane shows — in agreement with the numerical integrations — that all the resonances with the terrestrial and giant planets are present, and also that some of them overlap. Thus the way is now open to fully take into account secular resonances in modelling the dynamical evolution of NEAs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The chaotic behaviour of the motion of the planets in our Solar System is well established. In this work to model a hypothetical extrasolar planetary system our Solar System was modified in such a way that we replaced the Earth by a more massive planet and let the other planets and all the orbital elements unchanged. The major result of former numerical experiments with a modified Solar System was the appearance of a chaotic window at κ E ∈ (4, 6), where the dynamical state of the system was highly chaotic and even the body with the smallest mass escaped in some cases. On the contrary for very large values of the mass of the Earth, even greater than that of Jupiter regular dynamical behaviour was observed. In this paper the investigations are extended to the complete Solar System and showed, that this chaotic window does still exist. Tests in different ‘Solar Systems’ clarified that including only Jupiter and Saturn with their actual masses together with a more ‘massive’ Earth (4 < κ E < 6) perturbs the orbit of Mars so that it can even be ejected from the system. Using the results of the Laplace‐Lagrange secular theory we found secular resonances acting between the motions of the nodes of Mars, Jupiter and Saturn. These secular resonances give rise to strong chaos, which is the cause of the appearance of the instability window. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We have numerically integrated the orbits of 18 fictitious fragments ejected from the asteroid 6 Hebe, an S-type object about 200km across which is located very close to theg=g 6 (orv 6) secular resonance at a semimajor axis of 2.425AU and a (proper) inclination of 15° .0. A realistic ejection velocity distribution, with most fragments escaping at relative speeds of a few hundredsm/s, has been assumed. In four cases we have found that the resonance pumps up the orbital eccentricity of the fragments to values >0.6, which result into Earth-crossing, within a time span of 1Myr; subsequent close encounters with the Earth cause strongly chaotic orbital evolution. The closest Earth and Mars encounters recorded in our integration occur at miss distances of a few thousandths ofAU, implying collision lifetimes <109 yr. Some other fragments affected by the secular resonance become Mars-crossers but not Earth-crossers over the integration time span. Two bodies are injected into the 3 : 1 mean motion resonance with Jupiter, and also display macroscopically chaotic behaviour leading to Earth-crossing. 6 Hebe is the first asteroid for which a realistic collisional/dynamical evolutionroute to generate meteorites has been fully demonstrated. It may be the parent body of one of the ordinary chondrite classes.  相似文献   

17.
We present a symplectic mapping model to study the evolution of a small body at the 3/4 exterior resonance with Neptune, for planar and for three dimensional motion. The mapping is based on the averaged Hamiltonian close to this resonance and is constructed in such a way that the topology of its phase space is similar to that of the Poincaré map of the elliptic restricted three-body problem. Using this model we study the evolution of a small object near the 3/4 resonance. Both chaotic and regular motions are found, and it is shown that the initial phase of the object plays an important role on the appearance of chaos. In the planar case, objects that are phase-protected from close encounters with Neptune have regular orbits even at eccentricities up to 0.44. On the other hand objects that are not phase protected show chaotic behaviour even at low eccentricities. The introduction of the inclination to our model affects the stable areas around the 3/4 mean motion resonance, which now become thinner and thinner and finally at is=10° the whole resonant region becomes chaotic. This may justify the absence of a large population of objects at this resonance.  相似文献   

18.
Phenomena of bifurcation in hydrodynamic stellar models of radial pulsation are reviewed. By changing control parameters of models, we can see qualitatively different pulsation behaviors in hydrodynamic models with transitions due to various types of bifurcation.In weakly dissipative models (classical Cepheids), the bifurcation is induced by modal resonances. Two types of the modal resonances found in models are discussed: The higherharmonic resonances of the second overtone mode in the fundamental mode pulsator and of the fourth overtone mode in the first overtone pulsator are relevant to observations. The subharmonic resonance between the fundamental and first overtone modes is confirmed in classical Cepheid models.In strongly dissipative models (less-massive supergiant stars), the bifurcation of nonlinear pulsation is induced by the hydrodynamics of ionization zones as well as modal resonances. The sequence of the bifurcation sometimes leads to chaotic behaviors in nonlinear pulsation. The transition routes from regular to the chaotic pulsations found in models are discussed with respect to the theory of chaos in simple dynamical systems: The cascade of period-doubling bifurcation is confirmed to cause chaotic pulsation in W Virginis models. For models of higher luminosity, the tangent bifurcation is found to lead intermittent chaos.Finally, hydrodynamic models for chaotic pulsation with small amplitudes observed in the post-AGB stars are briefly discussed.  相似文献   

19.
The dynamics of space debris with very high A/m near the geostationary orbit is dominated by the gravitational coefficient C 22 and the solar radiation pressure. An analysis of the stability of the orbits by the chaos indicator MEGNO and frequency analysis map FAM shows chaotic layers around the separatrix and reveals a web of sub-structures associated to resonances with the annual period of the Sun. This succession of stable thin islands and chaotic layers can be reproduced and explained by a quite simple toy model, based on a pendulum approach, perturbed, through the eccentricity, by the external (Sun) frequency. The use of suitable action-angle variables in the circulation and libration regions of the pendulum allows to point out new resonances between the geostationary libration angle and the Sun’s longitude. They correspond very well (positions, shape, width) to the structures visible on the FAM representations.  相似文献   

20.
The system of Saturn's inner satellites is saturated with many resonances. Its structure should be strongly affected by tidal forces driving the satellites through several orbit–orbit resonances. The evolution of these satellites is investigated using analytic and numerical methods. We show that the pair of satellites Prometheus and Pandora has a particularly short lifetime (<20 Myr) if the orbits of the satellites converge without capture into a resonance. The capture of Pandora into a resonance with Prometheus increases the lifetime of the couple by a few tens of Myr. However, resonances of the system are not well separated, and capture results in a chaotic motion. Secondary resonances also disrupt the resonant configurations. In all cases, the converging orbits of these two satellites result in a close encounter. The implications for the origin of Saturn's rings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号