首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A discussion of a program for the computation of coronal emission line polarization is presented. The starting point is a general formulation of the scattering function for magnetic dipole transitions between any two total angular momentum levels, J J, J ± 1. Illustration of the behavior of the scattering function for different transitions is given. The integration of the scattering function over the solar disk and along the line of sight accounting for arbitrary distribution of magnetic fields as well as an inhomogeneous temperature and density structure of the corona is considered next.Sample results are presented for the numerical computation of the angle of maximum polarization and the degree of maximum polarization to be expected from idealized magnetic field configurations such as radial and dipole. A computation is included for a realistic field configuration predicted to exist at the time of the 1966 eclipse. The magnetic field input to the scattering calculation is based upon the potential field extension of photospheric magnetic fields. It is the purpose of the sample calculations to demonstrate how the measurement of emission polarization measurements can be interpreted in terms of the direction of coronal magnetic fields. Factors which lend ambiguity to such interpreations are clearly illustrated from the examples. These include the Hanle-effect depolarization and the depolarization at the Van Vleck angle.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
This paper is devoted to a computation of the effect of a magnetic field on the linear polarization of the coronal L line of hydrogen. Recent works (Gabriel et al., 1971) have shown that the linear polarization of this line is due to resonant scattering of the incident chromospheric L line. The Hanle effect is the modification of this linear polarization, due to the magnetic field. After having briefly recalled the main features of this effect and the conditions of the coronal L line formation, we present the theoretical formalism to be used for Hanle effect computations. The effect of the hyperfine structure of the line is included. Then the results of our computations are given in terms of linear polarization as a function of the magnetic field. We get that the effect of the hyperfine structure on these results is negligible, although this is not evident a priori. When the hyperfine structure is neglected, the line structure is simplified and the Hanle effect can be expressed with analytical formulae, which we give in the last part of this paper. After integration along the line of sight, these formulae could be used for magnetic field determination in the solar corona from measurements of the linear polarization of the L line.  相似文献   

3.
The present paper is devoted to the interpretation of linear polarization data obtained in 14 quiescent prominences with the Pic-du-Midi coronagraph-polarimeter by J. L. Leroy, in the two lines Hei D3 andH quasi-simultaneously. The linear polarization of the lines is due to scattering of the anisotropic photospheric radiation, modified by the Hanle effect due to the local magnetic field. The interpretation of the polarization data in the two lines is able to provide the 3 components of the magnetic field vector, and one extra parameter, namely the electron density, because the linear polarization of H is also sensitive to the depolarizing effect of collisions with the electrons and protons of the medium. Moreover, by using two lines with different optical thicknesses, namely Hei D3, which is optically thin, and H, which is optically thick ( = 1), it is possible to solve the fundamental ambiguity, each line providing two field vector solutions that are symmetrical in direction with respect to the line of sight in the case of the optically thin line, and which have a different symmetry in the case of the optically thick line.It is then possible to determine without ambiguity the polarity of the prominence magnetic field with respect to that of the photospheric field: 12 prominences are found to be Inverse polarity prominences, whereas 2 prominences are found to be Normal polarity prominences. It must be noticed that in 12 of the 14 cases, the line-of-sight component of the magnetic field vector has a Normal polarity (to the extent that the notion of polarity of a vector component is meaningful; no polarity can be derived in the 2 remaining cases); this may explain the controversy between the results obtained with methods based on the Hanle effect with results obtained through the Zeeman effect. A dip of the magnetic field lines across the prominence has been assumed, to which the optically thick H line is sensitive, and the optically thin Hei D3 line is insensitive.For the Inverse prominences, the average field strength is 7.5±1.2 G, the average angle,, between the field vector and the prominence long axis is 36° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 29° ± 20°, and the average electron density is 2.1 × 1010 ± 0.7 × 1010 cm–3. For the Normal prominences, the average field strength is 13.2±2.0 G, the average angle,, between the field vector and the prominence long axis is 53° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 0° ± 20° (horizontal field), and the average electron density is 8.7 × 109 ± 3.0 × 109 cm–3.  相似文献   

4.
Spectra, angular distributions, and polarization of two-photon annihilation radiation in a magnetic field are studied in detail in the case of small longitudinal velocities of annihilating electrons and positrons which occupy the ground Landau level. Magnetic field essentially affects the annihilation if its magnitudeB is not very low in comparison withB cr=4.4×1013G, which may take place near the surface of a neutron star. The magnetic field broadens the spectra (the width depends on an angle betweenB and a wave vector) and leads to their asymmetry. The angular distribution may be highly anisotropic, being fan-like or pencillike for different photon energies . The total annihilation rate is suppressed by the magnetic field (B –3 forBB cr).The radiation is linearly polarized; the degree and orientation of the polarization depend onB, and . The polarization may reach several tens percent even for comparatively small fieldsB 0.1B crtypical for neutron stars. This means that the polarization may be detected, e.g., in the annihilation radiation from the gamma-ray bursts.  相似文献   

