首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
切变基本纬向流中非线性赤道Rossby长波   总被引:5,自引:1,他引:4  
为了解决观测和理论研究中的一些问题以及更好地了解热带大气动力学 ,有必要进一步研究基本气流的变化对大气中赤道Rossby波动的影响 .本文研究分析基本气流对赤道Rossby长波的影响 ,利用一个简单赤道 β平面浅水模式和摄动法 ,研究纬向基本气流切变中非线性赤道Rossby波 ,推导出在切变基本纬向流中赤道Rossby长波振幅演变所满足的非线性KdV方程并得到其孤立波解 .分析表明 ,孤立波存在的必要条件是基本气流有切变 ,而且基流切变不能太强 ,否则将产生正压不稳定 .  相似文献   

2.
Abstract

The stratification profile of the Earth's magnetofluid outer core is unknown, but there have been suggestions that its upper part may be stably stratified. Braginsky (1984) suggested that the magnetic analog of Rossby (planetary) waves in this stable layer (the ‘H’ layer) may be responsible for a portion of the short-period secular variation. In this study, we adopt a thin shell model to examine the dynamics of the H layer. The stable stratification justifies the thin-layer approximations, which greatly simplify the analysis. The governing equations are then the Laplace's tidal equations modified by the Lorentz force terms, and the magnetic induction equation. We linearize the Lorentz force in the Laplace's tidal equations and the advection term in the magnetic induction equation, assuming a zeroth order dipole field as representative of the magnetic field near the insulating core-mantle boundary. An analytical β-plane solution shows that a magnetic field can release the equatorial trapping that non-magnetic Rossby waves exhibit. A numerical solution to the full spherical equations confirms that a sufficiently strong magnetic field can break the equatorial waveguide. Both solutions are highly dissipative, which is a consequence of our necessary neglect of the induction term in comparison with the advection and diffusion terms in the magnetic induction equation in the thin-layer limit. However, were one to relax the thin-layer approximations and allow a radial dependence of the solutions, one would find magnetic Rossby waves less damped (through the inclusion of the induction term). For the magnetic field strength appropriate for the H layer, the real parts of the eigenfrequencies do not change appreciably from their non-magnetic values. We estimate a phase velocity of the lowest modes that is rather rapid compared with the core fluid speed typically presumed from the secular variation.  相似文献   

3.
Based on the well established importance of long, non-dispersive baroclinic Kelvin and Rossby waves, a resonance of tropical planetary waves is demonstrated. Three main basin modes are highlighted through joint wavelet analyses of sea surface height (SSH) and surface current velocity (SCV), scale-averaged over relevant bands to address the co-variability of variables: (1) a 1-year period quasi-stationary wave (QSW) formed from gravest mode baroclinic planetary waves which consists of a northern, an equatorial and a southern antinode, and a major node off the South American coast that straddles the north equatorial current (NEC) and the north equatorial counter current (NECC), (2) a half-a-year period harmonic, (3) an 8-year sub-harmonic. Contrary to what is commonly accepted, the 1-year period QSW is not composed of wind-generated Kelvin and Rossby beams but results from the excitation of a tuned basin mode. Trade winds sustain a free tropical basin mode, the natural frequency of which is tuned to synchronize the excitation and the ridge of the QSWs. The functioning of the 1-year period basin mode is confirmed by solving the momentum equations, expanding in terms of Fourier series both the coefficients and the forcing terms. The terms of Fourier series have singularities, highlighting resonances and the relation between the resonance frequency and the wavenumbers. This ill-posed problem is regularized by considering Rayleigh friction. The waves are supposed to be semi-infinite, i.e. they do not reflect at the western and eastern boundaries of the basin, which would assume the waves vanish at these boundaries. At the western boundary the equatorial Rossby wave is deflected towards the northern antinode while forming the NECC that induces a positive Doppler-shifted wavenumber. At the eastern boundary, the Kelvin wave splits into coastal Kelvin waves that flow mainly southward to leave the Gulf of Guinea. In turn, off-tropical waves extend as an equatorially trapped Kelvin wave, being deflected off the western boundary. The succession of warm and cold waters transferred by baroclinic waves during a cycle leaves the tropical ocean by radiation and contributes to western boundary currents. The main manifestation of the basin modes concerns the variability of the NECC, of the branch of the South Equatorial Current (SEC) along the equator, of the western boundary currents as well as the formation of remote resonances, as will be presented in a future work. Remote resonances occur at midlatitudes, the role of which is suspected of being crucial in the functioning of subtropical gyres and in climate variability.  相似文献   

