首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
<正>极高能宇宙线一般指来自地外的能量高于10~(18)电子伏特(eV)的高能质子与原子核,其起源的研究一直是高能天体物理和粒子天体物理领域的热点问题.近年随着一些大型探测器(如Pierre Auger天文台)的运行,极高能宇宙线的研究取得很大进展.然而由于极高能宇宙线事例相对较少及其在从源到地球传播过程中的复杂性(如与宇宙微波背景辐射以及磁场的作用),需要通过观测这些宇宙线在强子反  相似文献   

2.
宇宙线发现百年以来,宇宙线起源仍然是一个谜.研究宇宙线起源主要在甚高能(VHE)伽马射线天文学和宇宙线物理学两个领域交叉展开.新一代高海拔宇宙线观测站(LHAASO)拥有高海拔、全天候和大规模优势,利用多种探测手段对宇宙线开展联合观测,大幅提升对伽马射线和宇宙线的鉴别能力. LHAASO将开展全天区伽马源扫描搜索以大量发现新伽马源,将获得30 TeV以上伽马射线探测的最高灵敏度,将在宽达5个数量级的能量范围内精确测量宇宙线分成份能谱,为揭开宇宙线起源谜团给出重要判据.系统介绍了LHAASO的探测器结构、性能优势和科学目标.  相似文献   

3.
正近日,我国的重大科技基础设施"高海拔宇宙线观测站"(Large High Altitulde Air Shower Observatory, LHAASO)在《Nature》期刊上发表了首批科学结果[1]. LHAASO利用其1/2阵列在2020年1月至11月这段时期的数据,共发现了12个显著性大于7倍标准偏差的超高能伽马射线(指能量大于100 Te V的光子, 1 TeV=10~(12)eV)源.  相似文献   

4.
地面水切伦科夫探测器(Water Cherenkov Detector Array, WCDA)是高海拔宇宙线观测站(Large High Altitude Air Shower Observatory, LHAASO)的重要组成部分,主要科学目标是实现在甚高能中低能段(100 GeV~30 TeV)对整个北天区伽马源进行巡天观测。为了确保对辐射源探测的指向准确性,需要对探测器阵列进行时间标定。主要介绍了水切伦科夫探测器时间标定方法、标定系统的搭建以及关键部件——分光光纤束的批量测试。  相似文献   

5.
本文根据卫星提供的1963—1978年太阳风实验资料,将太阳风中的质子流作为极低能宇宙线,则能得到0.3—4kev的质子积分通量—动能曲线,使低能宇宙线的能谱向前推进了约三个数量级。所得的极低能宇宙线能谱亦呈幂律谱,即:J(>E)=A_sE~(-γ),具有双幂指数,约在1kev处发生转折,与低能太阳宇宙线能谱非常类似。 最近,卫星ISEE—3观测到46次与行星际激波相联系的高能暴粒子(ESP)事例,在能域35—53kev的各次质子峰值强度恰好绘于联结两能谱的虚线之中。这样,从太阳风、ESP、太阳高能粒子(SEP)到太阳低能宇宙线的能谱都被连接了起来,对于它们的起源,也能获得合理地很好地解释。  相似文献   

6.
Fermi卫星对GeV能段的河外伽马射线背景(Extragalactic Gamma-ray Background, EGB)进行了较为精确的测量, 极大提高了对高能伽马射线背景的认识, 但是在TeV能段, 使用空间探测器进行观测非常困难, 只能依赖地面伽马射线探测器, 如成像大气切伦科夫望远镜. 目前, 对于TeV能段的河外伽马射线背景的认识还不完善. 使用有低活跃状态能谱的61个TeV源(包含2个星暴星系、6个射电星系以及53个耀变体)的累计流量给出河外TeV伽马射线背景的下限. 结果显示, 低能段(0.5--4.5TeV)流量由两个临近的耀变体Mrk 421和Mrk 501主导, 贡献了大约58%的累计背景流量; 而大于4.5TeV的能段, 由3个已观测到10TeV以上能段流量的极端耀变体H 1426+428、1ES 1959+650以及1ES 0229+200主导. 最后分别探究了星暴星系、射电星系以及耀变体对河外TeV伽马射线背景的贡献, 不同耀变体子类对河外TeV伽马射线背景的贡献以及不同红移区间TeV源对河外伽马射线背景的贡献.  相似文献   

