首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tyan Yeh 《Solar physics》1977,55(1):241-250
In the coronal-interplanetary space the plasma motion, in a reference frame corotating with the Sun, is aligned with the magnetic field. Just like the solar wind, which is the supersonically expanding flow along open field lines, the flow along closed field lines is mainly driven by the pressure gradient. The flow in the regions of closed field lines is subsonic, being determined by the conditions at the two footpoints of the magnetic flux tube.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
Tyan Yeh 《Solar physics》1978,56(2):439-447
The topological structure of the coronal-interplanetary magnetic field is determined by the arrangement of the neutral lines at the coronal base. It is characterized by nested separatrices, which are interfaces between closed and open field lines or between oppositely directed open field lines, in the coronal-interplanetary space. In the neighborhoods of these separatrices there are important electric currents. These currents form the basis for the sheet-current model.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

3.
M. A. Raadu 《Solar physics》1972,22(2):443-449
It is argued that differential rotation of the photospheric magnetic fields will induce currents in the corona. The work done against surface magnetic stresses will increase the energy content of the coronal magnetic field. The electrical conductivities are high and the foot points of field lines move with the differential rotation. The force-free field equations are solved with this constraint to obtain a minimum estimate of the energy increase for a quadrupole field. During a solar rotation the magnetic energy increases by 25%. Local release of this energy in the corona would have a significant effect. The expansion of field lines as a result of the differential rotation should increase the amount of flux and the field strength in the solar wind region.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
It has recently been suggested that the large scale structure of the interplanetary magnetic field can be deduced solely from solar wind speed measurements. Here it is emphasized that, in addition to speed measurements, direct measurements of the interplanetary field and indirect diagnostics such as measurements of the solar wind kinetic temperature and galactic and solar energetic particle modulations and anisotropics are required to distinguish between open and closed magnetic structures in the solar wind.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
Based on the single-fluid MHD model of Mars space simulation, this paper has studied the magnetic field structure in the near-Mars space and investigated the influence of Martian crustal magnetic anomalies on the magnetic field structure. In the process of the solar wind interaction with Mars, the bow shock and magnetic pile-up region are produced. The interplanetary magnetic lines are curved and deformed while they are towed toward the two poles by the solar wind. The majority of magnetic lines bypass the two poles, then leave behind a ‘V-shaped’ structure in the magnetotail behind Mars. In the crust of Mars, the local magnetic anomalies have a noticeable influence on the magnetic field structure. The magnetic anomalies at different positions and in different intensities interact with the solar wind to form the mini-magnetospheres of different structures and morphologies, such as the towed mini-magnetosphere and the mini-magnetosphere with open magnetic lines. The local magnetic anomalies have changed the near-Mars magnetic field structure, and probably changed the plasma distribution as well.  相似文献   

6.
A coronal magnetic field model with horizontal volume and sheet currents   总被引:1,自引:0,他引:1  
When globally mapping the observed photospheric magnetic field into the corona, the interaction of the solar wind and magnetic field has been treated either by imposing source surface boundary conditions that tacitly require volume currents outside the source surface (Schatten, Wilcox, and Ness, 1969) or by limiting the interaction to thin current sheets between oppositely directed field regions (Wolfson, 1985). Yet observations and numerical MHD calculations suggest the presence of non-force-free volume currents throughout the corona as well as thin current sheets in the neighborhoods of the interfaces between closed and open field lines or between oppositely directed open field lines surrounding coronal helmet-streamer structures. This work presents a model including both horizontal volume currents and streamer sheet currents. The present model builds on the magnetostatic equilibria developed by Bogdan and Low (1986) and the current-sheet modeling technique developed by Schatten (1971). The calculation uses synoptic charts of the line-of-sight component of the photospheric magnetic field measured at the Wilcox Solar Observatory. Comparison of an MHD model with the calculated model results for the case of a dipole field and comparison of eclipse observations with calculations for CR 1647 (near solar minimum) show that this horizontal current-current-sheet model reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces coronal helmet structures better than the current-sheet model.  相似文献   