4.
The tropical Indian Ocean circulation system includes the equatorial and near-equatorial circulations, the marginal sea circulation, and eddies. The dynamic processes of these circulation systems show significant multi-scale variability associated with the Indian Monsoon and the Indian Ocean dipole. This paper summarizes the research progress over recent years on the tropical Indian Ocean circulation system based on the large-scale hydrological observations and numerical simulations by the South China Sea Institute of Oceanology(SCSIO), Chinese Academy of Sciences. Results show that:(1) the wind-driven Kelvin and Rossby waves and eastern boundary-reflected Rossby waves regulate the formation and evolution of the Equatorial Undercurrent and the Equatorial Intermediate Current;(2) the equatorial wind-driven dynamics are the main factor controlling the inter-annual variability of the thermocline in the eastern Indian Ocean upwelling;(3) the equatorial waves transport large amounts of energy into the Bay of Bengal in forms of coastal Kelvin and reflected free Rossby waves. Several unresolved issues within the tropical Indian Ocean are discussed:(i) the potential effects of the momentum balance and the basin resonance on the variability of the equatorial circulation system, and(ii) the potential contribution of wind-driven dynamics to the life cycle of the eastern Indian Ocean upwelling. This paper also briefly introduces the international Indian Ocean investigation project of the SCSIO, which will advance the study of the multi-scale variability of the tropical Indian Ocean circulation system, and provide a theoretical and data basis to support marine environmental security for the countries around the Maritime Silk Road.  相似文献   

5.
6.
从低纬的海气耦合的浅水模式方程组出发 ,运用正交模和特殊函数的方法进一步讨论地球自转速率变化对海气耦合系统的影响 .研究表明 :地球自转速率的变化通过海气耦合一方面使大气和海洋的Kelvin波和Rossby波的移动及稳定性发生变化 ,另一方面使纬向风、洋流和海表温度发生变化 .特别是在地球自转减慢时 ,通过海气耦合 ,出现纬向风和洋流异常和大洋东部海表温度增加 ,从而导致引起全球气候异常的ElNi no现象  相似文献   

7.
Vertical coupling in the low-latitude atmosphere–ionosphere system driven by the 5-day Rossby W1 and 6-day Kelvin E1 waves in the low-latitude MLT region has been investigated. Three different types of data were analysed in order to detect and extract the ∼6-day wave signals. The National Centres for Environmental Prediction (NCEP) geopotential height and zonal wind data at two pressure levels, 30 and 10 hPa, were used to explore the features of the ∼6-day waves present in the stratosphere during the period from 1 July to 31 December 2004. The ∼6-day wave activity was identified in the neutral MLT winds by radar measurements located at four equatorial and three tropical stations. The ∼6-day variations in the ionospheric electric currents (registered by perturbations in the geomagnetic field) were detected in the data from 26 magnetometer stations situated at low latitudes. The analysis shows that the global ∼6-day Kelvin E1 and ∼6-day Rossby W1 waves observed in the low-latitude MLT region are most probably vertically propagating from the stratosphere. The global ∼6-day W1 and E1 waves seen in the ionospheric electric currents are caused by the simultaneous ∼6-day wave activity in the MLT region. The main forcing agent in the equatorial MLT region seems to be the waves themselves, whereas in the tropical MLT region the modulated tides are also of importance.  相似文献   

