首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Information related to rainfall erosivity in the Andes is scarce. This study was carried out to determine the characteristics of rainfall events at the La Encañada watershed, northern Peru, using daily rainfall data from the 1995 to 2000 period that included all the El Niño and Southern Oscillation (ENSO) phases. Three weather stations were installed within the study area, at the top, middle and bottom of the watershed. We analysed the total amount, duration, intensity, kinetic energy and probability of return of rainfall events. In general, 80% of the rainfall events at watershed level had an average rainfall intensity lower than 2.5 mm h?1 and only 4% had an average intensity larger than 7.5 mm h?1. Rainfall erosivity registered at the bottom of the watershed was slightly higher than in the rest of the area. The highest intensities were observed during an El Niño year whereas a La Niña year was characterized by the highest amount of total rainfall compared to the other ENSO phases and by the low intensity rain events. Simulations using the WEPP model estimated higher sediment yield and runoff for the bottom of the watershed during a La Niña year versus El Niño or Neutral years. Even when the analysed rainfall data was too limited to conclude erosion and runoff during any ENSO phase, the simulated results showed us the trend of the behaviour of rainfall erosivity under the ENSO phases at different locations.  相似文献   

2.
This work aims, as a first step, to analyze rainfall variability in Northern Algeria, in particular extreme events, during the period from 1940 to 2010. Analysis of annual rainfall shows that stations in the northwest record a significant decrease in rainfall since the 1970s. Frequencies of rainy days for each percentile (5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th) and each rainfall interval class (1–5, 5–10, 10–20, 20–50, and ≥50 mm) do not show a significant change in the evolution of daily rainfall. The Tenes station is the only one to show a significant decrease in the frequency of rainy days up to the 75th percentile and for the 10–20-mm interval class. There is no significant change in the temporal evolution of extreme events in the 90th, 95th, and 99th percentiles. The relationships between rainfall variability and general atmospheric circulation indices for interannual and extreme event variability are moderately influenced by the El Niño-Southern Oscillation and Mediterranean Oscillation. Significant correlations are observed between the Southern Oscillation Index and annual rainfall in the northwestern part of the study area, which is likely linked with the decrease in rainfall in this region. Seasonal rainfall in Northern Algeria is affected by the Mediterranean Oscillation and North Atlantic Oscillation in the west. The ENSEMBLES regional climate models (RCMs) are assessed using the bias method to test their ability to reproduce rainfall variability at different time scales. The Centre National de Recherches Météorologiques (CNRM), Czech Hydrometeorological Institute (CHMI), Eidgenössische Technische Hochschule Zürich (ETHZ), and Forschungszentrum Geesthacht (GKSS) models yield the least biased results.  相似文献   

3.
The El Niño Southern Oscillation plays a key role in modulating interannual rainfall variability in Mexico. While El Niño events are linked to drought in Mexico, uncertainty exists about the spatial pattern and causal mechanisms behind El Niño-induced drought. We use lead/lag correlation analysis of rainfall station data to identify the spatial pattern of drought associated with the summer before, and the spring following, the peak of warm SST anomalies in the eastern equatorial Pacific. We also use atmospheric fields from the North American Regional Reanalysis to calculate the anomalous moisture budget and diagnose the mechanisms associated with El Niño-induced drought in Mexico. We find that reduced rainfall occurs in Mexico in both the summer before and the spring after a peak El Niño event, especially in regions of climatologically strong convection. The teleconnection in the developing phase of El Niño is primarily driven by changes in subsidence resulting from anomalous convection in the equatorial Pacific. The causes of drought during the decaying phase of El Niño events are varied: in some years, descent anomalies dominate other moisture budget terms, while in other years, drying of the boundary layer on the Mexican plateau is important. We suggest that the latter may result from the interaction of weakened southeasterly winds in the Intra-Americas Sea with high topography along the Atlantic coast of Mexico. Weakened winds are likely driven by a reduced sea level pressure gradient between the Atlantic and the Pacific. Changes in easterly wave activity may contribute to drought in the developing phase of El Niño, but may be less important in the decaying phase of El Niño.  相似文献   

4.

