首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3.The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).  相似文献   

2.
Current glacier ablation models have difficulty simulating the high-melt transition zone between clean and debris-covered ice. In this zone, thin debris cover is thought to increase ablation compared to clean ice, but often this cover is patchy rather than continuous. There is a need to understand ablation and debris dynamics in this transition zone to improve the accuracy of ablation models and the predictions of future debris cover extent. To quantify the ablation of partially debris-covered ice (or ‘dirty ice’), a high-resolution, spatially continuous ablation map was created from repeat unmanned aerial systems surveys, corrected for glacier flow in a novel way using on-glacier ablation stakes. Surprisingly, ablation is similar (range ~ 5 mm w.e. per day) across a wide range of percentage debris covers (~ 30–80%) due to the opposing effects of a positive correlation between percentage debris cover and clast size, countered by a negative correlation with albedo. Once debris cover becomes continuous, ablation is significantly reduced (by 61.6% compared to a partial debris cover), and there is some evidence that the cleanest ice (<~ 15% debris cover) has a lower ablation than dirty ice (by 3.7%). High-resolution feature tracking of clast movement revealed a strong modal clast velocity where debris was continuous, indicating that debris moves by creep down moraine slopes, in turn promoting debris cover growth at the slope toe. However, not all slope margins gain debris due to the removal of clasts by supraglacial streams. Clast velocities in the dirty ice area were twice as fast as clasts within the continuously debris-covered area, as clasts moved by sliding off their boulder tables. These new quantitative insights into the interplay between debris cover characteristics and ablation can be used to improve the treatment of dirty ice in ablation models, in turn improving estimates of glacial meltwater production. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