8.
Variability of the subsurface temperature, current, and heat content in the tropical Pacific Ocean has been extracted in association with the two dominant modes of the sea surface temperature anomaly (SSTA): the low-frequency mode and the biennial mode. In a recent paper, these two modes were identified as the major modes of El Niño-Southern Oscillation (ENSO). The low-frequency mode, which explains about 36% of the total SSTA variability, represents the dominant component of SSTA variability in the tropical Pacific, and is associated not with a fast physical evolution but with a slow stochastic undulation. The biennial mode, which is the second dominant component and explains about 12% of the total variability exhibits, on the other hand, a strong physical evolution. The space–time patterns of the subsurface variability were derived from an assimilated data set via a cyclostationary empirical orthogonal functions (CSEOF) analysis and the regression of the resulting principal component (PC) time series on the target PC time series of the surface modes. Extracted space–time patterns describe the detailed evolution of the physical changes in the upper ocean of the tropical Pacific that are associated with the corresponding surface modes. Specifically, they clearly show the surface and subsurface connection of the physical changes during ENSO events, and the role of equatorial waves in the manifestation of physical changes at the surface. The derived patterns of heat content, subsurface temperature, and zonal current anomalies realistically depict the detailed temporal changes of those variables and are consistent with our understanding of the physics in the tropical Pacific Ocean. The biennial mode appears to depict faithfully the phase progression of El Niño and La Niña. The propagation of equatorial Kelvin waves along the thermocline is clearly visible during El Niño and La Niña events in the cyclostationary representation of the physical modes in the tropical Pacific Ocean. Although the low-frequency mode explains three times more SSTA variability than the biennial mode, the former does not induce strong equatorial wave activity. This observation is significant considering that both El Niño or La Niña are often viewed simply in terms of a significant SST change in the tropical Pacific. The results of the present study indicate: (1) that the two ENSO modes represent significantly different physical evolutions; (2) that the amount of SST warming or cooling does not dictate the physical evolution of ENSO; and (3) that the two modes play essentially different dynamical roles including the generation of equatorial waves.Responsible Editor: John Wilkin  相似文献   

9.
Abstract

The linear stability of a non-divergent barotropic parallel shear flow in a zonal and a non-zonal channel on the β plane was examined numerically. When the channel is non-zonal, the governing equation is slightly modified from the Orr-Sommerfeld equation. Numerical solutions were obtained by solving the discretized linear perturbation equation as an eigenvalue problem of a matrix. When the channel is zonal and lateral viscosity is neglected the problem is reduced to the ordinary barotropic instability problem described by Kuo's (1949) equation. The discrepancy between the stability properties of westward and eastward flows, which have been indicated by earlier studies, was reconfirmed. It has also been suggested that the unstable modes are closely related to the continuous modes discretized by a finite differential approximation. When the channel is non-zonal, the properties of unstable modes were quite different from those of the zonal problem in that: (1) The phase speed of the unstable modes can exceed the maximum value of the basic flow speed; (2) The unstable modes are not accompanied by their conjugate mode; and (3) The basic flow without an inflection point can be unstable. The dispersion relation and the spatial structure of the unstable modes suggested that, irrespective of the orientation of the channel, they have close relation to the neutral modes (Rossby channel modes) which are the solutions in the absence of a basic shear flow. The features mentioned above are not dependent on whether or not the flow velocity at the boundary is zero.  相似文献   

10.