This study involves the modelling of a homogeneous hidden Markov model (HMM) on the northeast rainfall monsoon using 40 rainfall stations in Peninsular Malaysia for the period of 1975 to 2008. A six hidden states HMM was selected based on Bayesian information criterion (BIC), and every hidden state has distinct rainfall characteristics. Three of the states were found to correspond by wet conditions; while the remaining three states were found to correspond to dry conditions. The six hidden states were found to correspond with the associated atmospheric composites. The relationships between El Niño–Southern Oscillation (ENSO) and the sea surface temperatures (SST) in the Pacific Ocean are found regarding interannual variability. The wet (dry) states were found to be well correlated with a Niño 3.4 index which was used to characterize the intensity of an ENSO event. This model is able to assess the behaviour of the rainfall characteristics with the large scale atmospheric circulation; the monsoon rainfall is well correlated with the El Niño–Southern Oscillation in Peninsular Malaysia.

  相似文献   

5.
At times when attention on climate issues is strongly focused on the assessment of potential impacts of future climate change due to the intensification of the planetary greenhouse effect, it is perhaps pertinent to look back and explore the consequences of past climate variability. In this article we examine a large disruption in global climate that occurred during 1877–1878, when human influence was negligible. The mechanisms explaining this global disturbance are not well established, but there is considerable evidence that the major El Niño episode that started by the end of 1876 and peaked during the 1877–1878 boreal winter contributed significantly to it. The associated regional climate anomalies were extremely destructive, particularly in the Northern Hemisphere, where starvation due to intense droughts in Asia, South-East Asia and Africa took the lives of more than 20 million people. In South America regional precipitation anomalies were typical of El Niño events, with rainfall deficit and droughts in the northern portion of the continent as well as in northeast Brazil and the highlands of the central Andes (Altiplano). In contrast, anomalously intense rainfall and flooding episodes were reported for the coastal areas of southern Ecuador and Northern Perú, as well as along the extratropical West coast of the continent (central Chile, 30° S–40° S), and in the Paraná basin in the southeast region. By far the most devastating impacts in terms of suffering and loss of life occurred in the semiarid region of northeast Brazil where several hundreds of thousands of people died from starvation and diseases during the drought that started in 1877.  相似文献   

6.
The relative impacts of Indian and Pacific Ocean processes on Tanzanian rainfall was evaluated using composite and correlation analyses. It was found that the seasonal responses of rainfall to positive Indian Ocean Dipole (pIOD) and El Niño events are substantial from September–October–November (SON) to December–January–February (DJF), whereas the Indian Ocean Dipole (IOD) exerts more control than El Niño–Southern Oscillation (ENSO) in both seasons. The associated relationship with the sea surface temperature (SST) and large-scale atmospheric circulations revealed distinct features. For the pure pIOD years, there is above-normal rainfall over the entire country. A strong rainfall condition is evident over the Lake Victoria basin and coastal and northeastern highland parts of the country during SON, while areas of the central and southern highlands exhibit substantial rains during DJF. For the pure El-Niño events, Tanzania has suffered from insignificant, weak, and non-coherent rainfall conditions during SON. However, a contrasting insignificant rainfall signature is found between the northern and southern parts of the country during the subsequent DJF season. For the co-occurrence of pIOD and El Niño, significant, excessive rainfall conditions are restricted to over the northern coast and northeastern areas of the country during SON, consistent with the rainfall pattern for pIOD. A weak, positive rainfall condition is observed over the entire country in the following season of DJF. Generally, in terms of Tanzanian rainfall, the IOD/ENSO variability and the associated impacts can be explained by the anomalous SST and circulation anomalies.  相似文献   

7.
The Benguela Current Ecosystem of Southern Africa is the strongest wind-driven coastal upwelling system known. This is one of the most productive ocean areas in the world, extremely rich in fishery resources with a total catch in excess of one million tons per annum. Marine life off the coast relies heavily on the nutrient-rich upwellings of the cold Benguela current. Warming events occur along this coast in association with many El Niños. These tremendously disrupt the coastal ecosystem, reducing productivity and devastating the anchovy and sardine fisheries. This article demonstrates for the first time the existence of a low-level atmospheric jet along the Benguela Coast of the southeastern Atlantic. Blowing parallel to the coast, this jet drives the coastal upwelling system and is part of a mechanism that links Pacific El Niño events to Southern Africa. The existence of such a jet has tremendous implications for the Benguela current and its response to climatic variability and change because a positive feedback exists between the intensity of this jet and the intensity of coastal upwelling. This may enhance the response of the Benguela Current Ecosystem to climatic variability, making it particularly susceptible to the impacts of global climate change.  相似文献   