3.
Kuannersuit Glacier, a valley glacier on Disko Island in west Greenland, experienced a major surge from 1995 to 1998 where the glacier advanced 10·5 km and produced a ~65 m thick stacked sequence of debris‐rich basal ice and meteoric glacier ice. The aim of this study is to describe the tectonic evolution of large englacial thrusts and the processes of basal ice formation using a multiproxy approach including structural glaciology, stable isotope composition (δ18O and δD), sedimentology and ground‐penetrating radar. We argue that the major debris layers that can be traced in the terminal zone represent englacial thrusts that were formed early during the surge. Thrust overthrow was at least 200–300 m and this lead to a 30 m thick repetition of basal ice at the ice margin. It is assumed that the englacial thrusting was initiated at the transition between warm ice from the interior and the cold snout. The basal debris‐rich ice was mainly formed after the thrusting phase. Two sub‐facies of stratified basal ice have been identified; a lower massive ice facies (SM) composed of frozen diamict enriched with heavy stable isotopes overlain by laminated ice facies (SL) consisting of millimetre thick lamina of alternating debris‐poor and debris‐rich ice. We interpret the stratified basal ice as a continuum formed mainly by freeze‐on processes and localized regelation. First laminated basal ice is formed and as meltwater is depleted more sediment is entrained and finally the glacier freezes to the base and massive diamict is frozen‐on. The increased ability to entrain sediments may partly be associated with higher basal freezing rates enhanced by loss of frictional heat from cessation of fast flow and conductive cooling through a thin heavily crevassed ice during the final phase of the glacier surge. The dispersed basal ice facies (D) was mainly formed by secondary processes where fine‐grained sediment is mobilized in the vein system of ice. Our results have important implications for understanding the significance of basal ice formation and englacial thrusting beneath fast‐flowing glaciers and it provides new information about the development of landforms during a glacier surge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Grounding-zone wedges (GZWs) mark the grounding terminus of flowing marine-based ice streams and, in the presence of an ice shelf, the transition from grounded ice to floating ice. The morphology and stratigraphy of GZWs is predominantly constrained by seafloor bathymetry, seismic data, and sediment cores from deglaciated continental shelves; however, due to minimal constraints on GZW sedimentation processes, there remains a general lack of knowledge concerning the production of these landforms. Herein, outcrop observations are provided of GZWs from Whidbey Island in the Puget Lowlands (Washington State, USA). These features are characterized by prograded diamictons bounded by glacial unconformities, whereby the lower unconformity indicates glacial advance of the southern Cordilleran Ice Sheet and the upper unconformity indicates locally restricted ice advance during GZW growth; the consistent presence of an upper unconformity supports the hypothesis that GZWs facilitate ice advance during landform construction. Based on outcrop stratigraphy, GZW construction is dominated by sediment transport of deformation till and melt-out of entrained basal debris at the grounding line. This material may be subsequently remobilized by debris flows. Additionally, there is evidence for subglacial meltwater discharge at the grounding line, as well as rhythmically bedded silt and sand, indicating possible tidal pumping at the grounding line. A series of GZWs on Whidbey Island provides evidence of punctuated ice sheet movement during retreat, rather than a rapid ice sheet lift-off. The distance between adjacent GZWs of 102–103 m and the consistency in their size relative to modern ice stream grounding lines suggests that individual wedges formed over decades to centuries. © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
Stepped bedrock topography at the snout of a small outlet glacier from Øksfjordjøkelen, North Norway, produces an extensive subglacial cavity system which stretches some 70m across and 100m up-glacier, giving access beneath ice ≤50 m thick. Inside the cavity, regelation ice, clean glacier ice and deforming basal ice have been observed. Samples were taken and basal debris concentrations at the glacier sole were found to vary between 0.005 and 15.38 per cent by volume. The basal ice velocity has been determined using a linear variable differential transformer attached to an analogue recorder, and also by means of measured displacements of ice crews and clasts embedded in the basal ice. Velocities were found to differ both spatially and temporally from a maximum of 2.55 mm h1 to a minimum of 0.3 mm h?1. The measurements and observations, which have been related to present theory, show how spatially averaged values for a number of variables could lead to inaccuracies in predicted erosion values, certainly at a local scale. On the exposed foreland, jointcontrolled lee-side faces provide evidence for extensive subglacial plucking (here taken to mean the removal of preloosened bed material and/or material resulting from bed failure). Indeed, in the cavity the early stages of removal of joint-controlled blocks by ice deformation along joints have been observed. The importance of debris-rich basal ice is shown in the formation of large striations (up to 500cm × 16cm × 2cm) present on the foreland.  相似文献   

6.
Measurements of surface velocity, ice deformation (at 42 and 89% ice depth) and proglacial stream discharge were made at Haut Glacier d'Arolla, Switzerland, to determine diurnal patterns of variation in each. Data are analysed in order to understand better the relationship between hydraulically induced basal motion and glacier ice deformation over short timescales. The data suggest that hydraulically induced localized basal ‘slippery’ spots are created over diurnal cycles, causing enhanced basal motion and spatially variable glacier speed‐up. Our data indicate that daily glacier speed‐up is associated with reduced internal deformation over areas previously identified as slippery spots and increased deformation in areas located adjacent to or down‐glacier from slippery spots. We interpret this pattern in terms of a transfer of mechanical support for basal shear stress away from slippery spots to adjacent sticky areas, where the resulting stronger ice–bed coupling causes increased ice deformation near the bed. These patterns indicate that basal ice is subjected to stress regimes that are variable at a high spatial and temporal resolution. Such variations may be central to the creation of anomalous vertical velocity profiles measured above and down‐glacier of basal slippery zones, which have shown evidence for ‘plug flow’ and extrusion flow over annual timescales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The structure and ice content of ice caves are poorly understood. Ground penetrating radar (GPR) can provide useful insights but has only rarely been applied to ice caves. This paper interprets GPR images (radargrams) in terms of internal structure, stratification, compaction, thickness and volume of the ice block in the Peña Castil ice cave (Central Massif of Picos de Europa, northern Spain), providing the endokarst geometry of the ice cave in GPR data reflections. Eight radargrams were obtained by applying a shielded ground‐coupled antenna with a nominal frequency of 400 MHz. Although the radargrams do not depict the ice–basal bedrock interface, they suggest that the ice block is at least 54 m deep and similarly thick. Some curved reflection signatures suggest a potential vertical displacement in the block of ice, and thus certain dynamics in the ice body. Other images show numerous interbedded clasts and thin sediment layers imaged as banded reflections. In this particular cave a direct visual inspection of the ice stratigraphy is a difficult task but GPR provides clear reflectivity patterns of some of its internal features, making GPR a suitable instrument for this and future studies to achieve a better and broader understanding of the internal behavior of ice caves.  相似文献   