7.
High resolution KPNO magnetograph measurements of the line-of-sight component of the photospheric magnetic field over the entire dynamic range from 0 to 4000 gauss are used as the basic data for a new analysis of the photospheric and coronal magnetic field distributions. The daily magnetograph measurements collected over a solar rotation are averaged onto a 180 × 360 synoptic grid of equal-area elements. With the assumption that there are no electric currents above the photospheric level of measurement, a unique solution is determined for the global solar magnetic field. Because the solution is in terms of an expansion in spherical harmonics to principal index n = 90, the global photospheric magnetic energy distribution can be analyzed in terms of contributions of different scale-size and geometric pattern. This latter procedure is of value (1) in guiding solar dynamo theories, (2) in monitoring the persistence of the photospheric field pattern and its components, (3) in comparing synoptic magnetic data of different observatories, and (4) in estimating data quality. Different types of maps for the coronal magnetic field are constructed (1) to show the strong field at different resolutions, (2) to trace the field lines which open into interplanetary space and to locate their photospheric origins, and (3) to map in detail coronal regions above (specified) limited photospheric areas.The National Center for Atmospheric Research is sponsored by the National Science foundation.Kitt Peak National Observatory is operated by the Association of Universities for Research in Astronomy, Inc. Under contract with the National Science Foundation.  相似文献   

8.
Magnetic reconnection in the corona and the loop prominence phenomenon   总被引:4,自引:0,他引:4  
Many classes of transient solar phenomena, such as flares, flare sprays, and eruptive prominences, cause major disruptions in the magnetic geometry of the overlying corona. Typically, the results from Skylab indicate that pre-existing closed magnetic loops in the corona are torn open by the force of the disruption. We examine here some of the theoretical consequences to be expected during the extended relaxation phase which must follow such events. This phase is characterized by a gradual reconnection of the outward-distended field lines. In particular, the enhanced coronal expansion which occurs on open field lines just before they reconnect appears adequate to supply the large downward mass fluxes observed in Ha loop prominence systems that form during the post-transient relaxation. In addition, this enhanced flow may produce nonrecurrent high speed streams in the solar wind after such events. Calculations of the relaxation phase for representative field geometries and the resulting flow configurations are described.New address: Los Alamos Scientific Laboratory, Los Alamos, N.M. 87545, U.S.A.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
Tyan Yeh 《Solar physics》1987,107(2):247-262
This paper elucidates the topological relationship between the distribution of polarity neutral lines on the solar surface and the interspersion of closed field lines among open field lines in the corona. The solar surface contains polarity neutral lines, that are spatially nested in a series-and-parallel hierarchy. The corona is partitioned by separatrix surfaces into a corresponding hierarchy of nested magnetic cells. The complexity of the magnetic structure of the corona consists in the embedding of magnetic cells of closed field lines amid open field lines.Polarity neutral lines lie necessarily on the foot surfaces of magnetic cells that are filled with closed field lines. There are two topologically distinct types of magnetic cells of closed field lines: closed and open. Only the open cells are overlain by current sheets. Each of the heliospheric current sheets separates the open field lines encircled by an open cells from the open field lines encircling the cell. Since closed cells have no images in the outer corona, the cell structure of the latter reflects those polarity neutral lines associated with the open cells in the lower corona. Accordingly, there are fewer heliospheric current sheets, as revealed by magnetic neutral lines on the source surface, in interplanetary space than polarity neutral lines on the solar surface.  相似文献   

