首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Hysteretic models for sliding bearings with varying frictional force   总被引:2,自引:1,他引:1  
The friction pendulum system is a sliding seismic isolator with self‐centering capabilities. Under severe earthquakes, the movement may be excessive enough to cause the pendulum to hit the side rim of the isolator, which is provided to restrain the sliding. The biaxial behavior of a single friction pendulum, in which the slider contacts the restrainer, is developed using a smooth hysteretic model with nonlinear kinematic hardening. This model is extended to simulate the biaxial response of double and triple friction pendulums with multiple sliding surfaces. The model of a triple friction pendulum is based on the interaction between four sliding interfaces, which in turn is dependent upon the force and displacement conditions prevailing at these interfaces. Each of these surfaces are modeled as nonlinear biaxial springs suitable for a single friction pendulum, using the yield surface, based on the principles of the classical theory of plasticity, and amended for varying frictional yield force, due to variation in vertical load and/or velocity‐dependent friction coefficient. The participation of the nonlinear springs is governed by stick‐slip conditions, dictated by equilibrium and kinematics. The model can simulate the overall force‐deformation behavior, track the displacements in individual sliding surfaces, and account for the ultimate condition when the sliders are in contact with their restrainers. The results of this model are verified by comparison to theoretical calculations and to experiments. The model has been implemented in programs IDARC2D and 3D‐BASIS, and the analytical results are compared with shake table experimental results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Comparative study of the inelastic response of base isolated buildings   总被引:1,自引:0,他引:1  
This article presents a numeric comparative study of the inelastic structural response of base isolated buildings. The comparative study includes the following isolation systems: laminated rubber bearings, New Zealand one, pure friction and the frictional pendulum ones. The study is based on obtaining non‐linear response spectra for various design parameters using six earthquake records. Usually the base isolation of a new building seeks to maintain the structure in the linear elastic range. The response of old weak buildings or the response of new ones subjected to extreme earthquakes may not be, necessarily, in the aforementioned ideal elastic range. Consequently, it is important to characterize the response of isolated buildings responding inelastically. A conclusion from this research is that the isolators affect significantly the structural response of weak systems. Rubber isolators seem slightly less sensitive to plastification that may occur in the structure compared to friction isolators. Ductility demands in the structure are affected significantly by friction and neoprene protected systems, in particular sliding ones where larger demands are obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
The dynamic behaviour of a single degree-of-freedom (DOF) equipment mounted on a sliding primary structures subjected to harmonic and earthquake ground motions is studied numerically. To deal with the discontinuity nature of sliding structural systems, in this work the fictitious spring model is adopted. With the problem formulated in a state space form, an incremental numerical scheme capable of dealing with multi-DOF sliding structural systems is proposed for solving the time history responses. Numerical examples excited by harmonic and real earthquake ground motions are considered in order to study the following three effects: (1)the variation of the frictional coefficient of the sliding support, (2)subharmonic resonance and (3)effect of tuning (i.e. when the frequency of the equipment is coincident with or close to the fundamental frequency of the primary structure) on the mounted equipment. The dynamic characteristics of the mounted equipment are highlighted in the analysis of the numerical examples. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
The dynamic analysis of sliding structures is complicated due to the presence of friction. Synchronization of the kinematics of all the isolation bearings is often granted to simplify the task. This, however, may lead to inaccurate prediction of the structural responses under certain circumstances. Stepped structures or continuous bridges with seismic isolation are notable examples where unsynchronized bearing motions are expected. In this paper, a logically simple and numerically efficient procedure is proposed to solve the dynamic problem of sliding systems with unsynchronized support motions. The motion equations for the sliding and non‐sliding modes of the isolated structure are unified into a single equation that is represented as a difference equation in a discrete‐time state‐space form and the base shear forces between the sliding interfaces can be determined through simple matrix algebraic analysis. The responses of the sliding structure can be obtained recursively from the discrete‐time version of the motion equation with constant integration time step even during the transitions between the non‐sliding and sliding phases. Therefore, both accuracy and efficiency in the dynamic analysis of the highly non‐linear system can be enhanced to a large extent. Rigorous assessment of seismic structures with unsynchronized support motions has been carried out for both a stepped structure and a continuous bridge. Effectiveness of friction pendulum bearings for earthquake protection of such structures has been verified. Moreover, evident unsynchronized sliding