8.
Debris-covered glaciers are prone to the formation of a number of supraglacial geomorphological features, and generally speaking, their upper surfaces are far from level surfaces. Some of these features are due to radiation screening or enhancing properties of the debris cover, but theoretical explanations of the consequent surface forms are in their infancy. In this paper we consider a theoretical model for the formation of “ice sails”, which are regularly spaced bare ice features which are found on debris-covered glaciers in the Karakoram.  相似文献   

9.
The flow of ice sheets and their geomorphological impact is greatly influenced by their basal thermal regime. Calculations of basal temperatures in ice sheets are therefore fundamental in evaluating glacier dynamics and in determining the spatial distribution of zones of erosion and deposition beneath ice masses. Calculations of basal temperatures are not frequently attempted, however, primarily because of the techniques required to solve the heat conduction equation between the ice surface and the base. This paper describes a new Excel spreadsheet method of solving this equation that can readily be applied to both former and contemporary ice sheets. The application of the spreadsheet is illustrated with two examples. The first provides a calculation of basal thermal regime beneath the north eastern part of the Scottish ice sheet during the last glacial maximum; the second shows how basal ice temperatures can be calculated beneath the modern Antarctic ice sheet. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
A multi-grain model for a migration recrystallization process in polar ice is presented. The model is based on the Sachs-Reuss approximation of the stress homogeneity in a polycrystalline aggregate. An individual crystal of ice is treated as a transversely isotropic and incompressible medium which deforms by viscous creep. The highly anisotropic viscous behaviour of the ice crystal is described by a constitutive law expressing microscopic strain-rate in terms of the deviatoric stress and three fluidity parameters that define different viscous resistances of the crystal in different glide directions. It is assumed that the recrystallization occurs in those crystals in the aggregate which are most slowly deforming, and new crystals are nucleated at orientations which favour the crystal deformation by basal glide. The model predictions are illustrated by results of numerical simulations of simple flows, showing the evolution of the microscopic structure of ice and the variation of macroscopic viscosities with increasing deformations.  相似文献   

