首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solar dynamo     
A. A. Ruzmaikin 《Solar physics》1985,100(1-2):125-140
The basic features of the solar activity mechanism are explained in terms of the dynamo theory of mean magnetic fields. The field generation sources are the differential rotation and the mean helicity of turbulent motions in the convective zone. A nonlinear effect of the magnetic field upon the mean helicity results in stabilizing the amplitude of the 22-year oscillations and forming a basic limiting cycle. When two magnetic modes (with dipole and quadrupole symmetry) are excited nonlinear beats appear, which may be related to the secular cycle modulation.The torsional waves observed may be explained as a result of the magnetic field effect upon rotation. The magnetic field evokes also meriodional flows.Adctual variations of the solar activity are nonperiodic since there are recurrent random periods of low activity of the Maunder minimum type. A regime of such a magnetic hydrodynamic chaos may be revealed even in rather simple nonlinear solar dynamo models.The solar dynamo gives rise also to three-dimensional, non-axisymmetric magnetic fields which may be related to a sector structure of the solar field.  相似文献   

2.
The instability of a supercritical Taylor‐Couette flow of a conducting fluid with resting outer cylinder under the influence of a uniform axial electric current is investigated for magnetic Prandtl number Pm = 1. In the linear theory the critical Reynolds number for axisymmetric perturbations is not influenced by the current‐induced axisymmetric magnetic field but all axisymmetric magnetic perturbations decay. The nonaxisymmetric perturbations with m = 1 are excited even without rotation for large enough Hartmann numbers (“Tayler instability”). For slow rotation their growth rates scale with the Alfvén frequency of the magnetic field but for fast rotation they scale with the rotation rate of the inner cylinder. In the nonlinear regime the ratio of the energy of the magnetic m = 1 modes and the toroidal background field is very low for the non‐rotating Tayler instability but it strongly grows if differential rotation is present. For super‐Alfv´enic rotation the energies in the m = 1 modes of flow and field do not depend on the molecular viscosity, they are almost in equipartition and contain only 1.5 % of the centrifugal energy of the inner cylinder. The geometry of the excited magnetic field pattern is strictly nonaxisymmetric for slow rotation but it is of the mixed‐mode type for fast rotation – contrary to the situation which has been observed at the surface of Ap stars. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
K. Mursula  T. Hiltula 《Solar physics》2004,224(1-2):133-143
Recent studies of the heliospheric magnetic field (HMF) have detected interesting, systematic hemispherical and longitudinal asymmetries which have a profound significance for the understanding of solar magnetic fields. The in situ HMF measurements since the 1960s show that the heliospheric current sheet (HCS) is systematically shifted (coned) southward during solar minimum times, leading to the concept of a bashful ballerina. While temporary shifts can be considerably larger, the average HCS shift (coning) angle is a few degrees, less than the 7.2 tilt of the solar rotation axis. Recent solar observations during the last two solar cycles verify these results and show that the magnetic areas in the northern solar hemisphere are larger and their intensity weaker than in the south during long intervals in the late declining to minimum phase. The multipole expansion reveals a strong quadrupole term which is oppositely directed to the dipole term. These results imply that the Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong tendency to produce solar tilts that are roughly opposite in longitudinal phase. This implies is a systematic longitudinal asymmetry and leads to a “flip-flop” type behaviour in the dominant HMF sector whose period is about 3.2 years. This agrees very well with the similar flip-flop period found recently in sunspots, as well as with the observed ratio of three between the activity cycle period and the flip-flop period of sun-like stars. Accordingly, these results require that the solar dynamo includes three modes, A0, S0 and a non-axisymmetric mode. Obviously, these results have a great impact on solar modelling.  相似文献   

