首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala,Finland,and HYTFZ01,Huayun Tongda Satcom,China) was studied.Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012.Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen.In most cases,the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield.The measured errors changed sharply at sunrise and sunset,and reached maxima at noon.Their diurnal variation characteristics were,naturally,related to changes in solar radiation.The relationships between the record errors,global radiation,and wind speed were nonlinear.An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05),in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively.Measurement errors were reduced significantly after correction by either method for both shields.The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method,respectively.  相似文献   

2.
The meteorology at the Cabauw tower site in the Netherlands has been modelled for 2005 using a local scale prognostic meteorological and air pollution model called TAPM. A number of performance measures have been used to assess model accuracy, including comparison statistics such as root-mean-square error (RMSE) and index of agreement (IOA). Results show that the model performs very well for prediction of wind and temperature at the six tower levels that range from 10 to 200 m above the ground, as well as performing well for radiation and surface fluxes. The model simulation shows almost no bias in mean and standard deviations of wind and temperature at each tower height level, with small RMSE (e.g. RMSE of 1.2 m s−1 for 10-m wind speed, and 1.6°C for 10-m temperature) and high correlation and IOA (e.g. IOA of 0.92 for 10-m wind speed and 0.98 for 10-m temperature). Results for radiation and surface fluxes also show good performance, although some biases were seen for these variables, and possibilities for future model development were identified. An examination of model sensitivity also explored several aspects of the model configuration and input.  相似文献   

3.
随着高空温度探测精度要求的日益提高,如何减小温度传感器测量误差已成为亟需解决的问题,而太阳辐射作为影响温度传感器探测性能的重要因素已成为该领域研究的热点.利用计算机仿真技术,引入太阳高度角、引线夹角2个影响因子,根据流体动力学模型模拟分析探空温度传感器从海平面上升到32 km高空时所受太阳辐射的影响,最终得到辐射误差与海拔高度的关系曲线族,仿真结果将为开展高空温度传感器误差分析提供基础依据,从而提高传感器测量准确度.  相似文献   

4.
This study conducted meteorological simulations in northern Colombia by analyzing different planetary boundary layer (PBL) schemes available in the numerical Weather Research and Forecasting (WRF) model. The study area included three nested domains with horizontal resolutions of 18 km, 6 km, and 2 km, with 38 vertical levels. The evolution and structure of the PBL were analyzed during the driest months (March, April, and May 2016) and in regions with the highest particulate matter concentrations. Sensitivity analysis of the WRF model was performed with two local and two non-local PBL schemes. The results were validated using observations of the surface air temperature, relative humidity, and surface wind speed collected from three meteorological stations in the area. The PBL heights were experimentally determined using radiosonde data provided by a station located in the center of the study area. Variations in PBL heights were estimated using linear regression methods and minimization of statistical errors for the bulk Richardson number, as well as analysis of vertical temperature and wind profiles. The WRF model reliably reproduced the daily values and diurnal cycles of temperature, relative humidity, and wind speed within the PBL and accounted for the influence of topography and sea breezes. Horizontal heat advection dominates the upwelling of air masses when sea breezes are active. The onshore wind direction starts to change from east to northwest, implying a decay in the land breeze regime. All schemes overestimate the mixing height and tend to underestimate surface air temperature values at night. All show wetter conditions and underestimate wind speed. Although the non-local Yonsei University (YSU) scheme shows the best performance, it also shows the largest sources of errors when determining the behavior of the surface layer during stable conditions. Relative humidity and wind speed estimates provided by the local Mellor‐Yamada‐Nakanishi‐Niino (MYNN) scheme were closer to those recorded at the meteorological stations.  相似文献   