8.
The spatio-temporal variations of eastern China spring rainfall are identified via empirical orthogonal function (EOF) analysis of rain-gauge (gridded) precipitation datasets for the period 1958–2013 (1920–2013). The interannual variations of the first two leading EOF modes are linked with the El Niño–Southern Oscillation (ENSO), with this linkage being modulated by the Pacific Decadal Oscillation (PDO). The EOF1 mode, characterized by predominant rainfall anomalies from the Yangtze River to North China (YNC), is more likely associated with out-of-phase PDO–ENSO events [i.e., El Niño during cold PDO (EN_CPDO) and La Niña during warm PDO (LN_WPDO)]. The sea surface temperature anomaly (SSTA) distributions of EN_CPDO (LN_WPDO) events induce a significant anomalous anticyclone (cyclone) over the western North Pacific stretching northward to the Korean Peninsula and southern Japan, resulting in anomalous southwesterlies (northeasterlies) prevailing over eastern China and above-normal (below-normal) rainfall over YNC. In contrast, EOF2 exhibits a dipole pattern with predominantly positive rainfall anomalies over southern China along with negative anomalies over YNC, which is more likely connected to in-phase PDO–ENSO events [i.e., El Niño during warm PDO (EN_WPDO) and La Niña during cold PDO (LN_CPDO)]. EN_WPDO (LN_CPDO) events force a southwest–northeast oriented dipole-like circulation pattern leading to significant anomalous southwesterlies (northeasterlies) and above-normal (below-normal) rainfall over southern China. Numerical experiments with the CAM5 model forced by the SSTA patterns of EN_WPDO and EN_CPDO events reproduce reasonably well the corresponding anomalous atmospheric circulation patterns and spring rainfall modes over eastern China, validating the related mechanisms.  相似文献   

9.
Being triggered by different physical processes, the eastern Pacific (EP) and central Pacific (CP) El Niño events have several different teleconnection features around the globe. Using the ERA-Interim re-analysis monthly data during the period 1980–2016, the El Niño-Southern Oscillation (ENSO) teleconnections on the global scale and their statistical significance are investigated, with an emphasis on the contrasting features of the EP and CP El Niño events. With some exceptions, the EP El Niño and La Niña have generally similar teleconnection patterns with the reversed sign, while in some parts of the globe different and occasionally contrasting teleconnections of the EP and CP El Niño events are identified. Compared to the CP El Niño, more regions of the world are influenced by the statistically significant positive surface pressure anomalies during the EP El Niño, particularly over the Indian Ocean, tropical Atlantic and Northern Africa. It is found that the mid-tropospheric geopotential height anomalies across the globe are significantly different during the EP and CP El Niño events. Associated with different surface pressure and mid-tropospheric geopotential height anomalies, precipitation anomalies in many regions of the world are found different during the EP and CP El Niño events, particularly over the tropical Pacific, central to eastern equatorial Atlantic and the eastern Sahara. While central and eastern equatorial Atlantic experience statistically significant negative (positive) rainfall anomalies during the EP El Niño (La Niña), the CP El Niño does not have a strong influence on the amount of annual rainfall over the equatorial Atlantic. For the first time, statistically significant anomalously dry conditions are found over some parts of the Middle East and Southwest Asia during La Niña, and over the eastern Sahara during the EP El Niño.  相似文献   

10.
Multi-scale interactions between El Niño–Southern Oscillation and the Boreal Winter Monsoon contribute to rainfall variations over Malaysia. Understanding the physical mechanisms that control these spatial variations in local rainfall is crucial for improving weather and climate prediction and related risk management. Analysis using station observations and European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) reanalysis reveals a significant decrease in rainfall during El Niño (EL) and corresponding increase during La Niña particularly north of 2°N over Peninsular Malaysia (PM). It is noted that the southern tip of PM shows a small increase in rainfall during El Niño although not significant. Analysis of the diurnal cycle of rainfall and winds indicates that there are no significant changes in morning and evening rainfall over PM that could explain the north–south disparity. Thus, we suggest that the key factor which might explain the north–south rainfall disparity is the moisture flux convergence (MFC). During the December to January (DJF) period of EL years, except for the southern tip of PM, significant negative MFC causes drying as well as suppression of uplift over most areas. In addition, lower specific humidity combined with moisture flux divergence results in less moisture over PM. Thus, over the areas north of 2°N, less rainfall (less heavy rain days) with smaller diurnal rainfall amplitude explains the negative rainfall anomaly observed during DJF of EL. The same MFC argument might explain the dipolar pattern over other areas such as Borneo if further analysis is performed.  相似文献   

