首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Late Archaean metagreywackes of the Ranibennur Formation, Dharwar Supergroup, in the Dharwar–Shimoga schist belt of the Western Dharwar Craton (WDC) are texturally and mineralogically immature of the quartz-intermediate type. The SiO2 content in them ranges from 60.58 to 65.26 wt.%. Chemical Index of weathering (CIW) values varies between 50 and 65. 4 indicating a low degree of chemical alteration of the provenance rocks. A high degree of correlation between K2O and Al2O3 (r = ? 0.73) and low Rb/Sr ratios also suggest a low degree of alteration of provenance rocks. Abundances of transition group elements (Cr = 118–221; N = 89–154; V = 89–192 and Sc = 11–16 ppm) as well Zr (132–191 ppm) suggest a mixed mafic–felsic provenance for the metagreywackes. Low HREE and Y content, and low Tb/Yb ratios (0.23–0.41) suggest the presence of tonalite as an important component in the provenance areas. Values of Eu/Eu?(0.78) and Th/Sc (0.55) suggest that the granodioritic upper crust had evolved prior to serving as the provenance. Mixing calculations suggest 50–55 vol.% tonalite, 20–25 vol.% granite, 18–20 vol.% basalt and ~ 5 vol.% komatiite composition for the provenance. Geochemical characteristics of the Ranibennur metagreywackes suggest that sedimentary basin formed in the vicinity of a magmatic arc in a continental island arc setting, and the detritus were shed from the arc rock.  相似文献   

2.
The Precambrian greywacke of Ribandar‐Chimbel belonging to the Sanvordem Formation of the Goa Group, India, has been studied for petrography and analyzed for major trace elements. The greywacke is characterized by angular to sub‐round grains of quartz, feldspar, biotite, chlorite and clay minerals. The abundance of clay in the matrix seems to have influenced the Al2O3 content and the K2O/Al2O3 ratio. The variation diagrams indicate a decreasing trend of TiO2, Al2O3, Fe2O3 and MgO; whereas Na2O and CaO exhibit a scatter which could be a result of the variable presence of feldspar within the sediments. The immobile elements, vanadium (25 to 144 ppm), nickel (up to 107 ppm) and chromium (up to 184 ppm), reflect abundance of clay minerals. The greywacke shows strongly fractionated REE patterns with LaN/YbN = 8 to 26 and with higher total REE abundances (up to 245 ppm). The low REE enrichment and depletion in heavier REE with prominent negative Eu anomaly (Eu/Eu*= 0.54 to 0.79) suggest a derivation of the greywacke from an old upper continental crust composed chiefly of felsic components. Petrological evidence and geochemical data suggest that the deposition of the greywacke largely took place in a deep to shallow basin that progressively changed from that of a continental island arc to an active continental setting.  相似文献   

3.
The present work concerns two occurrences of Neoproterozoic volcaniclastic metasediments in the Central Eastern Desert (CED) of Egypt namely Alam occurrence and Atalla occurrence. They are mainly composed of bedded successions of feldspathic and feldspathic-lithic metagreywackes, arkosic metagreywackes, metasiltstones, and subordinate metaconglomerates. The rocks have been subjected mainly to various ductile deformational events (D1 and D2) due to NE–SW compression and later deformation (D3). The D1 deformation is synchronous with greenschist facies metamorphism (M1). The Alam metagreywackes show oceanic arc tectonic setting. The greywackes have clasts of quartz, feldspar, and metamorphic amphibole after pyroxene and show variable abundances of Cr, Ni, and V. Their provenance components are mainly of evolved felsic and mafic (bimodal) island arcs. The rocks are suggested to be deposited in a localized “intra-arc basin.” The metagreywackes of Atalla show tectonic setting affinity similar to continental sland arc or active continental margin. Their geochemical characteristics reflect the presence of felsic rocks as the main sources, together with minor inputs of intermediate rocks and reworked mineral grains of quartz and feldspar. They are deposited in a localized “retro-arc basins” of an active continental margin. The whole sequences of both Atalla and Alam sediments have been subjected to deformation and contemporaneous regional metamorphism during arc-arc or arc-continent collision. Newproterozoic clastic metasedimentary rocks in the CED appear to have been deposited in arc-related basins, including interarc or back-arc basins, intra-arc basins, and retro-arc basin of active continental margin.  相似文献   