The weakly nonlinear dynamics of packets of equatorial Kelvin waves is studied using singular perturbation theory applied to the shallow water wave equations. Within the limits of the perturbation theory, which is formally restricted to weak mean shear and weak nonlinearity, we derive a Nonlinear Schroedinger equation to describe the envelope of the wave packet. We find that nonlinearity has a defocusing effect so that coherent wave packets must owe their existence entirely to the generation mechanism rather than to nonlinear focusing of a broad initial disturbance.  相似文献   

11.
An attempt is made to use the barotropic vorticity equation in spectral form in order to study barotropic instability when the basic current has east-west quasi-stationary asymmetries on the scale of long waves. This is done by expressing the spectral equations in three different ways. In the first experiment a 9-component system is integrated and the long waves are allowed to propagate freely. In the second experiment the long waves are constrained to propagate slowly and in the third experiment, they are removed altogether.The motivation behind the present investigation is due to observations made in the motion fields of the tropics. These are characterized by quasi-stationary long waves and very energetically active and propagating short waves.The presence of quasi-stationary long waves seems to enhance the energy exchanges between the short waves and the mean zonal current and also allow for larger energy values for the short waves. Long term integration (90 days) shows a 6-day mode in thev time spectra at latitude 10°N and a 15-day mode in theu time spectra at individual grid points in the equatorial latitudes. Any possible connection between this peak and the observed peak of 15 days in the completely different physics of Kelvin waves is left as a conjecture.  相似文献   

12.
Summary The time-dependent primitive equations for a shallow homogeneous ocean with a free surface are solved for a bounded basin on the sphere, driven by a steady zonal wind stress and subject to lateral viscous dissipation. These are the vertically integrated equations for a free-surface model, and are integrated to 60 days from an initial state of rest by an explicit centered-difference method with zero-slip lateral boundary conditions. In a series of comparative numerical solutions it is shown that at least a 2-deg resolution is needed to resolve the western boundary currents adequately and to avoid undue distortion of the transient (Rossby waves. The -plane formulation is shown to be an adequate approximation for the mean circulation in the lower and middle latitudes, but noticeably intensifies the transports poleward of about 50 deg and both slows and distorts the transients in the central basin. The influence of the (southern) zonal boundary on the transport solutions is confined to the southernmost gyre, except in the region of the western boundary currents where its influence spreads to the northern edge of the basin by 30 days. The total boundary current transport is shown to be approximately proportional to the zonal width of the basin and independent of the basin's (uniform) depth, while the elevation of the free water surface is inversely proportional to the basin depth, in accordance with linear theory. The introduction of bottom friction has a marked damping effect on the transient Rossby waves, and also reduces the maximum boundary-current transport. The solutions throughout are approximately geostrophic and are only slightly nonlinear.The root-mean-square (rms) transport variability during the period 30 to 60 days is concentrated in the southwest portion of the basin through the reflection of the transient Rossby waves from the western shore and has a maximum corresponding to an rms current variability of about 3 cm sec–1. The transport variabilities are about 10 percent of the mean zonal transport and more than 100 percent of the mean meridional transport over a considerable region of the western basin (outside the western boundary current regime). Some 99 percent of the total kinetic energy is associated with the zonal mean and standing zonal waves, which are also responsible for the bulk of the meridional transport of zonal angular momentum. Although the transient Rossby waves systematically produce a momentum flux convergence at the latitude of the maximum eastward current, much in the manner of their atmospheric counterparts, this is only a relatively small contribution to the zonal oceanic momentum balance; the bulk of the mean zonal stress is here balanced by a nearly stationary net pressure torque exerted against the meridional boundaries by the wind-raised water. In an ocean without such boundaries the role of the transient circulations may be somewhat more important.  相似文献   