11.
El Niño–Southern Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Niña events on the EAWM is not a mirror image of that of El Niño events. Although the EAWM becomes generally weaker during El Niño events and stronger during La Niña winters, the enhanced precipitation over the southeastern China and warmer surface air temperature along the East Asian coastline during El Niño years are more significant. These asymmetric effects are caused by the asymmetric longitudinal positions of the western North Pacific (WNP) anticyclone during El Niño events and the WNP cyclone during La Niña events; specifically, the center of the WNP cyclone during La Niña events is westward-shifted relative to its El Niño counterpart. This central-position shift results from the longitudinal shift of remote El Niño and La Niña anomalous heating, and asymmetry in the amplitude of local sea surface temperature anomalies over the WNP. However, such asymmetric effects of ENSO on the EAWM are barely reproduced by the atmospheric models of Phase 5 of the Coupled Model Intercomparison Project (CMIP5), although the spatial patterns of anomalous circulations are reasonably reproduced. The major limitation of the CMIP5 models is an overestimation of the anomalous WNP anticyclone/cyclone, which leads to stronger EAWM rainfall responses. The overestimated latent heat flux anomalies near the South China Sea and the northern WNP might be a key factor behind the overestimated anomalous circulations.  相似文献   

12.
Thirty years of daily rainfall data are analysed for the South Coast region of South Africa, a region which experiences substantial rainfall variability and frequent severe drought and flood events, but whose climate variability has not been much researched. It is found that El Niño–Southern Oscillation (ENSO) exerts an influence since most wet years correspond to mature phase La Niña years. ENSO also influences South Coast rainfall via increases in the number of cut-off lows in southern South Africa during mature phase La Niña years. A statistically significant correlation between the Niño 3.4 index and monthly rainfall totals, and between this index and the frequency of wet days, exists for two summer months and also for June. There are also changes in the heavy rainfall day frequencies from one decade to another. Examination of NCEP re-analyses indicates that wet (dry) years result from an equatorward (poleward) shift in the subtropical jet, cyclonic (anticyclonic) pressure anomalies over the South Atlantic and South Africa, and increased (decreased) density of mid-latitude cyclonic systems.  相似文献   

13.
黄平  黄荣辉 《大气科学》2009,33(1):1-15
利用合成分析方法, 分析了1971~2003年间7个El Niño事件发生时南、北半球大气环流异常的对称与反对称特性。分析结果表明, El Niño事件发生期间, 在热带地区15°S~15°N大气环流异常以对称性为主, 但也有一定的反对称分量: 高度场异常和纬向风异常的对称性较强, 而经向风异常的反对称较强; 同时在El Niño事件演变的各阶段, 高度场异常和纬向风异常的变化较明显, 而经向风的变化较小, 高度场和风场异常在低层 (700 hPa) 和高层 (200 hPa) 呈明显的反位相分布。并且, 为探讨El Niño事件对南、北半球大气环流异常的非对称性影响的机理, 本研究进一步利用ERA-40逐日资料, 应用Hough函数分析了El Niño事件发生期间这些赤道波动的演变特征。结果表明, El Niño事件发生期间, 热带地区大气环流异常对称性较强的主要原因是对称性Rossby波异常较强, 而Rossby重力混合波异常对经向风场的反对称分量有重要作用; 并且, 研究结果还表明, 在El Niño事件发生期间, 热带东太平洋的海温正异常能够激发由对称性Rossby波和Kelvin波组成的Gill型环流异常。此外, 分析表明Hough函数在分析热带大气波动的对称性及反对称性上具有明显的优越性。  相似文献   

14.
Reconstructions of past climate are important for providing a historical context for evaluating the nature of 20th century climate change. Here, a number of percentile-based palaeoclimate reconstructions were used to isolate signals of both phases of El Niño–Southern Oscillation (ENSO). A total of 92 (82) El Niño (La Niña) events were reconstructed since A.D. 1525. Significantly, we introduce the most comprehensive La Niña event record compiled to date. This annual record of ENSO events can now be used for independent verification of climate model simulations, reconstructions of ENSO indices and as a chronological control for archaeologists/social scientists interested in human responses to past climate events. Although extreme ENSO events are seen throughout the 478-year ENSO reconstruction, approximately 43% of extreme and 28% of all protracted ENSO events (i.e. both El Niño and La Niña phase) occur in the 20th century. The post-1940 period alone accounts for 30% of extreme ENSO years observed since A.D. 1525. These results suggest that ENSO may operate differently under natural (pre-industrial) and anthropogenic background states. As evidence of stresses on water supply, agriculture and natural ecosystems caused by climate change strengthens, studies into how ENSO will operate under global warming should be a global research priority.  相似文献   