4.
The Upper Kaimur Group of the Vindhyan Supergroup in Central India, primarily consists of three rock types-DhandraulSandstone, Scarp Sandstone and Bijaigarh Shale. Mineralogically and geochemically, they are quartz arenite, sublitharenite to litharenite and litharenite to shale in composition, respectively. The A-CN-K ternary plot and CIA and ICV values suggest that the similar source rocks suffered severe chemical weathering, under a hot-humid climate in an acidic environment with higher P CO 2, which facilitated high sediment influx in the absence of land plants. Various geochemical discriminants, elemental ratios like K2O/Na2O, Al2O3/TiO2, SiO2/MgO, La/Sc, Th/Sc, Th/Cr, GdN/YbN and pronounced negative Eu anomalies indicate the rocks to be of post-Archean Proterozoic granitic source, with a minor contribution of granodioritic input, in a passive margin setting. The sediments of the Upper Kaimur Group were probably deposited in the interglacial period in between the Paleoproterozoic and Neoproterozoic glacial epochs.  相似文献   

5.
The modal and chemical composition of sands from Cox’s Bazar beach (CBB) and Kuakata beach (KB) areas of Bangladesh has been investigated to infer their maturity, chemical weathering, and provenance signatures. The CBB and KB sands are typically high quartz, low feldspar, and lithic fragments, representing a recycled orogen source. Major element compositions of CBB sands are characterized by high SiO2 (83.52–89.84 wt%) and low Al2O3 (4.39–6.39 wt%), whereas KB sands contained relatively low SiO2 (63.28–79.14 wt%) and high Al2O3 (9.00–11.33 wt%) contents. The major, trace and rare earth element (REE) compositions of beach sands display comparable distribution patterns with enriched Th and SiO2 for both sands relative to upper continental crust (UCC). Pb, Rb, Y, and Fe for KB sands are little higher than UCC and the rest of the elements are marked depleted for both suites reflecting destruction of plagioclase and K-feldspar during fluvial transportation. The CBB and KB sands are compositionally low mature to immature in nature subsequently classified as subarkose and litharenite, respectively. Chondrite-normalized REE patterns for CBB and KB sands show LREE enrichment and nearly flat HREE (LaN/YbN, 7.64–9.38 and 5.48–8.82, respectively) coupled with prominent Eu anomalies (Eu/Eu*, 0.51–0.72 and 0.52–0.76, respectively), suggesting felsic source provenance. The provenance discrimination diagrams, immobile trace element ratios (Th/Sc, Zr/Sc, Ce/Sc, and Ti/Zr), and REE (∑LREE/HREE, Eu/Eu* and GdN/YbN) parameters indicate that CBB and KB sands were largely derived from felsic source rocks, with compositions close to average rhyolite, granodiorite, granite, and UCC.  相似文献   

6.
对采自北京周边的二叠系山西组露头及钻井泥岩样品进行了岩石学和地球化学研究,结果表明:岩石主要由粘土矿物和石英组成,兼有少量碳酸盐岩和长石;岩石中碳酸盐岩含量的高低与CaO、MgO含量有很好的对应关系;SiO2、Na2O和K2O亏损,TiO2和Fe2O3T富集,反映了基性物源的存在;微量元素特征比值显示源区母岩为非单一物源,稀土元素总量较高,轻稀土元素富集,重稀土元素平坦,铕大部分具明显负异常、少部分微弱正异常,Ce基本无异常,显示为多物源,各样品稀土元素配分模式与大陆上地壳一致,显示了沉积物具有同源性。源岩应为来自于华北地块北缘的大陆上地壳的沉积岩、花岗岩和碱性玄武岩的混合。二叠系山西组泥岩沉积于覆水较深的还原环境,源区构造背景为大陆岛弧与活动大陆边缘。  相似文献   

7.
We conducted fluid-absent partial melting experiments, at 0.5 and 1.0?GPa in the temperature range 750 to 1000?°C, to investigate the influence of bulk rock Mg ? [100Mg/(Mg+Fe)] and the effects of additional TiO2 on the granulite-grade anatectic evolution of relatively magnesian metapelites and metagreywackes. In these experiments, melting began between 780 and 830?°C by the incongruent breakdown of biotite to produce quartz-saturated, granulite-facies residual mineral assemblages in equilibrium with H2O-undersaturated granitic melt. The glass (quenched melt) compositions produced in this study vary little. Generally, the glasses have compositions similar to those of many natural strongly peraluminous leucogranites. The solidus temperatures in both rock types increase with increasing Mg ?, but are unaffected by the presence or absence of a TiO2 component. At 0.5?GPa the metapelites melted at temperatures up to 50?°C lower than the equivalent metagreywackes, but at 1?GPa there was no discernible difference. This study suggests that the fluid-absent solidus has a steep positive dP/dT slope in metapelites and steep negative dP/dT slope in metagreywackes. The pattern of melt production with increasing temperature is strongly controlled by the upper limit of biotite stability. In TiO2-free compositions this was found to increase by 15 to 20?°C in the metapelites and by 30 to 40?°C in the metagreywackes, as a function of increasing Mg ? from 49 to 81. The presence of a TiO2 component increases the upper limit of biotite stability by ~50?°C in the metapelites and by ~80?°C in the metagreywackes, over that observed in the equivalent TiO2-free compositions. In consequence, in the TiO2-free samples large pulses of melt (up to 35 wt%) are produced over narrow temperature ranges (as little as 15?°C in these experiments) between 830 and 875?°C. In the TiO2-bearing samples the major pulse of melt production occurs more gradually between 830 and >900?°C.  相似文献   