11.
Holocene glaciers have contributed to an abundance of unstable sediments in mountainous environments. In permafrost environments, these sediments can contain ground ice and are subject to rapid geomorphic activity and evolution under condition of a warming climate. To understand the influence of ground ice distribution on this activity since the Little Ice Age (LIA), we have investigated the Pierre Ronde and Rognes proglacial areas, two cirque glacier systems located in the periglacial belt of the Mont Blanc massif. For the first time, electrical resistivity tomography, temperature data loggers and differential global positioning systems (dGPS) are combined with historical documents and glaciological data analysis to produce a complete study of evolution in time and space of these small landsystems since the LIA. This approach allows to explain spatial heterogeneity of current internal structure and dynamics. The studied sites are a complex assemblage of debris‐covered glacier, ice‐rich frozen debris and unfrozen debris. Ground ice distribution is related to former glacier thermal regime, isolating effect of debris cover, water supply to specific zones, and topography. In relation with this internal structure, present dynamics are dominated by rapid ice melt in the debris‐covered upper slopes, slow creep processes in marginal glacigenic rock glaciers, and weak, superficial reworking in deglaciated moraines. Since the LIA, geomorphic activity is mainly spatially restricted within the proglacial areas. Sediment exportation has occurred in a limited part of the former Rognes Glacier and through water pocket outburst flood and debris flows in Pierre Ronde. Both sites contributed little sediment supply to the downslope geomorphic system, rather by episodic events than by constant supply. In that way, during Holocene and even in a paraglacial context as the recent deglaciation, proglacial areas of cirque glaciers act mostly as sediment sinks, when active geomorphic processes are unable to evacuate sediment downslope, especially because of the slope angle weakness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Debris cover on glaciers is an important component of glacial systems as it influences climate–glacier dynamics and thus the lifespan of glaciers. Increasing air temperatures, permafrost thaw and rock faces freshly exposed by glacier downwasting in accumulation zones result in increased rockfall activity and debris input. In the ablation zone, negative mass balances result in an enhanced melt-out of englacial debris. Glacier debris cover thus represents a clear signal of climate warming in mountain areas. To assess the temporal development of debris on glaciers of the Eastern Alps, Austria, we mapped debris cover on 255 glaciers using Landsat data at three time steps. We applied a ratio-based threshold classification technique and analysed glacier catchment characteristics to understand debris sources better. Across the Austrian Alps, debris cover increased by more than 10% between 1996 and 2015 while glaciers retreated in response to climate warming. Debris cover distribution shows significant regional variability, with some mountain ranges being characterised by mean debris cover on glaciers of up to 75%. We also observed a general rise of the mean elevation of debris cover on glaciers in Austria. The debris cover distribution and dynamics are highly variable due to topographic, lithological and structural settings that determine the amount of debris delivered to and stored in the glacier system. Despite strong variation in debris cover, all glaciers investigated melted at increasing rates. We conclude that the retarding effects of debris cover on the mass balance and melt rate of Austrian glaciers is strongly subdued compared with other mountain areas. The study indicates that, if this trend continues, many glaciers in Austria may become fully debris covered. However, since debris cover seems to have little impact on melt rates, this would not lead to prolonged existence of debris-covered ice compared with clean ice glaciers.  相似文献   

13.
We use temperature profiles from 7 deep (≈ 2000 m) boreholes located in southern Canada to infer ground surface temperature histories (GSTH) during the Last Glacial Maximum (LGM) and the Holocene. Visual inspection of the heat flow and of the reduced temperature depth profiles reveals significant regional differences with some sites showing conspicuous signs of post glacial warming, and other indicating only very small changes in ground surface temperature. These differences are confirmed by the inversions of the temperature profiles. The most prominent variations in GST are found at the Sudbury, Ontario, sites where the present ground surface temperature is high. With the exception of Sept-Iles, Quebec, the other sites only show moderate or no variation in GST. For all the sites, except possibly Sept-Iles, temperatures at the base of the ice sheet during the LGM were at or slightly below the melting point of ice. Temperatures might have been lower, a few degrees below 0 °C, at Sept-Iles. These results are consistent with field observations and model predictions suggesting high velocity basal flows in the ice sheet above the studied regions. These new data on basal temperatures will provide better quantitative constraints on glacier flow dynamics. The inversions give a chronology for the retreat of the ice sheet comparable to other proxies. Inversion and direct modeling show that, following the ice retreat, there was a warm period between 2 and 5 ka with temperatures 1–2 K higher than present. The inversion yields a time for this episode 1–2 kyr more recent than that inferred by other proxies for the Holocene climate optimum (HCO).  相似文献   