5.
An online systematic error correction is presented and examined as a technique to improve the accuracy of real-time numerical weather prediction, based on the dataset of model errors(MEs) in past intervals. Given the analyses, the ME in each interval(6 h) between two analyses can be iteratively obtained by introducing an unknown tendency term into the prediction equation, shown in Part I of this two-paper series. In this part, after analyzing the 5-year(2001–2005) GRAPESGFS(Global Forecast System of the Global and Regional Assimilation and Prediction System) error patterns and evolution,a systematic model error correction is given based on the least-squares approach by firstly using the past MEs. To test the correction, we applied the approach in GRAPES-GFS for July 2009 and January 2010. The datasets associated with the initial condition and SST used in this study were based on NCEP(National Centers for Environmental Prediction) FNL(final) data.The results indicated that the Northern Hemispheric systematically underestimated equator-to-pole geopotential gradient and westerly wind of GRAPES-GFS were largely enhanced, and the biases of temperature and wind in the tropics were strongly reduced. Therefore, the correction results in a more skillful forecast with lower mean bias and root-mean-square error and higher anomaly correlation coefficient.  相似文献   

6.
利用2016年1月1日—12月31日全球预报系统(GFS,Global Forecasting System)1~5 d的2 m气温预报资料,以及同期中国地面气象站2 m气温观测资料,研究模式地形高度偏差对地面2 m气温预报的影响。结果表明,较大模式地形高度偏差可严重影响2 m气温模式预报性能,导致较大预报误差。随着模式预报时效延长,2 m气温预报均方根误差也略有增加。比较模式地形高度偏差和预报时效对于模式预报性能的影响,发现模式地形高度偏差对于模式预报效果的影响更加显著。两种地形订正方案,即不做温度垂直订正的线性回归以及对温度进行垂直订正的线性回归都能显著减小2 m气温模式预报的误差,后者的订正效果更好。  相似文献   

7.
为降低风电场短期预报风速误差,减少风电场短期风功率偏差积分电量,提高风电场发电功率预测准确率,分季节研究了相似误差订正方法对ECMWF单台风机预报风速的订正效果.结果表明:相似误差订正后不同风机预报风速的误差差距减小;预报风速的平均绝对偏差和均方根误差明显降低,其中夏季和秋季华能义岗风电场两个指标降低幅度均超过0.1 ...  相似文献   

8.
为解决三杯风速传感器在计量检定条件下与观测场景中环境差异所导致的测量数据误差,致力于研究空气流速计量标准在量值传递过程中的真实性、准确性和一致性,为新一代三杯风速传感器作为计量器具的新产品型式评价提供思路和参考指标,依据杯式测风仪测量方法与自动气象站风速风向传感器检定规程,并在实验中加入了主体由角度编码器构成的自动化转盘系统,设计了三杯风速传感器在非水平风场内测量性能水平实验。通过调整三杯风速传感器在风洞试验段内的倾斜角度,模拟其在自然界非水平风场中的测量状态,同步采集风洞的标准指示风速、三杯风速传感器的实测风速以及其相应的倾斜角度,计算示值误差,利用方差分析、趋势分析、相关性分析和线性回归分析等统计方法,对不同倾斜角度下三杯风速传感器示值误差进行研究,得出了三杯风速传感器在风洞试验段内的示值误差与实测风速和倾斜角度之间的相关关系,提出了三杯风速传感器在非水平风场下的测量性能指标。研究了三杯风速传感器在非水平风场中实测风速与标准风速和倾斜角度的回归关系,提出了三杯风速传感器在计量环境下非水平风场中数据的量值传递修正算法。  相似文献   

9.
长波区间太阳辐射对气候模拟的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
长波区间的太阳辐射在气候模式中往往被忽略。利用国家气候中心BCC_AGCM2.0.1大气环流模式,采用矩阵算子辐射传输算法,研究了长波区间太阳辐射对气候模式辐射通量和温度模拟结果的影响。结果表明,以ISCCP和CERES辐射资料为标准,考虑长波区间太阳辐射后,长波区间晴空大气地表向下辐射通量平均误差减小2.05 W/m2,均方根误差减少1.29 W/m2;长波区间晴空大气模式顶向上辐射通量平均误差减小0.70 W/m2,均方根误差减小0.21 W/m2;长波区间有云大气地表向下辐射通量平均误差减小1.38 W/m2,均方根误差减小1.03 W/m2;长波区间有云大气模式顶向上辐射通量平均误差减小0.99 W/m2,均方根误差减小0.30 W/m2。以ECMWF再分析资料为标准,考虑长波区间太阳辐射后,赤道地区上对流层—下平流层区域温度的冷偏差得到改善,对流层顶温度平均误差减小0.27 K,均方根误差减小0.25 K。  相似文献   