8.
Sandstones of Punagarh basin of Trans Aravalli region, NW Indian shield were analyzed for their major and trace element contents in conjunction with petrographic modes. The Punagarh basin comprises four formations (Sojat, Bambolai, Khamal and Sowania), amongst which the Sojat Formation in uncoformable contact with overlying formations, is significantly older and enjoys separate status as rest of the formations constitute Punagarh Group. Petrographic attributes suggest that Sojat sandstones contain distinct modal abundances like high content of quartz and low content of feldspar, mica, matrix, rock fragments and cement. In general there is a decrease in the average modal abundance of quartz and mica with concomitant increase of feldspar, chert and rock fragments from base to top in Punagarh sandstones. Sojat sandstones are also geochemically distinct as they possess high SiO2/Al2O3, Th/U and Cr/Th ratios coupled with lowest Na2O/K2O ratio and Zr content, least fractionated LREE, more fractionated HREE and largest Eu* anomaly compared to Punagarh sandstones. The weathering indices suggest intense chemical weathering for Sojat sandstones and low to moderate for Punagarh sandstones. Compositionally all the sandstones of the Punagarh basin come under the category of quartzarenite. Compared to PAAS and UCC, both suite of sandstones are generally depleted in REE, HFSE (with exception of Zr, Hf and Ta), and enriched in ferromagnesian trace elements particularly Cr and Co. The chemical data indicate that the sediments were derived from the source(s) of mixed felsic - mafic composition, with the former being dominant. The source rocks were granites, TTG, basalts, and rhyolites. The Sojat sandstones owe their source form Archean crust while Punagarh sandstones got detritus from Mesoproterozic crust. Immobile element ratios and REE abundances of Sojat sandstones closely match with Paleoproterozoic metagreywackes of Ghana of African craton while Punagarh sandstones show near geochemical characteristic with Gogunda, Kumbalgarh and Vindhyan quartzites of Aravalli craton. This geochemical similarity of Sojat sandstones provides credence to the hypothesis that Trans–Aravalli region of India had been an integral part of Arabian - Nubian shield. The chemical data advocate the deposition of these sandstones in a tectonic setting comparable to modern back arc setting.  相似文献   

9.
The geochemistry of sediments is primarily controlled by their provenances, and different tectonic settings have distinctive provenance characteristics and sedimentary processes. So, it is possible to discriminate provenances, depositional environments and tectonic settings in the development of a sedimentary basin with the geochemistry of the clastic rocks. The analytical results of the present paper demonstrate that sediments in the Songliao prototype basin are enriched in silica (SiO2=66.48-80.51 %), and their ΣREE are 30-130 dmes of that of chondrite with remarkable Eu anomalies. In discriminating diagrams of Eu/Eu vs eeeeeREE and (La/Yb)N vs ΣREE, most samples locate above the line Eu/ Eu=l, on the right of the line Eu/Eu/ΣREE=1 and under the line La/Yb)N/eeeeeREE=1/8, which indicates that the depositional environment of sediments in the basin was oxidizing. In addition, variations of MgO, TiO2, A12O3, FeO+Fe2O3, Na2O and CaO vs SiO2 reflect a tendency of increasing mineral maturity of sediments  相似文献   