14.
解飞  卢鹏  程斌  杨倩  李志军 《湖泊科学》2022,34(2):695-698
大量球状冰集聚排列是自然界中较为罕见的现象,一般发生在浅滩、湖岸和河岸处.因球状冰形态特征的特殊性,常被称之为冰球、冰蛋.球状冰的形成与发展受气象、水动力和水滨地形条件等多因素共同控制,且具有一定的时空限制,必须在短时间内多因素协同干预才可能引发冰球集聚.正是凭借"制造"条件的苛刻性导致了冰球集聚现象的罕见,也造成了全球各地冰球出现的位置、形态和数量之间存在差异.已有来自于德国、俄罗斯、芬兰和加拿大等多个国家关于冰球现象的报道,但发生频率极少,约20~ 30年一次.近年来在吉林省的查干湖和四海湖发现了冰蛋现象,但关于球状冰从形成到大量集聚之间的定量研究依然缺少实测数据分析支撑.毫无疑问,来自大自然的神奇现象为科学探索研究提供了更多的动力和乐趣.  相似文献   

15.
In cold Arctic snowpacks, meltwater retention is a significant factor controlling the timing and magnitude of runoff. Meltwater percolates vertically through the snowpack until it reaches an impermeable horizon, whereupon a saturated zone is established. If the underlying media is below the freezing point, accretive ice formation takes place. This process has previously been crudely parameterized or modelled numerically. Such ice is called either superimposed ice on glaciers or basal ice on bare land. Using theory derived from sea‐ice formation, an analytical solution to basal ice growth is proposed. Results are compared against growth rates derived from numerical modelling. In addition, model results are compared to field observations of ice temperatures. The analytical solution is further extended to account for the temperature gradient inside the underlying media and the variable thermal properties of the underlying media. In the analysis, observations and references have predominantly relied on knowledge from glaciers. However, the process of accretive ice growth is equally important in seasonal snow packs with a cold snow‐ground interface and on Arctic sea ice where the ice‐snow interface is well below freezing point. The simplification of this accretive ice growth problem makes the solution attractive for incorporation in large‐scale cryospheric models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
We utilise a global finite-element sea ice–ocean model (FESOM), focused on the Antarctic marginal seas, to analyse projections of ice shelf basal melting in a warmer climate. Ice shelf–ocean interaction is described using a three-equation system with a diagnostic computation of temperature and salinity at the ice–ocean interface. A tetrahedral mesh with a minimumhorizontal resolution of 4 km and hybrid vertical coordinates is used. Ice shelf draft, cavity geometry, and global ocean bathymetry have been derived from the RTopo-1 data set. The model is forced with the atmospheric output from two climate models: (1) the Hadley Centre Climate Model (HadCM3) and (2) Max Planck Institute’s ECHAM5/MPI-OM coupled climate model. Results from experiments forced with their twentieth century output are used to evaluate the modelled present-day ocean state. Sea ice coverage is largely realistic in both simulations; modelled ice shelf basal melt rates compare well with observations in both cases, but are consistently smaller for ECHAM5/MPI-OM. Projections for future ice shelf basal melting are computed using atmospheric output for the Intergovernmental Panel on Climate Change (IPCC) scenarios E1 and A1B. In simulations forced with ECHAM5 data, trends in ice shelf basal melting are small. In contrast, decreasing convection along the Antarctic coast in HadCM3 scenarios leads to a decreasing salinity on the continental shelf and to intrusions of warm deep water of open ocean origin. In the case of the Filchner–Ronne Ice Shelf (FRIS), this water reaches deep into the cavity, so that basal melting increases by a factor of 4 to 6 compared to the present value of about 90 Gt/year. By the middle of the twenty-second century, FRIS becomes the dominant contributor to total ice shelf basal mass loss in these simulations. Our results indicate that the surface freshwater fluxes on the continental shelves may be crucial for the future of especially the large cold water ice shelves in the Southern Ocean.  相似文献   