4.
We have performed 3-D numerical simulations of compressible convection under the influence of rotation and magnetic fields in spherical shells. They aim at understanding the subtle coupling between convection, rotation and magnetic fields in the solar convection zone. We show that as the magnetic Reynolds number is increased in the simulations, the magnetic energy saturates via nonlinear dynamo action, to a value smaller but comparable to the kinetic energy contained in the shell, leading to increasingly strong Maxwell stresses that tend to weaken the differential rotation driven by the convection. These simulations also indicate that the mean toroidal and poloidal magnetic fields are small compared to their fluctuating counterparts, most of the magnetic energy being contained in the non-axisymmetric fields. The intermittent nature of the magnetic fields generated by such a turbulent convective dynamo confirms that in the Sun the large-scale ordered dynamo responsible for the 22-year cycle of activity can hardly be located in the solar convective envelope.  相似文献   

5.
V. Krishan 《Solar physics》1982,80(2):313-316
It is shown that high-m drift tearing modes can be excited under the conditions prevalent at the solar flare sites. Since the growth rate of the high-m tearing modes is larger than that for low-m macroscopic tearing modes and smaller than that of microscopic ion-acoustic instability, these modes warrant accommodation in the scheme of instabilities possibly operating in the hybrid model of solar flares suggested by Spicer.  相似文献   

6.
Kitchatinov  L.L.  Pipin  V.V.  Makarov  V.I.  Tlatov  A.G. 《Solar physics》1999,189(2):227-239
Some consequences of a nonlinear coupling between magnetic field and rotation are studied within a solar type 2D dynamo model for a spherical convective shell. The magnetic feedback on the rotation law produces two main effects. First, the torsional oscillations are excited. Second, a long-term amplitude modulation of the dynamo cycles is produced. The latter may be identified with the grand cycle of solar activity. The dynamo model seems to be in accord with the phase relations between the torsional and magnetic activity oscillations observed in the 11-year cycle as well as in the 55-year grand cycle. It, however, fails to reproduce the observationally suggested global decreasing trend in the equatorial rotation rate.  相似文献   

7.
More and more observations are showing a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. Its existence indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric  α2– Ω  dynamo model is derived to explore the characteristics of the axisymmetric  ( m = 0)  and the first non-axisymmetric  ( m = 1)  modes and to provide a theoretical basis with which to explain the 'active longitude', 'flip-flop' and other non-axisymmetric phenomena. The model consists of an updated solar internal differential rotation, a turbulent diffusivity varying with depth, and an α-effect working at the tachocline in a rotating spherical system. The difference between the  α2–Ω  and the  α–Ω  models and the conditions that favour the non-axisymmetric modes under solar-like parameters are also presented.  相似文献   

8.
Thanks to their past history on the main-sequence phase, supergiant massive stars develop a convective shell around the helium core. This intermediate convective zone (ICZ) plays an essential role in governing which g-modes are excited. Indeed, a strong radiative damping occurs in the high-density radiative core but the ICZ acts as a barrier preventing the propagation of some g-modes into the core. These g-modes can thus be excited in supergiant stars by the κ-mechanism in the superficial layers due to the opacity bump of iron, at  log  T = 5.2  . However, massive stars are submitted to various complex phenomena such as rotation, magnetic fields, semiconvection, mass loss, overshooting. Each of these phenomena exerts a significant effect on the evolution and some of them could prevent the onset of the convective zone. We develop a numerical method which allows us to select the reflected, thus the potentially excited, modes only. We study different cases in order to show that mass loss and overshooting, in a large enough amount, reduce the extent of the ICZ and are unfavourable to the excitation of g-modes.  相似文献   

9.
The magnetic field pattern associated with large scale convective motions, which are much larger than the supergranules and have been conceived as a source of maintenance of the solar differential rotation, is calculated in the framework of a slowly and differentially rotating thin spherical shell, including the effects of thermal conductivity and viscosity. The approximations of Boussinesq are used and the initial state of the magnetic field is assumed to be purely toroidal.The resulting magnetic field pattern rotates rigidly on the differentially rotating Sun with some phase delay to the convective pattern, if it is assumed that only the predominant mode with the maximum growth rate is actually realized in the solar convection zone. The obtained magnetic and convective patterns and their properties seem to explain naturally the various aspects of large scale ordering of solar activity such as the existence and behavior of complexes of activity, the rigid body rotation of proton flare active longitudes, their association with UMR's, the existence of ghost and mirror image of UMR's themselves and the fact that the rotational period derived from sunspot data is shorter than that derived spectroscopically from fluid velocity.  相似文献   