10.
The ∼2.7 Ga Sandur Superterrane (SST), of the western Dharwar craton, is a collage of greenstone terranes having distinct lithotectonic associations; volcanic associations are prevalent. Fine-grained metasedimentary rocks, which are optimal for provenance studies, are sparse in greenstone terranes of this craton. However, extensive shale sequences are present in the eastern volcanic terrane (EVT) and the eastern felsic volcanic terrane (EFVT) of the SST. Within the EVT, the black shales are stratigraphically associated with black cherts, metabasalt and banded iron formation (BIF), and underlain by greywackes. Shales have compositions of tholeiitic basalt in terms of TiO2, Cr, Co, Ni, V, and Sc contents, and plot near the arc basalt endmember on the Th/Sc versus Sc mixing hyperbola. In contrast, Archean average upper continental crust of Taylor and McLennan [Taylor, S.R., McLennan, S.M., 1985. The Continental crust: Its Composition and Evolution. Blackwell, Oxford, 307p.; Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Rev. Geophys.33, 241-265], plots mid-hyperbola indicative of bimodal arc magma provenance. Accordingly, the Sandur shales likely had a catchment in an oceanic arc or back-arc dominated by tholeiitic basalts. Specifically, Nb/Th ratios 1.5-2.5 in shales are close to those of Archean arc basalts (1-4), so a plateau or ocean island basalt source, where Nb/Th >8, can be ruled out. Compositionally, cherts are shale highly diluted by silica, with positive Eu anomalies, and are interpreted to be hydrothermal sediments precipitated from reduced fluids during periods of limited siliciclastic input. In the shales, variable SiO2 and Fe2O3 contents, depletions of MnO, MgO, and Na2O, and positive to negative Eu anomalies, but gains of K relative to arc basalt compositions, are interpreted as due to hydrothermal alteration. Greywackes underlying the shales have two compositions. Type I is similar to the shales, whereas Type II has fractionated REE with negative Eu anomalies consistent with a cratonic granitoid catchment [Manikyamba, C., Naqvi, S.M., Moeen, S., Gnaneswar Rao, T., Balaram, V., Ramesh, S.V., Reddy, G.L.N., 1997a. Geochemical heterogeneities of metagreywackes from the Sandur schist belt: implications for active plate margin processes. Precambrian Res. 84, 117-138]. Collectively, the results are in keeping with an intraoceanic arc outboard of a continental margin. During transgression the trench has a low energy shale facies with dominant arc contribution, but for regression high energy greywackes are deposited from a cratonic provenance.  相似文献   

11.
Scapolite at Mary Kathleen (North-Western Queensland) occurs in calcareous and non-calcareous metapelites, acid and basic metavolcanics and metadolerites. Graphical treatment of the relationship between scapolite composition (Me%) and the host rock oxide ratios CaO/Na2O and Al2O3/(CaO + Na2O) reveals the following points:
  1. The calcareous metapelites are also very sodic.
  2. Scapolite in calcareous metapelites is more marialitic than that in low-calcium equivalents.
  3. In graphs of Me% against CaO/Na2O and Al2O3/(CaO + Na2O) the metasediments and the metaigneous rocks show markedly different trends.
It is concluded that scapolite in the metasediments originated by isochemical metamorphism of shales and marls containing evaporitic halite. The local abundance of halite was the main control on the composition and distribution of the scapolite, but the relative abundance of CaO and Na2O was a modifying factor. In the metaigneous rocks scapolite formed metasomatically during regional metamorphism by the introduction of volatile-rich fluids derived from the adjacent evaporitic sediments. The relative availability of CO2 and Cl2 again appears to have been the primary control on scapolite composition and may in turn have been controlled by bulk rock composition.  相似文献   

12.
An integrated petrographic and geochemical study of the sandstones of the Maastrichtian-aged in the Orhaniye (Kazan-Ankara-Turkey) was carried out to obtain more information on their provenance, sedimentological history and tectonic setting. Depending on their matrix and mineralogical content, the Maastrichtian sandstones are identified as lithic arenite/wacke. The Dikmendede sandstones derived from types of provenances, the recycled orogen and recycled transitional. The chemical characteristics of the Dikmendede sandstones, i.e., fairly uniform compositions, high Th/U ratios (>3.0), negative Eu anomalies (Eu/Eu* 0.72–0.99) and Th/Sc ratios (mostly less than 1.0), favor the OUC (old upper continental crust) provenance for the Dikmendede sandstones. The SiO2/Al2O3, Th/Sc (mostly <1.0) and La/Sc (<4.0) ratios are; however, slightly lower than typical OUC, and these ratios may suggest a minor contribution of young arc-derived material. The rare earth element (REE) pattern, and La/Sc versus Th/Co plot suggests that these sediments were mainly derived from felsic source rocks. The Dikmendede sandstones have high Cr (123–294 ppm) and Ni (52–212 ppm) concentrations, Cr/Ni ratio of 1.93, and a medium correlation coefficient between Cr and Ni and corresponding medium to high correlation of both (Cr and Ni, respectively) elements with Co. These relationships indicate a significant contribution of detritus from ophiolitic rocks. As rare earth element data are available for the Dikmendede sandstones, the Eu/Eu* is compared with LaN/YbN. Samples plot in the area of overlapping between continental collision, strike-slip and continental arc basins. The predominantly felsic composition of the Dikmendede sandstones is supported by the REE plots, which show enriched light REE, negative Eu anomaly and flat or uniform heavy REE. The Dikmendede sandstones have compositions similar to those of the average upper continental crust and post-Archean Australian shales. This feature indicates that the sediments were derived mainly from the upper continental crust. The Dikmendede sandstones have chemical index of alteration (CIA) values of 28–49, with an average of 40 indicating a low degree of chemical weathering in the source area. The compositional immaturity of the analyzed sandstone samples is typical of subduction-related environments, and their SiO2/Al2O3 and K2O/Na2O ratios and Co, Sc, Th and Zr contents reflect their oceanic and continental-arc settings. The Dikmendede sandstones were developed as flysch deposits derived from mixed provenance in a collision belt.  相似文献   