10.
This paper is an exploration of the possibility that the large-scale equilibrium of plasma and magnetic fields in the solar corona is a minimum energy state. Support for this conjecture is sought by considering the simplest form of that equilibrium in a dipole solar field, as suggested by the observed structure of the corona at times of minimum solar activity. Approximate, axisymmetric solutions to the MHD equations are constructed to include both a magnetically closed, hydrostatic region and a magnetically open region where plasma flows along field lines in the form of a transonic, thermally-driven wind. Sequences of such solutions are obtained for various degrees of magnetic field opening, and the total energy of each solution is computed, including contributions from both the plasma and magnetic field. It is shown that along a sequence of increasingly closed coronal magnetic field, the total energy curve is a non-monotonic function of the parameter measuring the degree of magnetic field opening, with a minimum occurring at moderate field opening.For reasonable choices of model parameters (coronal temperature, base density, base magnetic field strength, etc.), the morphology of the minimum energy solution resembles the observed quiet, solar minimum corona. The exact location energy minimum along a given sequence depends rather sensitively on some of the adopted parameter values. It is nevertheless argued that the existence of an energy minimum along the sequences of solutions should remain a robust property of more realistic coronal wind models that incorporate the basic characteristics of the equilibrium corona- the presence of both open and closed magnetic regions.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
E. J. Weber 《Solar physics》1969,9(1):150-159
A model of the solar atmosphere is presented in which we discuss the conservation of angular momentum for the two basic states in which the solar gas can be: namely, either confined by closed field lines or outflowing along open magnetic field lines. It can be shown that the boundary conditions are in general different for these two cases. From this we obtain the results that in the closed configuration the gas can corotate at the solar surface with the magnetic field lines and its angular velocity will then increase with height, whereas for a gas flowing along an open field line the angular velocity will decrease. An exception to the latter case can be found where the open magnetic field lines are strongly nonradial and where the density is a slowly varying function of radius. In such regions the angular velocity may initially increase with height, reach a maximum and then decrease.Kitt Peak National Observatory Contribution No. 439.Operated by The Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

12.
The simultaneous enhancement or subsidence of both the high-speed solar wind streams and the galactic cosmic rays in the minimum or the maximum phase of the solar cycle are interpreted in a unified manner by the concept of geometrical evolution of the general magnetic field of the corona-heliomagnetosphere system. The coronal general magnetic field evolves from an open dipole-like configuration in the minimum phase to a closed configuration with many loop-like formations in the maximum phase of the solar cycle. This concept, developed in a theoretical solar-cycle model driven by the dynamo action of the global convection, is examined and found to be valid by studying the evolution of the coronal general magnetic field calculated from the observed surface general magnetic field of 1959–1974. It is also found that the energy density of the poloidal component of the general surface field, from which the coronal field originates, attained a maximum in the maximum phase and showed a evolution with virtually no phase delay with respect to that of the toroidal component of the field, to which the sunspot activity is related. The subsidence of the high-speed solar wind in the maximum phase is understood as a braking of the solar wind streams by the tightly closed and strong coronal field lines in the lower corona in the maximum phase. The field lines of the heliomagnetosphere, which originate from the coronal field lines drawn by the solar wind, are inferred to be also more tightly closed at the heliopause in the maximum phase than in the minimum phase. The decrease of the galactic cosmic rays in the maximum phase (known as the Forbush's negative correlation between the galactic cosmic ray intensity and the solar activity or the Forbush solar-cycle modulation of the galactic cosmic rays) is interpreted as a braking of the cosmic rays by the closed magnetic field lines at the heliopause. The observed phase lag (approximately one year) of the galactic cosmic ray modulation with respect to the evolution of the solar cycle, and the observed absence of the gradient of the total cosmic ray intensity between 1 AU and 8 AU, are discussed to support this view of the cosmic ray modulation at the remote heliopause, and reject other hypotheses to explain the phenomenon in terms of the magnetic irregularities of various kinds carried by the solar wind: The short-term Forbush decrease at a time of a flare shows that the magnetic irregularities can react on the cosmic rays relatively near the Sun if they even played a dominant role in the long-term modulation. The concept of the general magnetic field of the corona and the surface is also used to understand the basic nature of the surface field itself, by comparing the geometry of the calculated coronal field lines with the eclipse photographs of the corona, and by discussing, in the context of the coronal general magnetic field associated with the solar cycle, the process of the emergence of the coronal field lines from the interior and the formation of the transequatorial arches and loops connecting the two hemispheres in the corona.  相似文献   