10.
S. V. Berdyugina 《Solar physics》2004,224(1-2):123-131
The modulation of solar activity closely follows the solar rotation period suggesting the existence of long-lived active regions at preferred longitudes. For instance, two preferred active longitudes in both southern and northern hemispheres are found to be persistent at the century time scale. These regions migrate with differential rotation and periodically alternate their activity levels showing a flip-flop cycle. The pattern and behaviour of active longitudes on the Sun is similar to that on cool, rapidly rotating stars with outer convective envelopes. This suggests that the magnetic dynamo, including non-axisymmetric magnetic fields and flip-flop cycles, is also similar in these stars. This allows us to overview the phenomenon of stellar magnetic activity and to study it in detail on the Sun.  相似文献   

11.
Erofeev  D.V. 《Solar physics》1999,186(1-2):431-447
Large-scale distribution of the sunspot activity of the Sun has been analyzed by using a technique worked out previously (Erofeev, 1997) to study long-lived, non-axisymmetric magnetic structures with different periods of rotation. Results of the analysis have been compared with those obtained by analyzing both the solar large-scale magnetic field and large-scale magnetic field simulated by means of the well-known flux transport equation using the sunspot groups as a sole source of new magnetic flux in the photosphere. A 21-year period (1964–1985) has been examined.The rotation spectra calculated for the total time interval of two 11-year cycles indicate that sunspot activity consists of a series of discrete components (modes) with different periods of rotation. The largest-scale component of the sunspot activity reveals modes with 27-day and 28-day periods of rotation situated, correspondingly, in the northern and southern hemispheres of the Sun, and two modes with rotation periods of about 29.7 days situated in both hemispheres. Such a modal structure of the sunspot activity agrees well with that of the large-scale solar magnetic field. Moreover, the magnetic field distribution simulated with the flux transport equation also reveals the same modal structure. However, such an agreement between the large-scale solar magnetic field and both the sunspot activity and simulated magnetic field is unstable in time; so, it is absent in the northern hemisphere of the Sun during solar cycle No. 20. Thus the sources of magnetic flux responsible for formation of the large-scale, rigidly rotating magnetic patterns appear to be closely connected, but are not identical with the discrete modes of the sunspot activity.  相似文献   

12.
The evolution of the background magnetic field with the solar cycle has been studied using the dipole-quadrupole magnetic energy behaviour in a cycle. The combined energy of the axisymmetric dipole, non-axisymmetric quadrupole, and equatorial dipole is relatively lowly variable over the solar cycle. The dipole field changed sign when the quadrupole field was near a maximum, andvice versa. A conceptual picture involving four meridional magnetic polarity sectors proposed to explain these features may be in agreement with equatorial coronal hole observations. The rate of sector rotation is estimated to be 8 heliographic degrees per year faster than the Carrington rotation (P = 27.23d synodic). Polarity boundaries of sectors located 180° apart show meridional migrations in one direction, while the boundaries of the other two sectors move in the opposite direction. A simple model of how the magnetic field energy varies, subject to specifying reasonable initial photospheric magnetic and velocity field patterns, follows the observed evolution of the dipole and quadrupole field energies quite nicely.  相似文献   