5.
The effect of a strong magnetic field on neutron stars or white dwarfs is calculated for Thomson scattering in a fully ionized collisionless plasma. The Stokes parameters for the scattered radiation are computed explicitly in terms of the state of polarization of the incident wave, the electron-cyclotron frequency, the plasma frequency, the angle of incidence, and the angle of scattering. The effects of the plasma are very insensitive to specific values of ( = 2 p /2,p denotes the electron plasma frequency) so long as 1, whereas the criterion for the magnetic field to substantially affect the Stokes parameters is that the photon frequency be less than the electron-cyclotron frequency. The effects of classical radiation damping and natural line broadening are briefly mentioned.  相似文献   

6.
On the basis of diffusion approach for normal modes, solutions of the radiative transfer problem are obtained and analysed for an optically thick tenuous plasma with a strong magnetic field. The case is considered when the scattering processes without change of photon frequency are dominant. The radiative transfer coefficients as well as spectra, angular dependences and polarization of the outgoing radiation are investigated in detail for a cold plasma,kT emc 2, |–s B|kT e/mc 2 )1/2|cos|, whereT e is the electron plasma temperature, B=eB/mc the electron cyclotron frequency,s=1,2,... the number of cyclotron harmonic and the angle between the magnetic field and wave vector. The effects of electronpositron vacuum polarization are taken into account and shown to be very significant. Simple analytic solutions are obtained for various limiting cases (small and large vacuum polarization; high, low and close to the cyclotron resonance radiation frequencies; different orientations of the magnetic field, etc). The results obtained are necessary for analysing X-ray and gamma-ray radiation from strongly magnetized neutron stars.  相似文献   

7.
In order to interpret the observed center to limb variations of spectrum and polarization of microwave impulsive bursts, gyro-synchrotron emission from nonthermal electrons trapped in a magnetic dipole field is computed. The theoretical spectrum and polarization are consistent with observed ones if we put an outer boundary of the radio source at a layer of 100-60 G or (7–9) × 104 km in height. Rather small observed center-limb variations in intensity and polarization are attributed to the distribution of , an angle between the magnetic field and the direction of observer, in the radio source emitting the burst, though the intensity and polarization depend strongly on especially at small values of .  相似文献   

8.
Cyclotron microwave emission from magnetic stars is considered, assuming that they have coronae with the temperatureT107 K and the emission measureEM1054 cm–3. It has been shown that the cyclotron radiation from a star with a dipole magnetic field has a specific spectrum with a maximum in the frequency rangesv o/2 >v >sv o/2 (s being the number of cyclotron harmonic, andv o the gyrofrequency corresponding to the polar magnetic field) and radiation flux decreasing towards lower frequencies asv 4/3. The frequency of the spectrum maximum depends on the angle between the line-of-sight and the magnetic axis of the star. The observed radiation from a rotating magnetic star can be modulated with a modulation depth of about 0.2 at frequencies near maximum. The radiation is partially circularly-polarized in the sense of an extraordinary mode. The degree of polarization is almost constant at frequenciesv >sv o/2 and increases with frequency atv >sv o/2. The estimation of cyclotron radio fluxes of the nearest magnetic stars shows that they are observable in microwaves by means of modern radio astronomy.  相似文献   

9.
A theory describing the interaction between atoms or molecules (or other systems with discrete energy eigenvalues) and waves in an arbitrary mode in an arbitrary ambient medium is developed. Rules for generalizing formulae describing processes for waves in vacuo to include the effects of a medium are stated and the illustrative examples of multipole radiation, the photo-electric effect and Rayleigh and Raman scattering are given.The following specific results are discussed: (1) In an isotropic medium with refractive indexn(), the rate of transitions with frequency isn(),n 3(), ... times that in vacuo for electric dipole, magnetic dipole or electric quadrupole, ..., transitions. (2) The conventional multipole expansion is inadequate when waves with a longitudinal component of polarization exist, but this does not affect the theory of electric and magnetic dipole transitions.A possible astrophysical application of resonant scattering by molecules of electron plasma waves is discussed briefly.  相似文献   