13.
Nonhydrostatic Atmospheric Normal Modes on Beta-Planes   总被引:1,自引:0,他引:1  
--To facilitate the understanding of nonhydrostatic effect in global and regional nonhydrostatic models, the normal modes of a nonhydrostatic, stratified, and compressible atmosphere are studied using Cartesian coordinates on midlatitude and equatorial #-planes. The dynamical equations without forcing and dissipation are linearized around the basic state at rest, and solved by using the method of separation of variables. An eigenvalue-eigenfunction problem is formulated, consisting of the horizontal and vertical structure equations with suitable boundary conditions. The wave frequency and the separation parameter, referred to as "equivalent height," appear in both the horizontal and vertical characteristic equations as a coupled problem, unlike the hydrostatic case. Therefore, the nonhydrostatic equivalent height depends not only on the vertical modal scale, as in the hydrostatic case, but also on the zonal and meridional modal scales. Numerical resu lts on the dispersion relations are presented for an isothermal atmosphere. Three kinds of normal modes, namely acoustic, gravity, and Rossby modes, are solved and compared with the corresponding global solutions. Nonhydrostatic effects are studied in terms of normal modes in a wide range of wavelengths from small to planetary scales. It is demonstrated that Rossby modes are hardly affected by nonhydrostatic effects regardless of wavelengths. However, nonhydrostatic effects on gravity modes become significant for smaller horizontal and deeper vertical scales of motion. The equivalent height plays a particularly important role in evaluating nonhydrostatic effects of normal modes on the equatorial #-plane, because the equivalent height appears in the scaling of meridional distance variable of the eigenfunctions. The implementation of nonhydrostatic normal mode analysis on high-resolution numerical modeling is also discussed.  相似文献   

14.
Abstract

A spectral low-order model is proposed in order to investigate some effects of bottom corrugation on the dynamics of forced and free Rossby waves. The analysis of the interaction between the waves and the topographic modes in the linear version of the model shows that the natural frequencies lie between the corresponding Rossby wave frequencies for a flat bottom and those applying in the “topographic limit” when the beta-effect is zero. There is a possibility of standing or eastward-travelling free waves when the integrated topograhic effect exceeds the planetary beta-effect.

The nonlinear interactions between forced waves in the presence of topography and the beta-effect give rise to a steady dynamical mode correlated to the topographic mode. The periodic solution that includes this steady wave is stable when the forcing field moves to the West with relatively large phase speed. The energy of this solution may be transferred to the steady zonal shear flow if the spatial scale of this zonal mode exceeds the scale of the directly forced large-scale dynamical mode.  相似文献   

15.
A baroclinic shallow-water model is developed to investigate the effect of the orientation of the eastern ocean boundary on the behavior of equatorial Kelvin waves. The model is formulated in a spherical polar coordinate system and includes dissipation and non-linear terms, effects which have not been previously included in analytical approaches to the problem. Both equatorial and middle latitude response are considered given the large latitudinal extent used in the model. Baroclinic equatorial Kelvin waves of intraseasonal, seasonal and annual periods are introduced into the domain as pulses of finite width. Their subsequent reflection, transmission and dissipation are investigated. It is found that dissipation is very important for the transmission of wave energy along the boundary and for reflections from the boundary. The dissipation was found to be dependent not only on the presence of the coastal Kelvin waves in the domain, but also on the period of these coastal waves. In particular the dissipation increases with wave period. It is also shown that the equatorial β-plane approximation can allow an anomalous generation of Rossby waves at higher latitudes. Nonlinearities generally have a small effect on the solutions, within the confines of this model.  相似文献   

16.
Interaction of high-frequency seismo-electromagnetic emissions with the weakly ionized gas of the ionospheric D-layer is considered. It is shown that through the earth's ionosphere weakly damped high-frequency electron cyclotron electromagnetic waves can propagate. These new type of waves easily reach the ionospheric D-layer where they interact with the existing electrons and ions. Acting on electrons ponderomotive force is taken into account and corresponding modified Charney equation is obtained. It is shown that only nonlinear vortical structures with negative vorticity (anticyclone) can be excited. The amplitude modulation of electromagnetic waves can lead to the excitation of Rossby waves in the weakly ionized gas. The corresponding growth rate is defined. Depending on the intensity of the pumping waves generated by seismic activity different stable and unstable branches of oscillations are found. Detection of the new oscillation branches and energetically reinforcing Rossby solitary vortical anticyclone structures may be serve as precursors to earthquake.  相似文献   