10.
WAFS产品中GRIB资料中国区产品评估   总被引:1,自引:0,他引:1  
苏丽蓉  温志军 《气象科技》2005,33(4):373-377
为了给使用WAFS产品的用户提供量化参考依据,选取WAFS产品中常用区域和层次的GRIB数据,利用由国家气象中心提供的风、温客观分析网格点资料,与WAFS中同时刻的预报场产品(风、温网格点资料),用均方根误差进行数字化形式分析比较。结果表明:WAFS提供的风、温预报,通常是短时效的风、温预报比长时效的风、温预报更接近客观分析场;低层的预报比高层的预报更接近客观分析场;风的预报以v矢量的预报优于u矢量的预报;风的误差主要来源于u矢量的误差。  相似文献   

11.
Evapotranspiration is a source of water vapour to the atmosphere, and as a crucial indicator of landscape behaviour its accurate measurement has widespread implications. Here we investigate errors that are prevalent and systematic in the closed-path eddy-covariance measurement of latent heat flux: the attenuation of fluxes through dampened cospectral power at high frequencies. This process is especially pronounced during periods of high relative humidity through the adsorption and desorption of water vapour along the tube walls. These effects are additionally amplified during lower air temperature conditions. Here, we quantify the underestimation of evapotranspiration by a closed-path system by comparing its flux estimate to simultaneous and adjacent measurements from an open-path sensor. We apply models relating flux loss to relative humidity itself, to the lag time of the cross-correlation peak between the water vapour and vertical wind velocity signals, and to models of cospectral attenuation relative to the cospectral power of simultaneous sensible heat-flux measurements. We find that including the role of temperature in modifying the attenuation–humidity relationship is essential for unbiased flux correction, and that physically based cospectral attenuation methods are effective characterizers of closed-path instrument signal loss relative to the unattenuated flux value.  相似文献   

12.
气象预报是影响大气重污染预报精度的关键所在。针对2016年12月16~21日北京市一次重污染过程,开展了中尺度气象模式WRF的参数化方案配置敏感性试验。对微物理过程、长波辐射过程、短波辐射过程、陆面过程、边界层过程、近地面过程以及积云对流参数化过程进行组合优选,共设计51组参数化方案组合,分析不同模拟方案下北京市8个气象站点温度、相对湿度、10 m风速的模拟精度及其敏感性。试验结果表明:温度模拟对长波过程参数化方案最为敏感,集合离散度达2.4~7.4°C,再次是短波过程参数化方案;相对湿度模拟也对长波过程参数化方案最敏感,再次是陆面过程;风速模拟对不同过程参数化方案的敏感性程度差异不大。通过模拟结果与观测的统计对比,优选出模拟误差最小的方案组合为Lin微物理方案、RRTMG长波方案、RRTMG短波方案、Tiedtke积云对流方案、Noah陆面方案、MYNN 3rd边界层方案和MYNN近地面方案,并将其与集合平均、基准方案进行对比。对于集合平均来说,其温度模拟与观测相关系数为0.69,高于基准方案,其模拟偏差与均方根误差比基准方案低25%和11%;集合平均的相对湿度和风速模拟相比基准方案变化较小。与集合平均相比,优选方案能同时改进温度、相对湿度和风速模拟,使温度模拟偏差和均方根误差比基准方案下降35%和17%,使相对湿度模拟偏差和均方根误差下降43%和13%,使风速模拟偏差和均方根误差下降33%和24%。以上结果表明,参数化方案的敏感性试验和优选能显著减小重污染期间气象要素的模拟误差,重污染预报改进需重点关注参数化方案模拟上的不确定性。本研究也发现MYNN3rd边界层方案在这次重污染过程的气象要素模拟上具有良好性能,可为未来重污染预报改进提供参考。  相似文献   