7.
高能天体物理观测中,宇宙线带电粒子通过探测器丢失的能量常是产生探测器本底信号的重要来源。宇宙线产生的信号与它通过探测器的径迹长度和探测器大小、形状有关。因气球X射线天文观测和γ射线暴观测的需要,空间天文实验室研制了若干种正比计数器,为此我们进行了宇宙线通过正比管径迹长度的模拟计算,它是整个设计工作中的一部分。  相似文献   

8.
我国4300 m高度上的高能宇宙线研究   总被引:3,自引:0,他引:3  
谭有恒 《天文学进展》2003,21(4):318-333
随着γ射线天文学的兴起,10年前在西藏高原海拔4300m的羊八井谷地,出现并成长着一个国际知名的宇宙线实验站。其中日合作的ASγ阵列在国际同类实验中,首先观测到了蟹状星云的Multi-TeV稳定γ射线发射及活动星系核Mrk 501在1997年、Mrk 421在2000年的Multi-TeVγ射线强爆发,独家测出了反映太阳和行星际磁场状态的宇宙线太阳阴影的偏移并将之用于太阳活动变化的监测,利用高海拔优势及乳胶室和Burst,探测器与阵列的联合实验进行了超高能宇宙线能谱和成分的研究。以高阻板探测器(RPC)地毯式阵列迈入≈100GeV空白能区的中意合作ARGO(Astroparticle physics Researchat Ground-based Observatory)计划,已进入大规模安装调试阶段。欲牢固占领Multi-GeV-TeV能区和满足对高可变、大峰流、短时标河外γ源的观测所需的高海拔巨型大气契仑可夫光成像望远镜计划5@YorG,也正在酝酿之中。  相似文献   

9.
硅微条探测器空间分辨率高、工作性能稳定, 广泛地应用于空间高能粒子探测领域. 如费米gamma射线空间望远镜(Fermi Gamma-ray Space Telescope, FGST)以及阿尔法磁谱仪(Alpha Magnetic Spectrometer 2, AMS-02)的径迹探测器中都采用了高位置分辨率的硅微条探测器. 基于硅微条探测器在空间观测领域的应用前景, 针对硅微条探测器单元设计了一套低噪声的电子学读出系统. 整个电子学系统分为前端电子学、数据获取电路和上位机软件. 前端电子学为提高集成度, 采用了一款电荷读出芯片VATAGP8, 实现了多通道、低噪声的电荷信号测量; 数据获取电路使用现场可编程门阵列(Field Programmable Gate Array, FPGA)实现了对前端电子学的时序控制以及对测量信号的采集控制; 上位机用来接收、处理数据获取电路采集的信号数据. 在对电子学通道的线性、基线、噪声等性能进行测试之后, 得到系统在0--200fC电荷输入范围内的线性增益约为13.41bin/fC, 积分非线性小于1%, 噪声小于0.093fC. 为了验证电子学读出系统对硅微条探测器单元的读出能力, 将两者集成在一起并测试了宇宙线缪子的能量沉积, 得到读出电子学系统的信噪比大于32, 缪子的电离损失能谱与Landau-Gaussian分布符合较好, 能够满足硅微条探测器单元读出电子学的设计要求.  相似文献   