17.
We examine the consequences of pyroclastic deposits being emplaced onto ice layers on Mars, both those in the polar caps and those forming glaciers on the flanks of some of the large shield volcanoes. We show that layers of pyroclasts greater than a few meters in thickness, whether emplaced cold (as fall deposits) or hot (as pyroclastic density current deposits) act almost exclusively to protect ice layers beneath them from sublimation, irrespective of whether they are emplaced at high or low elevations or high or low latitudes. Layers less than about 2 m thick, on the other hand, can cause significant ice loss by raising the surface temperature due to their low albedo and then transmitting that increased temperature to the underlying ice, especially on a diurnal time scale. This can have a significant bearing on the emplacement history of polar water ice and on the survival time of glacial ice on shield volcano flanks. A key factor in the latter case is the timing of the episodic volcanic activity relative to the cycles of climate change driven by Mars' obliquity and eccentricity variations.  相似文献   

18.
Ice streams are integral components of an ice sheet's mass balance and directly impact on sea level. Their flow is governed by processes at the ice‐bed interface which create landforms that, in turn, modulate ice stream dynamics through their influence on bed topography and basal shear stresses. Thus, ice stream geomorphology is critical to understanding and modelling ice streams and ice sheet dynamics. This paper reviews developments in our understanding of ice stream geomorphology from a historical perspective, with a focus on the extent to which studies of modern and palaeo‐ice streams have converged to take us from a position of near‐complete ignorance to a detailed understanding of their bed morphology. During the 1970s and 1980s, our knowledge was limited and largely gleaned from geophysical investigations of modern ice stream beds in Antarctica. Very few palaeo‐ice streams had been identified with any confidence. During the 1990s, however, glacial geomorphologists began to recognise their distinctive geomorphology, which included distinct patterns of highly elongated mega‐scale glacial lineations, ice stream shear margin moraines, and major sedimentary depocentres. However, studying relict features could say little about the time‐scales over which this geomorphology evolved and under what glaciological conditions. This began to be addressed in the early 2000s, through continued efforts to scrutinise modern ice stream beds at higher resolution, but our current understanding of how landforms relate to processes remains subject to large uncertainties, particularly in relation to the mechanisms and time‐scales of sediment erosion, transport and deposition, and how these lead to the growth and decay of subglacial bedforms. This represents the next key challenge and will require even closer cooperation between glaciology, glacial geomorphology, sedimentology, and numerical modelling, together with more sophisticated methods to quantify and analyse the anticipated growth of geomorphological data from beneath active ice streams. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

19.
Dust grain size is a proxy for wind strength that en-trains it. Mineral aerosol blown from arid continent to remote sites has a broad diameter range, from less than 0.5 μm to larger than 75 μm[1]. For a long time, geolo-gists reveal the transport and sediment characteristics using grain size and size distribution. In loess research, grain size is widely used as the proxy for winter mon-soon strength[2,3]. Fractions entrained by the westerlies and winter monsoon can be discerned by grain size…  相似文献   

20.
A simple box model of the circulation into and inside the ocean cavern beneath an ice shelf is used to estimate the melt rates of Antarctic glaciers and ice shelves. The model uses simplified cavern geometries and includes a coarse parameterization of the overturning circulation and vertical mixing. The melting/freezing physics at the ice shelf/ocean interface are those usually implemented in high-resolution circulation models of ice shelf caverns. The model is driven by the thermohaline inflow conditions and coupling to the heat and freshwater exchanges at the sea surface in front of the cavern. We tune the model for Pine Island Glacier and then apply it to six other major caverns. The dependence of the melting rate on thermohaline conditions at the ice shelf front is investigated for this set of caverns, including sensitivity studies, alternative parameterizations, and warming scenarios. An analytical relation between the melting rate and the inflow temperature is derived for a particular model version, showing a quadratic dependence of basal melting on small values of the temperature of the inflow, which changes to a linear dependence for larger values. The model predicts melting at all ice shelf bases in agreement with observations, ranging from below a meter per year for Ronne Ice Shelf to about 25 m/year for the Pine Island Glacier. In a warming scenario with a one-degree increase of the inflow temperature, the latter glacier responds with a 1.4-fold increase of the melting rate. Other caverns respond by more than a tenfold increase, as, e.g., Ronne Ice Shelf. The model is suitable for use as a simple fast module izn coarse large-scale ocean models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号