13.
系留气艇探测风速的误差订正及其应用评估   总被引:1,自引:1,他引:0  
使用系留气艇探空系统在常州、苏州、南京市区对边界层风速、温度、湿度廓线进行了观测,原始数据表明探测结果存在明显的系统误差。本文主要讨论风速订正问题,分析发现风速误差与高度和风速有关,据此提出了依据高度和依据风速的两种订正方案。对比结果表明:两种方案都能有效修正系留气艇测量风速的系统误差,高度订正方案表现更好。本文还用订正后的系留气艇探测结果与苏州市气象局的风廓线雷达资料进行对比,结果显示风廓线雷达探测结果在500 m以下系统偏小。  相似文献   

14.
We analyzed wind profiler data collected over Ulsan airport during the period from 2008 to 2009 to examine the characteristics of low level jets (LLJs). The Ulsan airport is located within the narrow valley with north-south axis. The frequency analysis results indicates that the nearly 19% of the total nocturnal periods have the presence of jets and LLJ occurrence rate is high in winter (32%) and low in summer (10%). The mode in the wind speed histogram is 4?C6 m s?1. A majority of jet occurs below 100 m (about 77.8 m) above ground. The predominant wind direction of jet is northerly. In order to examine the favorable conditions for LLJ formation of Ulsan airport, we investigated temperature difference between valley and plain at the surface and synoptic wind direction and speed at 850 hPa. Our results show that air temperature in the valley is lower than over the plain during the nighttime, indicating the existence of thermal forcing for along-valley wind. Under a significant temperature difference along the valley, westerly wind speed at 850 hPa is slightly weaker on LLJs event night than no event night, indicating weaker north-south large-scale pressure gradient on LLJ event night. The magnitude of northerly wind at 850 hPa is much stronger on event night than no event night, implying higher downward transfer of northerly wind on event night. Our findings suggest that jet formation over Ulsan airport is related to the strong northerly wind at 850 hPa in the presence of thermal forcing due to temperature contrast between valley and plain.  相似文献   

15.
Esmaiel Malek   《Atmospheric Research》2008,88(3-4):367-380
An automated-ventilated radiation station has been set up in a mountainous valley at the Logan Airport in northern Utah, USA, since mid-1995, to evaluate the daily and annual radiation budget components, and develop an algorithm to study cloudiness and its contribution to the daily and annual radiation. This radiation station (composed of pyranometers, pyrgeometers and a net radiometer) provides continuous measurements of downward and upward shortwave, longwave and net radiation throughout the year. The surface temperature and pressure, the 2-m air temperature and humidity, precipitation, and wind at this station were also measured. A heated rain gauge provided precipitation information. Using air temperature and moisture and measured downward longwave (atmospheric) radiation, appropriate formula (among four approaches) was chosen for computation of cloudless-skies atmospheric emissivity. Considering the additional longwave radiation during the cloudy skies coming from the cloud in the waveband which the gaseous emission lacks (from 8–13 μm), an algorithm was developed which provides continuous 20-min cloud information (cloud base height, cloud base temperature, percent of skies covered by cloud, and cloud contribution to the radiation budget) over the area during day and night. On the partly-cloudy day of 3 February, 2003, for instance, cloud contributed 1.34 MJ m− 2 d− 1 out of 26.92 MJ m− 2 d− 1 to the daily atmospheric radiation. On the overcast day of 18 December, 2003, this contribution was 5.77 MJ m− 2 d− 1 out of 29.38 MJ m− 2 d− 1. The same contribution for the year 2003 amounted to 402.85 MJ m− 2 y− 1 out of 9976.08 MJ m− 2 y− 1. Observations (fog which yielded a zero cloud base height and satellite cloud imaging data) throughout the year confirmed the validity of the computed data. The nearby Bowen ratio station provided the downward radiation and net radiation data. If necessary, these data could be substituted for the missing data at the radiation station. While the automated surface observing systems (ASOS) ceilometer at the Logan airport provides only the overhead cloud information, the proposed algorithm provides this information over the valley. The proposed algorithm is a promising approach for evaluation of the cloud base temperature, cloud base height, percent of skies covered by cloud, and cloud contribution to the daily and annual radiation budget at local and regional scales.  相似文献   