10.
The polarization of hard solar X-radiation (> 10 keV) is calculated on the assumption that electrons get a non-isotropic velocity distribution in the initial phase of a flare. The brems-strahlung generated by nonthermal electrons spiralling around magnetic field lines with discrete pitch angles is considerably polarized if observed at approximately right angles to the magnetic field. In the energy range from 10 to 50 keV the degree of polarization is not strongly dependent on the photon energy. For pitch-angle distributions of the form sin2 and cos2, the polarization has opposite signs; it decreases appreciably at high photon energies. The observation of X-ray polarization will be useful in deducing the physical conditions in flares.  相似文献   

11.
It is found from analysis of the position angles of the plane of polarization of about 3000 stars (¦b¦ 5° andP 0.5%) that the angle between the magnetic field and the equatorial plane of the galaxy is approximately 0–5°. The distance within which the local magnetic fields of the galaxy have a greater effect on the position angles of the plane of polarization than the galactic magnetic field is estimated to be about 500 pc. The effect of the galactic magnetic field becomes dominant for distancesr 1000 pc.Translated fromAstrofizika, Vol. 39, No. 4, pp. 553–559, November, 1996.  相似文献   

12.
The amount of circular polarization of the total solar radio emission at 7 GHz present permanent changes after the occurrence of certain radio bursts associated with larger flares. For isolated S-components, associated with such flares the changes of the polarization degree sranges between 0.004 to 0.1, and appears to be a function of the flare importance. A semi-qualitative interpretation associates swith magnetic field reductions at the S-component, agreeing fairly well with a flare mechanism based on collisionless dissipation of magnetic energy, corresponding to energies in the range of 1030 to 1032 ergs, assuming an average model for the coronal condensations.  相似文献   

13.
The Oppenheimer-Penney theory to calculate the polarization of L lines from hydrogen-like ions, when the impact electrons are distributed such that their probability is more in the regions close to the magnetic field (f(cos n ), is applied by Chandra and Joshi (1984). The work of Chandra and Joshi (1984) has been reinvestigated for the pitch-angle distributionf()sin n . The degrees of polarization are still found to be independent of the atomic number of a hydrogen-like ion.  相似文献   

14.
Gelfreikh  G. B.  Pilyeva  N. A.  Ryabov  B. I. 《Solar physics》1997,170(2):253-264
A technique is proposed to estimate the magnetic field and its derivative in coronal layers above solar active regions. On the basis of the theory of quasi-transverse propagation of microwaves, the measurable degree of circular polarization is related to the gradient of the coronal magnetic field. The relation is applied to the analyses of a set of microwave sunspot-associated sources at the time when they reverse the sense of their circular polarization.Here we present the characteristic values of coronal fields H= 20 G, H/ l = 10-9 G cm-1 at a height of 1010 cm, estimated using spectral-polarization observations with the radiotelescope RATAN-600 ( =18–36 at = 2.0–4.0 cm). The steepest gradient of 2 × 10-5 G cm-1 at h=5 × 109 cm is obtained in the case of coronal magnetic fields overlying a sunspot with a high photospheric proper motion.  相似文献   

15.
On the basis of the Mie theory, the differential cross-section for polarization and the polarization efficiency are calculated for some spherical interstellar grains consisting of ice, silicate, or graphite in the ultraviolet, optical, and near infrared wavelengths. As far as the polarization due to scattering is concerned, these particles scatter light as Rayleigh scattering for 0<x1, wherex is the dimensionless size parameter. The polarization efficienties depend strongly on the value of the imaginary part (m) of the refractive index of grain material whenx1: the efficiency takes a maximum value atx1 and decreases to zero asx approaches zero for the absorbing sphere such as the dielectric particle withm0.1 or the graphite grain in the infrared wavelengths.  相似文献   

16.
Positrinium atom is considered in a strong magnetic field in a vector-potential gauged asA x =–By. The energy spectrum is obtained including its dependence on the centre-of-mass wave vector across the magnetic field. The pole-like contributions into the photon polarization operator coming from the positronium states are calculated and dispersion curves of joint photon-positronium states are obtained as trajectories of poles of the photon Green function in momentum space.When propagating in a strong magnetic field (B0.1B cr 4×1012 G) with curved lines of force, a photon is canalized along the magnetic field by adiabatically transforming into a bound electron-positron pair, which is a stronger effect than the analogous photon capture by transforming into an unbound pair at the edge of the continuum discussed previously by the authors. The effect of bound pair formation by-quanta in a strong magnetic field may be important near pulsars,-burst sources, powerful X-ray sources in close binary systems and other astronomical objects, recognized as magnetic neutron stars.  相似文献   