motions of the friction bearings have been observed, confirming the necessity to deal with each of the bearings independently in the analytical model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Aseismic base isolation is an effective method used to protect structures and their contents against earthquakes. An isolated structure may be designed to remain elastic throughout major ground motions as a result of the efficiency of the isolation systems. In this paper, the equations of motion of two‐dimensional elastic structures supported on a new base isolation system called the Sliding Concave Foundation (SCF) are presented and a procedure for their solution is suggested. The responses of a number of structures subjected to different earthquake records are evaluated and the results are compared with those of the same structures supported on two other famous isolation systems and also a fixed base condition. The results indicate the effectiveness of the SCF in protecting the supported structures even during very strong and/or long period earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The dynamic response of equipment mounted on an isolated raised floor inside a building while the primary fixed base structure is subjected to harmonic and earthquake ground motions is numerically investigated. Sliding concave foundation (SCF) system is utilized for isolating the raised floor. The equations of motion for a MDOF shear building containing a SCF isolated raised floor with a mounted equipment are developed and the rigid link method is utilized to handle the non‐linearity of the system. The equipment, which can be modelled as a SDOF or MDOF system, may represent a critical computer unit or telecommunication processing system. SCF can be used easily to achieve the desired long period, necessary for protecting sensitive equipment. In this investigation, the ability of SCF in reducing the acceleration level experienced by the equipment inside a building is demonstrated while the lateral displacement is still within an acceptable range. The analysis considered the case of equipment housed in the upper floors of a building where the acceleration is amplified and the motion contains strong components at long periods. For this purpose, different excitations including both harmonic and real earthquake ground motions are employed and the performance of the system is evaluated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Sliding isolators with curved surface are effective base isolation systems incorporating isolation, energy dissipation and restoring mechanism in one unit. However, practical utility of these systems, such as friction pendulum system (FPS) has limitations due to constant isolator period and restoring force characteristics. A new isolator called the variable frequency pendulum isolator (VFPI) that overcomes these limitations while retaining all the advantages has been described in this paper. VFPI has oscillation frequency decreasing with sliding displacement, and the restoring force has an upper bound so that the force transmitted to the structure is limited. The mathematical formulations for the response of a SDOF structure and energy balance are also described. Parametric studies have been carried out to critically examine the behaviour of structures isolated with VFPI, FPS and PF system. From these investigations, it is concluded that the VFPI combines the advantages of both FPS and PF system, without their undesirable properties. The VFPI performance is also found to be stable during low‐intensity excitations, and fail‐safe during high‐intensity excitations. VFPI is found to exhibit robust performance for a wide range of structure, isolator and ground motion characteristics clearly demonstrating its advantages. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Effectiveness of a new semiactive independently variable stiffness (SAIVS) device in reducing seismic response of sliding base isolated buildings is evaluated analytically and experimentally. Through analytical and experimental study of force—displacement behaviour of the SAIVS device, it is shown that the device can vary stiffness continuously and smoothly between minimum and maximum stiffness. Passive sliding base isolation systems reduce interstorey drifts and superstructure accelerations, but with increased base displacements, which is undesirable, under large velocity near fault pulse type earthquakes. It is a common practice to incorporate non‐linear passive dampers into the isolation system to reduce bearing displacements. Incorporation of passive dampers, however, may result in increased superstructure accelerations and drifts; while, properly designed passive dampers can be beneficial. A viable alternative is to use semiactive variable stiffness systems, which can vary the period of the sliding base isolated buildings in real time, to simultaneously reduce bearing displacements and superstructure responses further than the passive systems, which deserves investigation. This study investigates the performance of a 1:5 scaled smart sliding base isolated building model equipped with the SAIVS device analytically and experimentally, under near fault earthquakes, by developing a new moving average non‐linear tangential stiffness control algorithm for control of the SAIVS device. The SAIVS device reduces bearing displacements further than the passive cases, while maintaining isolation level forces and superstructure responses at the same level as the passive minimum stiffness case, indicating the significant potential of the SAIVS system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
本文提出一种柔性地下层和一个滑动摩擦表面相结合的新隔震体系供大家讨论。从分析上看,它比单纯的基础滑动和柔性首层的体系有明显优越性。对这种体系,我们推导了相应的数值计数方法并给出了初步计算实例。其结果表明,这种体系对减轻结构在地震中的反应是十分有效的。进一步的分析、试验和试建看来定有益的。  相似文献   

10.