13.
The paper supplements an earlier one on the mean-field approach to spherical kinematic dynamo models (Rädler 1980a) by results of numerical investigations. A number of dynamo models working on the basis of the α2-mechanism are considered. Cases of pure α2-mechanism are studied, which includes only the simplest form of α-effect and no other induction effect, as well as cases with several additional effects due to fluctuating or mean motions. By the pure α2-mechanism axisymmetric and non-axisymmetric fields, can be excited and maintained with nearly equal ease. Part of the additional induction effects, however, clearly favour axisymmetric fields, and others non-axisymmetric fields. The non-axisymmetric fields are waves which travel in azimuthal direction, eastward or westward, depending on the models. For special dynamo models the transition from α2 to αω-mechanism and properties of the latter are investigated. The results support the presumption that the αω-mechanism is able to maintain only axisymmetric but never non-axisymmetric fields. Conditions for the occurrence of non-oscillatory or oscillatory fields are discussed, and again the influence of additional induction effects is studied. There are further presented a model with βω-mechanism maintaining an axisymmetric non-oscillatory field, and models with two kinds of δω-mechanisms allowing axisymmetric non-oscillatory and oscillatory fields. Some ideas concerning dynamo models for the Earth, the Sun and magnetic stars are discussed. It seems possible to construct dynamo models for the Earth, on the basis of the α2-mechanism which explain not only the presence of a magnetic field with a strong dipole part but also the inclination of the dipole axis against the axis of rotation, the occurrence of higher multipoles and the westward drift of the non-axisymmetric parts. Models with αω, βω or δω-mechanism, which have to be considered in the case of a strong differential rotation inside the core, provide an explanation at first only of the axisymmetric parts of the field, and the non-axisymmetric parts have then to be interpreted, for example, as MAC-waves. As far as dynamo models for the Sun are concerned, in addition to the possibility of an αω-mechanism also that of a βω or δω-mechanism is discussed, which, however, does not look not very promising. In the models developed so far, which work with the αω-mechanism, only a few of the induction effects of fluctuating motions have been included; it seems necessary to investigate also influences of other effects. The sectorial structure of the solar magnetic field can hardly be understood in terms of the traditional mean-field concept. The magnetic stars possess fields which strongly deviate from symmetry with respect to the axis of rotation. The occurrence of such fields seems understandable only if there is no noticeable differential rotation. They can be maintained by an α2-mechanism but hardly by αω, βω or δω-mechanisms.  相似文献   

14.
V. A. Dogiel 《Solar physics》1983,82(1-2):427-436
A model of velocity field oscillations in the solar convective zone is suggested. The system of convective equations is investigated for a thin rotating spherical envelope when the rotation velocity is depended on the coordinates. It is shown that two different structures of convective cells (longitudinal, or latitudinal) can exist in the envelope depending on gradients values of the rotation velocity and Prandtl number. It is supposed that two different regimes of convection (stationary and autofluctuating) are possible in the envelope when the angular velocity gradients are determined by the convection itself. In the case of autofluctuating regime the alternation of longitudinal and latitudinal structure of convection is realized. If one assumes that on the Sun there exists an autooscillating convection regime, then the periods of the existence of latitudinal convection structure may be associated with long periods of activity minima since according to Cowling's theorem, the action of the axisymmetric magnetic field generation mechanism is impossible under conditions of axisymmetric velocity structures.  相似文献   

15.
Erofeev  D. V. 《Solar physics》1997,175(1):45-58
The rotation of large-scale solar magnetic fields has been investigated by analysing a 20-yr series of synoptic maps of the radial magnetic field. For this purpose, a specially adapted method of spectral analysis was used. We calculated rotation spectra of the magnetic field as functions of the rotation period, heliographic latitude, and longitudinal wave number, k. These spectra reveal the existence of a number of discrete, rigidly rotating components (modes) of the magnetic field, whose rotation periods lie in the wide range from 26.5 to 30.5 days. The significant spectral maxima lie in the (rotation period–latitude) plane close to the curve that represents the differential rotation of small-scale magnetic features. For the first harmonic of the magnetic field (k=1) the properties of the rotation spectra are consistent with those reported by Antonucci, Hoeksema, and Scherrer (1990). However, the distribution of the rigidly rotating modes over rotation period and their latitudinal structure change systematically with the harmonic number k. As k increases, the mean distance P in rotation period between the modes decreases, from 1.2 days for k=1 to 0.3–0.5 days for k=4. This decreasing period separation is accompanied by a decrease of the characteristic latitude separation between the mode maxima. The latitudinal and longitudinal discrete spatial scales of the non-axisymmetric magnetic field appear to be connected with each other, as well as with the temporal scale P.  相似文献   