13.
The K‐rich granitoids of the southern Mt Angelay igneous complex belong to the younger phases of the Williams and Naraku Batholiths (<1540 Ma) in the Cloncurry district. Granitoids of the complex form a series of I‐type, K‐rich, metaluminous monzodiorite to subaluminous syenogranite. These intrusions have geochemical affinities akin to ‘A‐type’ granites and contain plagioclase, alkali feldspar, quartz, biotite, hornblende and typically accessory magnetite, titanite, apatite and zircon. With increasing SiO2 the granitoids vary from alkaline to subalkaline, and exhibit a decrease in TiO2, Al2O3, Fe2O3*, MnO, MgO, CaO, P2O5, Cu, Sr, Zr, LREE and Eu, with an increase in Na2O, K2O, Rb, Pb, Th, U, Y and HREE. This suite of relatively oxidised granitoids (<1.0 log units above NNO) were emplaced after the peak of metamorphism and pre‐ to post‐D3, a major east‐west horizontal‐shortening event. The synchronous emplacement of high‐temperature mafic (>960°C) and foliated felsic (>900°C) granitoids formed zones of mingled and mixed monzonite and quartz monzonite to monzogranite containing abundant rapakivi K‐feldspar. These intrusions are interpreted to have been derived from source rocks of different compositions, and probably by different degrees of partial melting. The unfoliated felsic granitoids are considered to represent the fractionated equivalents of older foliated felsic granitoids. All granitoids possess a Sr‐depleted and Y‐undepleted signature, which suggests that the source material probably contained plagioclase and no garnet, restricting magma production to <800–1000 MPa (~24–30 km). Underplating of mantle‐derived mafic material into mid‐crustal levels is considered the most viable mechanism to produce these high‐temperature K‐rich granitoids at these pressures. The composition of the felsic granitoids is consistent with derivation from a crustal source with a tonalitic to granodioritic composition. However, the mafic granitoids require a more mafic, possibly gabbroic source, which may have been supplemented with minor mantle‐derived material. These granitoids are also enriched in Th, U, LREE and depleted in Ba, Ti, Nb and Sr and compare closely to the Mesoproterozoic granitoids of the Gawler Craton. The economic significance of these styles of granitoids may also be highlighted by the close spatial relationship of hematitic K‐feldspar, magnetite, fluorite and pyrite‐rich veins, alteration and filled miarolitic cavities with the least‐evolved felsic intrusions. This style of veining has a probable magmatic origin and is similar to the gangue assemblage associated with Ernest Henry‐style Fe‐oxide‐(Cu–Au) mineralisation, which suggests that these granitoids represent prospective sources of fluids associated with Cu–Au mineralisation in the district.  相似文献   