13.
A model is presented which describes the 3-dimensional non-radial solar wind expansion between the Sun and the Earth in a specified magnetic field configuration subject to synoptically observed plasma properties at the coronal base. In this paper, the field is taken to be potential in the inner corona based upon the Mt. Wilson magnetograph observations and radial beyond a certain chosen surface. For plasma boundary conditions at the Sun, we use deconvoluted density profiles obtained from synopticK-coronameter brightness observations. The temperature is taken to be 2 × 106 K at the base of closed field lines and 1.6 x 106K at the base of open field lines. For a sample calculation, we employ data taken during the period of the 12 November 1966 eclipse. Although qualitative agreement with observations at 1 AU is obtained, important discrepancies emerge which are not apparent from spherically symmetric models or those models which do not incorporate actual observations in the lower corona. These discrepancies appear to be due to two primary difficulties - the rapid geometric divergence of the open field lines in the inner corona as well as the breakdown in the validity of the Spitzer heat conduction formula even closer to the Sun than predicted by radial flow models. These two effects combine to produce conductively dominated solutions and lower velocities, densities, and field strengths at the Earth than those observed. The traditional difficulty in solar wind theory in that unrealistically small densities must be assumed at the coronal base in order to obtain observed densities at 1 AU is more than compensated for here by the rapid divergence of field lines in the inner corona. For these base conditions, the value ofβ(ratio of gas pressure to magnetic pressure) is shown to be significantly greater than one over most of the lower corona - suggesting that, for the coronal boundary conditions used here, the use of a potential or force-free magnetic field configuration may not be justified. The calculations of this paper point to the directions where future research on solar-interplanetary modelling should receive priority:
  1. better models for the coronal magnetic field structure
  2. improved understanding of the thermal conductivity relevant for the solar wind plasma.
  相似文献   

14.
Strong ultraviolet radiation from the Sun ionizes the upper atmosphere of Venus, creating a dense ionosphere on the dayside of the planet. In contrast to Earth, the ionosphere of Venus is not protected against the solar wind by a magnetic field. However, the interaction between charged ionospheric particles and the solar wind dynamic and magnetic pressure creates a pseudo-magnetosphere which deflects the solar wind flow around the planet (Schunk and Nagy, 1980). The combination of changing solar radiation and solar wind intensities leads to a highly variable structure and plasma composition of the ionosphere. The instrumentation of the Venus Express spacecraft allows to measure the magnetic field (MAG experiment) as well as the electron energy spectrum and the ion composition (ASPERA-4 experiment) of the upper ionosphere and ionopause. In contrast to the earlier Pioneer Venus Orbiter (PVO) measurements which were conducted during solar maximum, the solar activity was very low in the period 2006-2009. A comparison with PVO allows for an investigation of ionospheric properties under different solar wind and EUV radiation conditions. Observations of MAG and ASPERA have been analyzed to determine the positions of the photoelectron boundary (PEB) and the “magnetopause” and their dependence on the solar zenith angle (SZA). The PEB was determined using the ELS observations of ionospheric photoelectrons, which can be identified by their specific energy range. It is of particular interest to explore the different magnetic states of the ionosphere, since these influence the local plasma conductivity, currents and probably the escape of electrons and ions. The penetration of magnetic fields into the ionosphere depends on the external conditions as well as on the ionospheric properties. By analyzing a large number of orbits, using a combination of two different methods, we define criteria to distinguish between the so-called magnetized and unmagnetized ionospheric states. Furthermore, we confirm that the average magnetic field inside the ionosphere shows a linear dependence on the magnetic field in the region directly above the PEB.  相似文献   