17.
The interannual variability of the tropical Indian Ocean is studied using Simple Ocean Data Assimilation (SODA) sea surface height anomalies (SSHA) and Hadley Centre Ice Sea Surface Temperature anomalies. Biannual Rossby waves (BRW) were observed along the 1.5° S and 10.5° S latitudes during the Indian Ocean Dipole (IOD) years. The SODA SSHA and its BRW components were comparable with those of Topex/Poseidon. The phase speed of BRW along 1.5° S is −28 cm/s, which is comparable with the theoretical speed of first mode baroclinic (equatorially trapped) Rossby waves. This is the first study to show that no such propagation is seen along 1.5° S during El Nino years in the absence of IOD. Thus the westward propagating downwelling BRW in the equatorial Indian Ocean is hypothesized as a potential predictor for IOD. These waves transport heat from the eastern equatorial Indian Ocean to west, long before the dipole formation. Along 10.5° S, the BRW formation mechanisms during the El Nino and IOD years were found to be different. The eastern boundary variations along 10.5° S, being localized, do not influence the ocean interior considerably. Major portion of the interannual variability of the thermocline, is caused by the Ekman pumping integrated along the characteristic lines of Rossby waves. The study provides evidence of internal dynamics in the IOD formation. The positive trend in the downwelling BRW (both in SODA and Topex/Poseidon) is of great concern, as it contributes to the Indian Ocean warming.  相似文献   

18.
An estimate of the magnitudes of the absolute vorticity advection terms and the terms in the balance equation suggest that the use of the barotropic vorticity equation within 5 degrees of latitude of the equator is not very good and that the linear balance equation is as good as the nonlinear balance equation in the equatorial region. Zonal Fourier analysis has revealed that the contribution from planetary scale waves is much larger than that from synoptic scale waves, being more in the winter hemisphere than in the summer hemisphere. In classical scale analysis there must be a distinction in wavelength between the zonal and the meridional directions for planetary scale waves. This distinction does not appear to be necessary for synoptic scale waves.  相似文献   

19.
本文从等离子体二流体方程出发,推导了适于描述赤道扩展F(ESF)层小尺度湍流的二维静电模型方程.对模型方程进行了线性分析,并且导出了描述波波相互作用的三波非线性耦合方程,以此为基础详细讨论了若干情况下的非线性稳定性和能谱簇射过程.结果表明,赤道F层不仅可以存在正能波,而且可能存在负能波;正能波和负能波的相互作用可以导致爆炸型不稳定性;各种可能的三个波(如三个正能波,二个正能波和一个负能波,等等)之间的相互作用可以产生不同类型的非线性不稳定性,导致不同形式的能量簇射,例如能量可以向大波数方向簇射,也可相反,还可能同时向大和小波数方向簇射等。  相似文献   

20.
Low-frequency current fluctuations in the deep central equatorial Atlantic are analyzed using current meter measurements recorded from November 1992 to November 1994. Current meters were located at about 14°W of longitude and 1° of latitude on both sides of the equator between 1,700 m depth and the ocean bottom. At all sampling depths, the velocity fluctuations are dominantly zonal and symmetrical with respect to the equator. At 1,700 and 2,000 m, the flow is dominated by annual period fluctuations, at 3,000 m, the velocity field amplitude presents a minimum, and at 3,750 and 3,950 m, the flow is modulated by annual and semiannual period variability. The annual signal exhibits an apparent upward phase propagation. When considering the phase and the amplitude of the seasonal fluctuations, the data compare well with the outputs of a realistic numerical simulation of the Atlantic Ocean. Together with a previous analysis of the model simulations, this supports the idea that the observed annual fluctuations are due to wind-forced vertically propagating Kelvin and Rossby waves. Data and model do not provide deciding evidences of the presence of semiannual equatorial waves deeper than 3,500 m depth in the central equatorial Atlantic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号