16.
A simple non-linear, non-axisymmetric mean field dynamo model is applied to a differentially rotating spherical shell. Two approximations are used for the angular velocity, to represent what is now believed to be the solar rotation law. In each case, stable solutions are found which possess a small non-axisymmetric field component. Although the model has a number of obvious shortcomings, it may be relevant to the problem of the solar active longitudes.  相似文献   

17.
The non-axisymmetric and nonlinear solutions of the magnetostatic equations are given in three-dimensional space of spherical coordinates (r, θ, ?). These solutions are applied to the large-scale solar magnetic field. Their basic features are similar to a dipole field near the polar regions and the polarity reverses near the equator. These features agree with observations for the large-scale solar magnetic field. The solutions can also be applied to investigating the connection between the structure of the magnetic field and the density distribution of the corona. It is shown that the tops of the closed magnetic field associate with density enhancements. Similar results may apply to the large-scale configuration of the stellar field.  相似文献   

18.
Within the kinematic dynamo theory, we construct a mathematical model for the evolution of the solar toroidal magnetic field, excited by the differential rotation of the convective zone in the presence of a poloidal field of a relic origin. We use a velocity profile obtained by decoding the data of helioseismological experiments. For the model of ideal magnetic hydrodynamics, we calculate the latitudinal profiles of the increasing-with-time toroidal field at different depths in the solar convection zone. It is found that, in the region of differential rotation, the excited toroidal field shows substantial fluctuations in magnitude with depth. Based on the simulations results, we propose an explanation for the “incorrect polarity” of magnetic bipolar sunspot groups in solar cycles.  相似文献   

19.
Simple exact solutions of the magnetohydrodynamic equations are found for rotating, magnetic stars. The velocity and magnetic field are axisymmetric and purely toroidal, and the magnetic energy density equals the kinetic energy density. For constant mass density, the solution reduces to that of Chandrasekhar (1956), which is stable even against non-axisymmetric perturbations. For an ideal gas equation of state, the condition for radiative thermal equilibrium is solved to lowest order in the non-spherical perturbation. The velocity, magnetic field and non-spherical pressure and temperature perturbations all vanish within cones centered around the rotation axis, |cos |>x i a zero of a Legendre polynomial. Low-order, long-period stellar oscillations may be excited by MHD instabilities near the equatorial region which become damped near the axis.  相似文献   

20.
A detector sharing the orbital rate of Venus has a unique perspective on solar periodicities. Fourier analysis of the 8.6 year record of solar EUV output gathered by the Langmuir probe on Pioneer Venus Orbiter shows the influences of global oscillation modes located in the convective envelope and in the radiative interior. Seven of the eight lowest angular harmonic r-mode families are detected by their rotation rates which differ almost unmeasurably from ideal theoretical values. This determines a mean sidereal rotation rate for the envelope of 457.9 ± 2.0 nHz which corresponds to a period of 25.3 days. Many frequencies are aliased at ± 106 nHz by modulation from the lowest angular harmonic r-mode in the envelope. The rotation of this mode seems slightly retrograde, -1.5 ± 2.0 nHz, but small positive values are not excluded. We confirm that the rotation of the radiative interior, 381 nHz, is slower than the envelope by detecting g-mode frequencies for angular harmonics, 2 l 6, and a possible first detection of the rotation rate for the l = 1 case. Solar EUV lacks the sudden darkenings (dips) shown by visible irradiance; vortex cores in the photosphere and below are again suggested as a possible explanation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号