14.
Analysis of the litho-geochemistry of fine-grained terrigenous rocks (metapelites, shales, and mudstones) of sedimentary megasequences in the Southern Urals, Uchur-Maya area, and the Yenisei Kryazh indicates that Riphean sequences in these regions are dominated by chlorite-hydromica rocks, with montmorillonite and potassic feldspar possibly occurring only in some of the lithostratigraphic units. According to the values of their hydrolysate modulus, most clay rocks from the three Riphean metamorphosed sedimentary sequences are normal or supersialites, with hydrosialites and hydrolysates playing subordinate roles. The most lithochemicaly mature rocks are Riphean clays in the Yenisei Kryazh (Yenisei Range). The median value of their CIA is 72, whereas this index is 70 for fine-grained aluminosilicate rocks from the Uchur-Maya area and 66 for fine-grained terrigenous rocks of the Riphean stratotype. Hence, at ancient water provenance areas from which aluminosilicate clastic material was transported in sedimentation basins in the southwestern (in modern coordinates) periphery of the Siberian Platform, the climate throughout the whole Riphean was predominantly humid. At the same time, the climate at the eastern part of the East European Platform was semiarid-semihumid. The K2O/Al2O3 ratio, which is employed as an indicator of the presence of petro-and lithogenic aluminosilicate clastic component in Riphean sedimentary megasequences, shows various tendencies. According to their Sc, Cr, Ni, Th, and La concentrations and the Th/Sc ratio, the overwhelming majority of Riphean shales and mudstones notably differ from the average Archean mudstone and approach the average values for post-Archean shales. This suggests that mafic Archean rock in the provenance areas did not play any significant role in the origin of Riphean sedimentary megasequences. The Co/Hf and Ce/Cr ratios of the terrigenous rocks of the three Riphean megaseqeunces and their (Gd/Yb) N and Eu/Eu* ratios place these rocks among those containing little (if any) erosion products of primitive Archean rocks. According to various geochemical data, the source of the great majority of fine-grained aluminosilicate clastic rocks in Riphean sediment megasequences in our study areas should have been mature sialic (felsic), with much lower contents of mafic and intermediate rocks as a source of the clastic material. The REE patterns of the Riphean shales and metapelites in the Bashkir Meganticlinorium, Uchur-Maya area, and Yenisei Kryazh show some features that can be regarded as resulting from the presence of mafic material in the ancient provenance areas. This is most clearly seen in the sedimentary sequences of the Uchur-Maya area, where the decrease in the (La/Yb) N ratio up the sequence of the fine-grained terrigenous rocks from 15–16.5 to 5.8–7.1 suggests that mantle mafic volcanics were brought to the upper crust in the earliest Late Riphean in relation to rifting. Analysis of the Sm-Nd systematics of the Riphean fine-grained rocks reveals the predominance of model age values in the range of 2.5–1.7 Ga, which can be interpreted as evidence that the rocks were formed of predominantly Early Proterozoic source material. At the same time, with regard for the significant role of recycling in the genesis of the upper continental crust, it seems to be quite possible that the ancient provenance areas contained Archean complexes strongly recycled in the Early Proterozoic and sediments formed of their material. An additional likely source of material in the Riphean was mafic rocks, whose variable contribution is reflected in a decrease in the model age values. Higher Th and U concentrations in the Riphean rocks of the Yenisei Kryazh compared to those in PAAS indicate that the sources of their material were notably more mature than the sources of fine-grained aluminosilicate clastic material for the sedimentary megaseqeunces in the Southern Urals and Uchur-Maya area.  相似文献   

15.
Greywackes (Dharwar greywackes) are the most abundant rock types in the northern part of the Dharwar-Shimoga greenstone belt of the western Dharwar craton. They are distinctly immature rocks with poorly-sorted angular to sub-angular grains, comprising largely quartz, plagioclase feldspar and lithic fragments of volcanics (mafic+felsic), chert and quartzite, with subordinate biotite, K-feldspar and muscovite. They are characterized by almost uniform silica (59.78-67.96 wt%; av. 62.58), alkali (4.62-7.35 wt%; av. 5.41) contents, SiO2/Al2O3 (3.71-5.25) ratios, and compositionally are comparable to the andesite and dacite. As compared to Ranibennur greywackes, located about 100 km south of Dharwad in the Dharwar-Shimoga greenstone belt, the Dharwar greywackes have higher K2O, CaO, Zr, Y, ΣREE, Th/Sc, Zr/Cr, La/Sc and lower Sr, Cr, Ni, Sc, Cr/Th values. The chondrite normalized patterns of Dharwar greywackes are characterized by moderately fractionated REE patterns with moderate to high LREE enrichment, with almost flat HREE patterns and small negative Eu anomalies, suggesting felsic dominated source rocks in the provenance. The frame work grains comprising felsic and mafic volcanics, feldspars and quartz suggest a mixed source in the provenance. The moderate CIA values ranging between 57 and 73, indicate derivation of detritus from fresh basement rocks and from nearby volcanic sources.The mixing calculations suggest that the average REE pattern is closely matching with a provenance having 40% dacite, 30% granite, 20% basalt and 10% tonalite. These greywackes were deposited in a subduction related forearc basin than a continental margin basin. Their La/Sc ratios are high (av. 4.07) compared to the Ranibennur greywackes (1.79), suggesting that the greywackes of the northern part of the basin received detritus from a more evolved continental crust than the greywackes of the central part of the Dharwar-Shimoga basin.  相似文献   