15.
An observational study covering the period 1950–2002 examines a seasonal reversal in the ENSO rainfall signal in the north-central Philippines. In boreal Summer of El Niño (La Niña) events, above (below) average rainfall typically occurs in this area. Rainfall anomalies of opposite sign develop across the country in the subsequent fall. This study investigates the seasonal evolution of the anomalous atmospheric circulation over the western North Pacific (WNP) during both El Niño and La Niña and places these features in the context of the large-scale evolution of ENSO events, including an analysis of changes in tropical cyclone activity affecting the Philippines. The results show that during boreal summer of El Niño (La Niña) events, a relatively narrow, zonally elongated band of enhanced (reduced) low-level westerlies develops across the WNP which serves to increase (decrease) the summer monsoon flow and moisture flux over the north-central Philippines and is associated with an increase (decrease) in the strength of the WNP monsoon trough via the anomalous relative vorticity. Tropical cyclone activity is shown to be enhanced (reduced) in the study region during boreal summer of El Niño (La Niña) events, which is related to the increase (decrease) of mid-level atmospheric moisture, as diagnosed using a genesis potential index. The subsequent evolution shows development of an anomalous anticyclone (cyclone) over the WNP in El Niño (La Niña) and the well-known tendency for below (above) average rainfall in the fall. Prolonged ENSO events also exhibit seasonal rainfall sign reversals in the Philippines with a similar evolution in atmospheric circulation.  相似文献   

16.
Austral summer rainfall over the period 1991/1992 to 2010/2011 was dynamically downscaled by the weather research and forecasting (WRF) model at 9 km resolution for South Africa. Lateral boundary conditions for WRF were provided from the European Centre for medium-range weather (ECMWF) reanalysis (ERA) interim data. The model biases for the rainfall were evaluated over the South Africa as a whole and its nine provinces separately by employing three different convective parameterization schemes, namely the (1) Kain–Fritsch (KF), (2) Betts–Miller–Janjic (BMJ) and (3) Grell–Devenyi ensemble (GDE) schemes. All three schemes have generated positive rainfall biases over South Africa, with the KF scheme producing the largest biases and mean absolute errors. Only the BMJ scheme could reproduce the intensity of rainfall anomalies, and also exhibited the highest correlation with observed interannual summer rainfall variability. In the KF scheme, a significantly high amount of moisture was transported from the tropics into South Africa. The vertical thermodynamic profiles show that the KF scheme has caused low level moisture convergence, due to the highly unstable atmosphere, and hence contributed to the widespread positive biases of rainfall. The negative bias in moisture, along with a stable atmosphere and negative biases of vertical velocity simulated by the GDE scheme resulted in negative rainfall biases, especially over the Limpopo Province. In terms of rain rate, the KF scheme generated the lowest number of low rain rates and the maximum number of moderate to high rain rates associated with more convective unstable environment. KF and GDE schemes overestimated the convective rain and underestimated the stratiform rain. However, the simulated convective and stratiform rain with BMJ scheme is in more agreement with the observations. This study also documents the performance of regional model in downscaling the large scale climate mode such as El Niño Southern Oscillation (ENSO) and subtropical dipole modes. The correlations between the simulated area averaged rainfalls over South Africa and Nino3.4 index were ?0.66, ?0.69 and ?0.49 with KF, BMJ and GDE scheme respectively as compared to the observed correlation of ?0.57. The model could reproduce the observed ENSO-South Africa rainfall relationship and could successfully simulate three wet (dry) years that are associated with La Niña (El Niño) and the BMJ scheme is closest to the observed variability. Also, the model showed good skill in simulating the excess rainfall over South Africa that is associated with positive subtropical Indian Ocean Dipole for the DJF season 2005/2006.  相似文献   

17.
Abstract

The impact of the two phases of El Niño‐Southern Oscillation (ENSO), namely El Niño and La Niña, on the surface and lower tropospheric temperature fields over Canada is documented. Gridded surface temperature data for 91 years (1900–1990) and 500–1000 hPa thickness data for 49 years (1946–1994) have been analyzed statistically in the context of El Niño, La Niña and normal years.