17.
Starting from the idea that the electrons accelerated during a solar flare have originally a preferred direction, the angular distribution and the polarization of bremsstrahlung below 10 Å is calculated taking into account the influence of the magnetic field. The energy distribution of the nonthermal electrons is based on X-ray spectra measured by the Leicester group during flares in 1962 and 1967. In addition to the case of a fixed angle between the electron velocity and the magnetic field, an angular distribution of the form sin n is considered. The results may be used to test flare models. Recent measurements of the polarization of solar X-radiation yield the expected order of magnitude.Paper presented to the Int. Symp. on Solar-Terr. Phys., Leningrad, May 1970.  相似文献   

18.
Trajectories of solar cosmic rays have been calculated in a static ninth-order coronal magnetic field. It is found that as a result of field curvature and gradients, protons drift across the field lines at a rate of up to 200 2 deg hr–1. These drift rates are of the same order as, but somewhat smaller than, empirically derived rates. Localized enhancements of magnetic field have been inserted into the ninth-order field in order to model (in a highly idealized manner) the effects of the small-scale magnetic features which give rise to X-ray bright points. The motions of the particles in the presence of these scattering centers can be parameterized approximately by a cross-field diffusion coefficient. Our estimates of this coefficient, although crude, overlap with empirical values which have been deduced over a wide range of energies.We propose that coronal propagation of solar cosmic rays has two components. One is independent of particle velocity, and is associated with dynamic field phenomena (such as an expanding magnetic bottle): this is the only component which is important in flares which occur close to the foot-point of the Sun-Earth field line. The second component is velocity dependent, but is independent of mass, and is associated with scattering off (relatively static) magnetic inhomogeneities with scale sizes of at least 500 km: the second component contributes to coronal propagation if the flare occurs more than about 50–60 deg away from the Sun-Earth field line.  相似文献   

19.
A beam of collisionless plasma is injected along a longitudinal magnetic field into a region of curved magnetic field. Two unpredicted phenomena are observed: The beam becomes deflected in the directionopposite to that in which the field is curved, and itcontracts to a flat slab in the plane of curvature of the magnetic field.The plasma is produced by a conical theta-pinch gun and studied by means of high speed photography, electric and magnetic probes, ion analyser, and spectroscopy.The plasma beam is collisionless and its behaviour is, in principle, understood on the basis of gyro-centre drift theory. A fraction of the transverse electric fieldE=–v×B, which is induced when the beam enters the curved magnetic field, is propagated upstream and causes the reverse deflection byE×B drift. The upstream propagation of the transverse electric field is due to electron currents.The circuit aspect on the plasma is important. The transverse polarization current in the region with the curved field connects to a loop of depolarization currents upstream. The loop has limited ability to carry current because of the collisionless character of the plasma; curlE is almost zero and electric field components arise parallel to the magnetic field. These play an essential role, producing runaway electrons, which have been detected. An increased electron temperature is observed when the plasma is shot into the curved field. Runaway electrons alone might propagate the electric field upstream in case the electron thermal velocity is insufficient.The phenomenon is of a general character and can be expected to occur in a very wide range of ensities. The lower density limit is set by the condition for self-polarization,nm i / 0 B 2 1 or, which is equivalent,c 2/v A 2 ;1, wherec is the velocity of light, andv A the Alfvén velocity. The upper limit is presumably set by the requirement e e 1.The phenomenon is likely to be of importance, for example, for the injection of plasma into magnetic bottles and in space and solar physics. The paper illustrates the complexity of plasma flow phenomena and the importance of close contact between experimental and theoretical work.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May, 1978  相似文献   

20.
The results are given of polarimetric and photometric observations of BL Lacertae-type object OJ 287 for 1972–76. These, and all other data available from the literature, are used in a comparative analysis of polarimetric and photometric properties of the object. The variations of time-scales from several years to several hours are noted. The variability is caused by the flaring up and fading of separate sources (hot spots) of polarized (synchrotron) radiation. The existence of a preferable direction of polarization (0=80°) is an indication of a stable magnetic field. It may be used as an argument in favour of the single-body hypothesis of Lacertids. The behaviour of OJ 287 during a 6-day interval may be explained by intensity changes of a single source with constant parameters of polarization. It is found that, for this source,p=42.8%, 0=101°. The night variations of brightnes and parameters of polarization limit the dimensions of the source responsible for this variability (R<-5×1014 cm) and enable us to estimate its degree of polarization (p50%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号