16.
The sediment geochemistry, including REE, of surface and core samples from Mansar Lake, along with mineralogical investigations, have been carried out in order to understand the provenance, source area weathering, hydrolic sorting and tectonic setting of the basin. The geochemical signatures preserved in these sediments have been exploited as proxies in order to delineate these different parameters.The major element log values (Fe2O3/K2O) vs (SiO2/Al2O3) and (Na2O/K2O) vs (SiO2/Al2O3) demarcate a lithology remarkably similar to that exposed in the catchment area. The chondrite normalized REE patterns of lake samples are similar to Post Archaean Australian Shale (PAAS) with LREE enrichment, a negative Eu anomaly and almost flat HREE pattern similar to a felsic and/or cratonic sedimentary source. However, the La–Th–Sc plot of samples fall in a mixed sedimentary domain, close to Upper Continental Crust (UCC) and PAAS, suggesting sedimentary source rocks for the Mansar detritus. It also indicates that these elements remained immobile during weathering and transportation. The mineralogical characteristic, REEs, and high field strength elements (HFSE), together with the high percentage of metamorphic rock fragments in the Siwalik sandstone, support a metamorphic source for lower Siwalik sediments. A very weak positive correlation between Zr and SiO2, poor negative correlation with Al2O3, negative correlation of (La/Yb)N and (Gd/Yb)N ratios with SiO2 and positive correlation with Al2O3, suggest that Zr does not dominantly control the REE distribution in Mansar sediments. The petrographic character and textural immaturity indicate a short distance transport for the detritus. The distribution of elements in core samples reflect fractionation. The higher Zr/Th and Zr/Yb ratios in coarse sediments and PAAS compared to finer grained detritus indicate sedimentary sorting. Plots of the geochemical data on tectonic discrimination diagrams suggest that the sediments derived from the lower Siwalik were originated within a cratonic interior and later deposited along a passive margin basinal setting. It therefore reveals lower Siwalik depositional history.  相似文献   

17.
The geochemistry of the metapelites and basic granulite of Sonapahar has been studied in order to assess the nature of the protolith and their likely tectonic environment. Metapelites contains SiO2 (av. 62.16wt %), K2O+Na2O (av. 4.57 wt%), Al2O3 (av. 16.69 wt%), MgO (av. 5.31 wt%), Mg# av. 0.60 and low TiO2 (av. 0.68 wt%) with low Y (av. 23.48 ppm) and Yb (av. 1.6 ppm) which point to their derivation from andesite source. Metapelites show prominent negative europium anomaly (EuN/Eu* = 0.38–0.54) and fractionated LREE to HREE pattern (LaN/LuN) 17.23 to 56.69. Basic granulites demonstrate low content of SiO2 (av50.95 wt%), Al2O3 (av13.67 wt%), K2O (av 0.58 wt%) and enriched in Fe2O3 t (av 11.42 wt%), MgO (av 7.29 wt%), CaO (av 10.60 wt %), Na2O (av 2.26 wt%), Mg# av. 0.56 and range from calc-alkaline to tholeiitic in nature. The geochemistry of the metapelites and basic granulites advocate that metapelites are derived from arc related andesitic source due to subduction whereas protoliths of basic granulites was originated in rift related volcanism through diapiric movement of hot rising mantle derived basaltic magmas.  相似文献   

18.
The early Proterozoic metasedimentary sequence of the Alligator Rivers Region (a part of the Pine Creek Geosyncline) in the Northern Territory, Australia, overlies an Archaean granitoid basement. Early Proterozoic sedimentary sequences, in general, record important changes in the composition of the upper continental crust about the Archaean-Proterozoic boundary. However, the geochemistry of only a few of these sequences has been documented. The geochemistry of the early Proterozoic succession in the Alligator Rivers Region is reported here and the results are interpreted in terms of differences between the stratigraphic units, their provenance—particularly in relation to crustal evolution, and their subsequent metamorphism and weathering.Clastic metasedimentary rocks throughout the Alligator Rivers Region have a remarkably uniform major and trace element geochemistry. The Kakadu Group and upper member of the Cahill Formation are relatively more enriched in SiO2 and correspondingly more depleted in Al2O3 than the rest of the sequence, reflecting the greater dominance of metapsammitic assemblages. The lower member of the Cahill Formation, which hosts the major U deposits of the Alligator Rivers Region, and the metasedimentary sequence in general, exhibit no significant enrichment in U above normal background values. Rare earth element (REE) concentrations in the metasedimentary units within the Alligator Rivers Region are uniform, though in detail there are some important differences within and between formations.The composition of the early Proterozoic clastic metasediments in the Alligator Rivers Region is consistent with the composition of similar material of the same age from other areas, and supports current ideas on crustal evolution. The Alligator Rivers metasediments are enriched in Si and K, and depleted in Mg, Ca, and Na relative to the Archaean average for clastic sedimentary rocks, and their REE geochemistry resembles typical post-Archaean sedimentary rocks having a light REE enriched pattern and a distinct Eu/Eu1 depletion compared to typical Archaean sediments. However, the REE data indicate that two compositionally distinct sources are involved in the provenance of the Kakadu Group, and possibly the lower member of the Cahill Formation, where two types of REE patterns can be distinguished on their HREE concentration and Eu/Eu1 anomaly.  相似文献   