10.
作为暗物质粒子探测器(DAMPE, Dark Matter Particle Explorer)的一部分,触发系统主要用于判选所需探测的目标粒子(高能电子和伽玛射线)事例,剔除非目标粒子事例。触发系统由触发探测器和触发判选逻辑电路组成。介绍了触发地检测试系统和宇宙线触发系统的设计和功能实现。触发地检系统实现了对触发判选逻辑电路的电子学验证;另外,配合宇宙线触发系统对部分触发逻辑和触发效率进行了测试。主要介绍了触发系统的测试方法和一些初步测试结果。  相似文献   

11.
暗物质空间探测器BGO量能器的读出设计   总被引:2,自引:0,他引:2  
暗物质空间探测器是中国科学院紫金山天文台暗物质空间天文实验室提出的,其目的是为了探测暗物质粒子湮灭可能产生的高能电子和伽玛粒子.整个探测器主要由BGO(Bismuth germanate,锗酸铋)高能图像量能器和闪烁体径迹探测器构成.探测器的能量探测范围将覆盖10 GeV到10 TeV的高能电子和伽玛粒子,其中高能粒子的能量主要沉积在BGO量能器中.为了验证探测器方案,紫金山天文台暗物质空间天文实验室设计了暗物质空间探测器BGO量能器的读出系统原型,并对其进行了初步的测试.  相似文献   

12.
高能伽马射线探测是研究极端天体物理的主要途径之一.空间高能伽马射线探测具有覆盖波段宽、时间连续性好、能量分辨率高等突出优势.在成功研发并运行我国首颗天文卫星—“悟空”号(DArk Matter Particle Explorer, DAMPE)的基础上,紫金山天文台联合国内的多家单位提议研制甚大面积伽马射线空间望远镜(Very Large Area gamma-ray Space Telescope, VLAST),该望远镜在GeV–TeV能段接受度高达10 m2·sr,并具有强的MeV–GeV波段探测能力,其综合性能预期比费米卫星的大面积伽马望远镜(Fermi-LAT (Large Area Telescope))提升10倍之上.重点介绍了VLAST的主要科学目标,探测器的初步配置及预期性能指标.  相似文献   

13.
高海拔宇宙线观测站(Large High Altitude Air Shower Observatory, LHAASO)位于四川省稻城县海子山,平均海拔4 410 m。激光标定系统是LHAASO的广角切伦科夫望远镜阵列(Wide Field-of-view Cherenkov Telescope Array, WFCTA)的组成部分之一,用于标定广角切伦科夫望远镜阵列接收的光子数的绝对增益。激光标定系统中的激光能量测量系统由能量探头(Energy sensor)、能量计(Energy meter)和温控系统3部分组成,主要用于精确测量发射向广角切伦科夫望远镜阵列视场内的脉冲激光束的能量。主要对能量探头进行了相对标定和性能研究,并设计开发了保温系统来保证能量探头在环境恶劣的高海拔地区正常工作。通过能量探头之间的相对标定,可以提高激光能量测量的准确性。能量探头的性能测试结果表明,在以能量探头中心为圆心、直径为8 mm的圆形区域内,其不均匀度小于1.5%。激光束的入射角对能量探头测量激光脉冲能量几乎没有影响,但是垂直入射时能量探头反射的激光会损坏激光器,因此需要避免激光束垂直入射能量探头。...  相似文献   

14.
水切伦科夫探测器阵列(Water Cherenkov Detector Array, WCDA)是高海拔宇宙线观测站(Large High Altitude Air Shower Observatory, LHAASO)的主体探测器之一,水作为探测器的唯一探测介质,水的洁净度直接影响探测器对切伦科夫光的探测效率。为保证水切伦科夫探测器阵列物理目标的实现,水衰减长度的实时测量和监测至关重要,是探测器正常运行和标定的关键工作之一。分别介绍了水衰减长度测量装置和紫外可见分光光度计的工作原理,并通过不同波长的发光二极管(Light Emitting Diode, LED)对各种样品水进行测量,将两种方法的数据结果进行对比分析,得出两种装置的测量误差分别为0.22 m和0.18 m,以及工业指标吸光度与科研指标水衰减长度之间的对应关系,并为几何和跟踪(GEometry AND Tracking, GEANT4)模拟确定了一种Querry水质模型,进一步推进了模拟的真实化。通过对水切伦科夫探测器阵列1号水池水衰减测量装置的验证及从注水到稳定运行期间的水质监测的数据研究,总结了一套稳定可靠的水质监测方案,为2、3号水池的监测工作奠定了良好的基础。  相似文献   