Using a composite analysis, the present study conclusively demonstrates that significant positive surface temperature anomalies spread eastward from the west coast of Canada to the Labrador coast from the late fall to early spring (November through May) following the onset of El Niño episodes. The accompanying temperatures in the lower troposphere show a transition from the Pacific/North American (PNA) pattern to the Tropical/Northern Hemisphere (TNH) pattern over the North American sector during the same period. Conversely, significant negative surface temperature anomalies spread southeastward from the Yukon and extend into the upper Great Lakes region by the winter season following the onset of La Niña episodes. Furthermore, the lower tropospheric temperatures show a negatively‐phased PNA‐like pattern in early winter which weakens considerably by May of the following year. Thus, while western Canadian surface temperatures are influenced during both phases of ENSO, eastern Canadian surface temperature effects are found during the El Niño phase only. The impact of ENSO on the Canadian surface temperatures is the strongest during the winter season and nearly disappears by spring (April and May). The largest positive (negative) anomalies are found to be centred over two separate regions, one over the Yukon and the other just west of Hudson Bay in the El Niño (La Niña) years. Over western Canada, mean wintertime temperature distribution of the El Niño (La Niña) years is found to be shifted towards warmer (colder) values relative to the distribution of the normal years.

This study suggests the possibility of developing a long‐range forecasting technique for Canada using ENSO related indices.  相似文献   

18.
Many point indices have been developed to describe El Niño/Southern Oscillation, but the multivariate El Niño Southern Oscillation (ENSO) index (MEI) is considered the most representative since it links six different meteorological parameters measured over the tropical Pacific. Spectral analysis with appropriate data reduction techniques of monthly values of MEI (1950–2008) has allowed the identification of a large 60-month cycle, statistically confident at a level larger than 99%. The highest values of MEI (typical of El Niño events) and the lowest values of MEI (typical of La Niña events) are concordant with respective maxima and minima values of the identified 60-month cycle.  相似文献   

19.
La Niña conditions during boreal winter sometimes brings excessive snowfall in Japan, especially on the East Sea/Sea of Japan coastal and mountain areas through intensified northwesterly cold winds caused by La-Niña related atmospheric teleconnection. Meanwhile, snowfall events also increase in the Pacific coast area of Japan during the El Niño state due to extratropical cyclones passing along the south coast of Japan (hereafter referred to as South-coast cyclone). In the present study, we investigated year-to-year snowfall/rainfall variations based on meteorological station data and cyclone tracks identified by using the Japanese 55-year Reanalysis. The result clearly indicates increase of the South-coast cyclone during El Niño-developing winters, which is consistent with excessive snow-fall in the northern part of the Pacific coast. Strong subtropical jet hampers cyclogenesis due to less vertical interaction through the trapping of upper-level eddies. During El Niño-developing winters, the subtropical jet is weakened over East Asia, indicating dynamic linkage to increased cyclone frequency. In addition to this, both the deepening of the upper-tropospheric trough over East Asia and anomalous low-tropospheric northwest anticyclones extending from the Philippines toward Japan are also consistent with the enhancement of cyclogenesis over the East China Sea as well as warm winter in Japan.  相似文献   

20.
Using both observational and reanalysis data, evolution processes of a regional climate phenomenon off Western Australia named recently “Ningaloo Niño (Niña)” are studied in detail. It is also shown that the Ningaloo Niño (Niña) has significant impacts on the precipitation over Australia. The Ningaloo Niño (Niña), which is associated with positive (negative) sea surface temperature (SST) anomalies and atmospheric anomalies off the western coast of Australia, peaks during austral summer and is classified into two types based on the difference in the evolution process. The first type called a locally amplified mode develops through an intrinsic unstable air–sea interaction off the western coast of Australia; an anomalous cyclone (anticyclone) generated by positive (negative) SST anomalies forces northerly (southerly) alongshore wind anomalies, which induce coastal downwelling (upwelling) anomalies, and enhance the positive (negative) SST anomalies further. The second type called a non-locally amplified mode is associated with coastally trapped waves originating in either the western tropical Pacific, mostly related to El Niño/Southern Oscillation, or the northern coast of Australia. Positive (negative) SST anomalies in both modes are associated with an anomalous low (high) off the western coast of Australia. The sea level pressure (SLP) anomalies in the locally amplified mode are regionally confined with a cell-like pattern and produce a sharp offshore pressure gradient along the western coast of Australia, whereas those in the non-locally amplified mode tend to show a zonally elongated pattern. The difference is found to be related to conditions of the continental SLP modulated by the Australian summer monsoon and/or the Southern Annular Mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号