16.
海面风速对航运及海上生产作业影响重大,但数值模式对于海面的风速预报仍存在较大误差.为降低数值模式海面10 m风速预报的系统性误差,提高海上大风预报准确率,基于2017-2019年中国气象局地面气象观测资料对ECMWF确定性模式的10 m风场预报结果进行检验评估,并采用概率密度匹配方法对模式误差进行订正.分析结果表明,概...  相似文献   

17.
Low-level climatological wind fields over the La Plata River region of South America are synthesized with a dry, hydrostatic mesoscale boundary-layer numerical model. The model is forced at the upper boundary with the 1200 UTC local radiosonde observations and at the lower boundary with a land-river differential heating function defined from the daily meteorological observations of the region. The climatological wind field is defined as the mean value of a series of individual daily forecasts, employing two methods. The simplified method considers a 192-member ensemble (16 wind directions and 12 wind-speed classes at the upper boundary). Each member has a probability of occurrence that is determined from the 1959–1984 observations; the daily method uses a total of 3,248 days with available data during the same period. In both methods each realization is a daily forecast from which the mean wind distributions at 0300, 0900, 1500 and 2100 local standard time are calculated and compared to the observations of five meteorological stations in the region. The validation of the climatological wind fields for both methods is evaluated by means of the root-mean-square error of the wind-direction frequency distribution and mean wind speed by wind sector. The results obtained with the two methods are similar, and the errors in wind speed are always smaller than those in wind direction. The combined errors of wind direction and wind speed show that the ensemble method is outperformed by the daily method, on average by meteorological station in only one out of five of them, and on average by the time of the day in only one out of 4 h. The conclusion of the study is that the ensemble method is an appropriate methodology for determining high resolution, low-level climatological wind fields, with the boundary-layer model applied to a region with a strong diurnal cycle of surface thermal contrast. The proposed methodology is of particular utility for synthesizing wind fields over regions with limited meteorological observations, since the 192-member matrix can be easily defined with few observing points, as well as in the case of relatively incomplete records.  相似文献   

18.
Observations of wind speed and direction, air and sea temperatures and solar radiation were obtained from an array of buoys in JASIN-1978 conducted in the area northwest of Scotland in the summer of 1978. The observations were analyzed to show spatial and temporal variability in the mesoscale fields. Spectra of wind speed and air and sea temperatures were computed to illustrate the distribution of variance over periods ranging from 3.5 min to 40 days. When plotted on log-log graphs, the spectral estimates generally decreased with slopes between –3/2 and –2 with increasing frequency. Spectra of air and sea temperatures had a peak at the diurnal period but not the wind speed spectrum. When plotted in variance-preserving form, the spectrum of wind speed was consistent with a spectral gap and was qualitatively similar to other observations of low-frequency spectra. On the basis of auto- and cross-correlation analyses, it appeared that mesoscale eddies propagated through the array of buoys with the mean wind speed except during times of frontal passages. The cross-correlation between wind speed and air temperature showed evidence of horizontal roll vortices or some other forms of organized convection.  相似文献   

19.
A modified infrared CO2 gas analyzer, a small thermocouple assembly, a heated-thermocouple anemometer for horizontal wind, and a propeller-type vertical wind sensor were used to measure the eddy fluxes of heat and CO2 above a corn crop. Experimental results of these fluxes are discussed. The main sources of errors of the eddy fluxes using these instruments were estimated:
  1. Sensors with a time constant of 0.5 s appear to be fast enough to detect most of the vertical CO2 transfer as long as the sensors are located at least one meter above the crop surface.
  2. The deviation from steady-state conditions for 10-min periods was found to have a significant effect on the eddy flux estimates.
  3. Temperature fluctuations of the air sample passing through the CO2 infrared gas analyzer were found to be non-negligible but could be easily corrected.
  4. A 1° misalignment of the vertical anemometer affected these eddy fluxes by less than 10% under all circumstances studied.
  相似文献   

20.
If no correction is performed, the inertia of the sensors for temperature and humidity in research aircraft leads to an error in the calculation of turbulent fluxes. Simple considerations give an estimation of the order of magnitude of these errors. A simple method for the in-situ estimation of temperature sensor inertia is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号