15.
高能宇宙线源头探明的确,2007年对于宇宙射线研究而言,是一个值得纪念的年份。宇宙射线指的是来自于宇宙中的一种具有相当大能量的带电粒子流,主要成分是质子。从1938年法国物理学家皮埃尔·沃格尔发现高能宇宙射线以来,它们的起源就一直是未解的谜团。而今年重大天文发现的压轴之作:沃格尔宇宙射线天文台确定了宇宙线的来源,为神秘射线正本清源,打开了宇宙线天文学的大门。2007年11月8日,尚在建造中的美国沃格尔宇宙射线天文台(Auger Cosmic Ray Observatory)宣布了它的第一个重大发现:沃格尔国际研究小组在邻近星系的核心捕捉到了高能量  相似文献   

16.
来自宇宙深处的天体使者——宇宙线 上篇提及的观测对象都是电磁波,而宇宙射线(简称宇宙线)是来自宇宙深处的物质粒子,包括各种原子核和孤单的电子。各种原子核约占宇宙线总量的99%,电子约占1%。在多种原子核宇宙线中,约90%为质子(氢原子核),α粒子(氦原子核)约占9%,各种重元素原子核约占1%。另外,还有极少量的正电子和反质子。  相似文献   

17.
斑点图的重心与波前倾斜   总被引:1,自引:0,他引:1  
论述了斑点图重心与瞬时波前倾斜的关系,证明了斑点图重心位置与瞬时波前倾斜的一致性,这种一致性无论光瞳孔径是否大于大气相干长度均是成立的.这一结论并未严格受限于近场近似条件,结论的一个重要推论是:用重心对准的位移叠加法对斑点图进行统计后所得到的传递函数就是大气望远镜综合系统的平均短曝光传递函数,该推论对于自适应光学和高分辨率图像重建技术均具有非常重要的意义.  相似文献   

18.
甘为群 《天文学进展》1998,16(3):222-226
目前在太阳物理中引起巨大争议的热点问题是:究竟是高能电子还是高能质子在耀斑中起主要作用.长期以来,人们一直认为高能电子在耀班中的作用占据主导地位.然而最近的γ射线观测显示约为1MeV的质子所携带的能量可大于电子所携带的能量,从而导致电子、质子作用之争.综合介绍了各家观点,并讨论了可能的结局.  相似文献   

19.
本文从理论上分析了天空背景、平场改正和噪声对重心法测量恒星位置的影响,定量地给出了相应的误差公式。针对CCD图象的离散特点,推出了分辨率和星象大小的关系,从而证明了重心法的测量精度可以达到百分之几象元。对云台一号CCD进行保守估计得到误差小于0.1角秒。  相似文献   

20.
抚仙湖1 m新真空太阳望远镜(New Vacuum Solar Telescope,NVST)利用多波段成像系统对太阳光球和色球同时进行高分辨成像观测,并对观测图像进行多波段同步高分辨统计重建,以大幅度降低重建所需的计算量,并改善低信噪比波段的高分辨重建效果。大气色散是影响多波段同步高分辨重建效果的主要因素。借助多层湍流大气的模拟,通过比较不同天顶角下色散引起的波像差、相对谱比,分析了大气色散对多波段同步高分辨重建的影响。分析结果表明对于1 m太阳望远镜,当天顶角在60°以内时,色散对近红外以及波长相差不大的可见光波段的多波段同步高分辨重建的影响较小,而393.3 nm波段受色散的影响明显,天顶角超过45°时分辨率明显下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号