15.
It is evident from eclipse photographs that gas-magnetic field interactions are important in determining the structure and dynamical properties of the solar corona and interplanetary medium. Close to the Sun in regions of strong field, the coronal gas can be contained within closed loop structures. However, since the field in these regions decreases outward rapidly, the pressure and inertial forces of the solar wind eventually dominate and distend the field outward into interplanetary space. The complete geometrical and dynamical state is determined by a complex interplay of inertial, pressure, gravitational, and magnetic forces. The present paper is oriented toward the understanding of this interaction. The helmet streamer type configuration with its associated neutral point and sheet currents is of central importance in this problem and is, therefore, considered in some detail.Integration of the relevant partial differential equations is made tractable by an iterative technique consisting of three basic stages, which are described at length. A sample solution obtained by this method is presented and its physical properties discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
Previous studies of the source regions of solar wind sampled by ACE and Ulysses showed that some solar wind originates from open magnetic flux rooted in active regions. These solar wind sources were labeled active-region sources when the open flux was from a strong field region with no corresponding coronal hole in the NSO He 10830 Å synoptic coronal-hole maps. Here, we present a detailed investigation of several of these active-region sources using ACE and Ulysses solar wind data, potential field models of the corona, and solar imaging data. We find that the solar wind from these active-region sources has distinct signatures, e.g., it generally has a higher oxygen charge state than wind associated with helium-10830 Å coronal-hole sources, indicating a hotter source region, consistent with the active region source interpretation. We compare the magnetic topology of the open field lines of these active-region sources with images of the hot corona to search for corresponding features in EUV and soft X-ray images. In most, but not all, cases, a dark area is seen in the EUV and soft X-ray image as for familiar coronal-hole sources. However, in one case no dark area was evident in the soft X-ray images: the magnetic model showed a double dipole coronal structure consistent with the images, both indicating that the footpoints of the open field lines, rooted deep within the active region, lay near the separatrix between loops connecting to two different opposite polarity regions.  相似文献   

17.
Previous studies of the source regions of solar wind sampled by ACE and Ulysses showed that some solar wind originates from open magnetic flux rooted in active regions. These solar wind sources were labeled active-region sources when the open flux was from a strong field region with no corresponding coronal hole in the NSO He 10830 Å synoptic coronal-hole maps. Here, we present a detailed investigation of several of these active-region sources using ACE and Ulysses solar wind data, potential field models of the corona, and solar imaging data. We find that the solar wind from these active-region sources has distinct signatures, e.g., it generally has a higher oxygen charge state than wind associated with helium-10830 Å coronal-hole sources, indicating a hotter source region, consistent with the active region source interpretation. We compare the magnetic topology of the open field lines of these active-region sources with images of the hot corona to search for corresponding features in EUV and soft X-ray images. In most, but not all, cases, a dark area is seen in the EUV and soft X-ray image as for familiar coronal-hole sources. However, in one case no dark area was evident in the soft X-ray images: the magnetic model showed a double dipole coronal structure consistent with the images, both indicating that the footpoints of the open field lines, rooted deep within the active region, lay near the separatrix between loops connecting to two different opposite polarity regions.  相似文献   

18.
It is found that from the viewpoint of the magnetic field configuration there are only two types of solar wind: streams with closed field lines (flare-induced streams) and streams with open field lines (M-streams of various velocity and lifetime, and quiet solar wind). We emphasize that in the absence of flare-induced streams the Earth's magnetosphere is, as a rule, circum-flown not by a quiet but by a variably disturbed solar wind—M-streams. An important feature of M-streams is that within a given interplanetary magnetic field sector the sign (+ or −) of the stream magnetic field almost always coincides with that of the sector. These facts lead to the conclusion that M-streams are mainly responsible for the sector structure.  相似文献   

19.
A planetary magnetic field obstructs the supersonic expansion of the solar coronol ions and electrons and creates a cigar shaped bubble in the solar wind. The pressure of the solar wind on the bubble compresses and seriously distorts the planetary magnetic field. A review is given here of the theoretical calculation and experimental observation of the shape of the bubble and the configuration of the compressed magnetic field inside the surface. Other effects, namely the shock structure on the surface, the radiation belts, and the current in the antisolar side of the bubble are described as well as a simplified account of electric fields and the connection of the planetary field lines with interplanetary field lines.  相似文献   

20.
The energy coupling function between the solar wind and the magnetosphere can be obtained for two extreme situations, in which the magnetospheric geometry is determined primarily by either (i) the interplanetary magnetic field, or (ii) the solar wind pressure. In this paper, we obtained an expression for the energy coupling function by assuming a simple interpermeation of the interplanetary and geomagnetic fields. Two important quantities in this case are the potential difference between the two neutral points and the amount of open flux. From these two overall quantities, the voltage and the current of the magnetospheric dynamo are calculated. The dynamo power output represents the rate at which energy is transferred from the solar wind to the magnetosphere. The derived functional dependence on the interplanetary conditions provides a theoretical basis for the energy coupling function previously deduced from observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号