19.
Petrography and geochemistry (major, trace and rare earth elements) of clastic rocks from the Lower Cambrian Lalun Formation, in the Posht-e-badam block, Central Iran, have been investigated to understand their provenance. Petrographical analysis suggests that the Lalun conglomerates are dominantly with chert clasts derived from a proximal source, probably chert bearing Precambrian Formations. Similarly, purple sandstones are classified as litharenite (chertarenite) and white sandstones as quartzarenite types. The detrital modes of purple and white sandstones indicate that they were derived from recycled orogen (uplifted shoulders of rift) and stable cratonic source. Most major and trace element contents of purple sandstones are generally similar to upper continental crust (UCC) values. However, white sandstones are depleted in major and trace elements (except SiO2, Zr and Co) relative to UCC, which is mainly due to the presence of quartz and absence of other Al-bearing minerals. Shale samples have considerably lower content in most of the major and trace elements concentration than purple sandstones, which is possibly due to intense weathering and recycling. Modal composition (e.g., quartz, feldspar, lithic fragments) and geochemical indices (Th/Sc, La/Sc, Co/Th, Cr/Th, Cr/V and V/Ni ratios) of sandstones, and shales (La/Sc and La/Cr ratios) indicate that they were derived from felsic source rocks and deposited in a passive continental margin. The chondrite-normalized rare earth element (REE) patterns of the studied samples are characterized by LREE enrichment, negative Eu anomaly and flat HREE similar to an old upper continental crust composed chiefly of felsic components in the source area. The study of paleoweathering conditions based on modal composition, chemical index of alteration (CIA), plagioclase index of alteration (PIA) and A–CN–K (Al2O3 − CaO + Na2O − K2O) relationships indicate that probably chemical weathering in the source area and recycling processes have been more important in shale and white sandstones relative to purple sandstones. The results of this study suggest that the main source for the Lalun Formation was likely located in uplifted shoulders of a rifted basin (probably a pull-apart basin) in its post-rift stage (Pan-African basement of the Posht-e-badam block).  相似文献   

20.
The Kuluketage block, located in the northeast Tarim craton, is one of the largest Precambrian blocks in the Xinjiang province. Recently, many banded iron formation (BIF)‐type (Superior‐type) deposits have been discovered in the western part of the Kuluketage block. These deposits occurred in the Paleoproterozoic Shayiti Formation, Xingditage Group, which has a nearly E–W distribution in the southern Xinger and Xingdi faults. Tremolite biotite schist and quartzite are the main wall rocks. The geochemical characteristics of schist indicate that the BIFs occurred in a passive continental margin environment. The LA–ICP–MS zircon 206Pb/238U ages of BIF and late syenite are 1945 ± 10 Ma(MSWD = 0.77) (weighted average age) and 1974 ± 27 Ma(MSWD = 1.05) (upper intercept age), respectively, indicating that the BIFs occurred in the Paleoproterozoic. In addition, the approximately 1.9 Ga magmatic and metamorphic events are consistent with the global‐scale 2.1–1.8 Ga collisional orogen events which are associated with the assembly of the Columbia supercontinent. The geochemical characteristics show that magnetite and quartz are dominant components (total content, 91.65–98.22 wt.%), and the Zr(Nb) and TiO2, Zr(Nb) and Al2O3 and Zr and Y/Ho display strongly positive correlations, illustrating the addition of crustal materials into the chemical precipitate of the original BIFs. The higher Zr, Nb and Al2O3 contents and a lower Y/Ho ratio of the Kuluketage BIFs indicate a higher terrigenous detrital component contaminant compared to BIFs of North China Craton (NCC). The rare earth and yttrium (REY) distribution patterns show a slight LREE enrichment and weak Eu positive anomaly features, indicating that the source of Fe and Si of the Kuluketage BIFs is mainly from the contribution of low‐temperature hydrothermal alteration of the oceanic crust. In addition, along with the decreasing BIF depositional age, the declining of Eu anomaly values reflects the increasing importance of low‐temperature hydrothermal solutions relative to high‐temperature hydrothermal solutions. Moreover, no Ce anomalies in studied BIFs, NCC and Xinyu BIFs are attributed to relative reducing environmental condition when the original BIFs precipitated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号