The seismic response of single‐degree‐of‐freedom (SDOF) systems incorporating flag‐shaped hysteretic structural behaviour, with self‐centring capability, is investigated numerically. For a SDOF system with a given initial period and strength level, the flag‐shaped hysteretic behaviour is fully defined by a post‐yielding stiffness parameter and an energy‐dissipation parameter. A comprehensive parametric study was conducted to determine the influence of these parameters on SDOF structural response, in terms of displacement ductility, absolute acceleration and absorbed energy. This parametric study was conducted using an ensemble of 20 historical earthquake records corresponding to ordinary ground motions having a probability of exceedence of 10% in 50 years, in California. The responses of the flag‐shaped hysteretic SDOF systems are compared against the responses of similar bilinear elasto‐plastic hysteretic SDOF systems. In this study the elasto‐plastic hysteretic SDOF systems are assigned parameters representative of steel moment resisting frames (MRFs) with post‐Northridge welded beam‐to‐column connections. In turn, the flag‐shaped hysteretic SDOF systems are representative of steel MRFs with newly proposed post‐tensioned energy‐dissipating connections. Building structures with initial periods ranging from 0.1 to 2.0s and having various strength levels are considered. It is shown that a flag‐shaped hysteretic SDOF system of equal or lesser strength can always be found to match or better the response of an elasto‐plastic hysteretic SDOF system in terms of displacement ductility and without incurring any residual drift from the seismic event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The dynamic behaviour of two adjacent single‐degree‐of‐freedom (SDOF) structures connected with a viscous damper is studied under base acceleration. The base acceleration is modelled as harmonic excitation as well as stationary white‐noise random process. The governing equations of motion of the connected system are derived and solved for relative displacement and absolute acceleration responses of connected structures. The response of structures is found to be reduced by connecting with a viscous damper having appropriate damping. For undamped SDOF structures, the closed‐form expressions for optimum damping of viscous damper for minimum steady state as well as minimum mean square relative displacement and absolute acceleration of either of the connected SDOF structures are derived. The optimum damper damping is found to be functions of mass and frequency ratio of two connected structures. Further, numerical results had indicated that the damping of the connected structures does not have noticeable effects on the optimum damper damping and the corresponding optimized response. This implies that the derived closed‐form expressions for optimum damper damping of undamped structures can also be used in practical applications for damped structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the responses of multi‐degree‐of‐freedom (MDOF) structures on sliding supports subjected to harmonic or random base motions are investigated. Modeling of the friction force under the foundation raft is accomplished by using a fictitious rigid link which has a rigid–perfectly plastic material. This will result in identical equations of motion for the sliding structure, both in the sliding and non‐sliding (stick) phases which greatly simplifies the implementation of the method into a numerical algorithm. In this model the phase transition times are determined with high accuracy. This has two advantages: first, it prevents the so‐called high‐frequency oscillation of the relative velocity at the end of the sliding phase, and second, the time steps can be selected so that each falls exactly within one phase of motion. In this case, the stiffness matrix of the structure remains constant throughout each phase and thus any method for solving the non‐linear differential equations of motion (e.g. Newmark method) can be used without iteration. The proposed method, besides its simplicity, is numerically very efficient and considerably reduces the required analysis time compared with most of the other methods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Damage or collapse of buildings vulnerable to seismic forces may cause human casualties, and seismic upgrading of such structures is a practical solution to this deficiency. The study presented here proposes a simple approach to prevent structural collapse by separating the superstructure from its foundation to let the superstructure slide during extreme ground shaking. The sliding mechanism contributes to cap the horizontal force exerted on the superstructure. In such approach, the key is to maintain the friction force between the superstructure and the foundation sufficiently low and stable. This research proposes to realize a controlled sliding mechanism, which acts as a structural fuse, by means of carbon powder lubrication at the bases of the structure's columns. The fundamental behaviour of the proposed structural system, named the base shear capping building, is investigated by shaking table tests and numerical simulation. Both experimental and numerical results showed that graphite lubrication is an efficient and robust lubrication material, maintaining the friction coefficient between the steel column bases and mortar foundation at around 0.16. The sliding at the bases significantly reduced the acceleration transmitted to the superstructure, keeping the base shear coefficient not greater than about 0.40. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This experimental investigation deals with the earthquake behaviour of a nominally symmetric and a mass‐asymmetric three‐storey structural model isolated with the frictional pendulum system (FPS). Both accidental and natural torsion are evaluated in the structure by using recorded accelerations in all building floors and measured deformations at the isolation level. A 3D‐shaking table was used to subject the model to five different ground motions, including impulsive as well as far‐field subduction‐zone type earthquakes. Results show that the analytical predictions of the earthquake behaviour of the isolated structure, as obtained from a physical model of the FPS, are in close agreement with the true complex inelastic measured behaviour of the FPS. Besides, experimental results also validate previous observations about the importance of accounting for the variability of the normal loads in modelling the earthquake behaviour of FPS isolators. Measured torsional deformation amplifications at the base of the building vary, in the mean, from 2.5% to 6% for the symmetric and asymmetric structural configurations, respectively. In relation to the fixed base structure, the reduction factors for the base shear of the isolated structure are, in the mean, about 3.9 for both configurations. Finally, it is concluded that the FPS is capable of controlling the lateral–torsional motions of mass‐asymmetric structures quite effectively by aligning the centre of mass of the superstructure with the centre of pendular and frictional resistance of the isolation system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Constitutive behavior and stability of frictional sliding of granite   总被引:4,自引:0,他引:4  
An understanding of the frictional sliding on faults that can lead to earthquakes requires a knowledge of both constitutive behavior of the sliding surfaces and its mechanical interaction with the loading system. We have determined the constitutive parameters for frictional sliding of initially bare surfaces of Westerly granite, using a recently developed high pressure rotary shear apparatus that allows long distances of sliding and therefore a greater assurance of attaining steady state behavior. From experiments conducted at room temperature and normal stresses of 27–84 MPa several important results have been found. (1) A gouge layer 100 to 200 m thick was developed from the initially bare rock surfaces after 18 to 70 mm of sliding. (2) The steady state frictional resistance, attained after about 10 mm of sliding, is proportional to the negative of the logarithm of the sliding velocity. (3) Abrup changes in the velocity of sliding result in initial changes in the frictional resistance, which have the same sign as the velocity change, and are followed by a gradual decay to a new steady state value over a characteristic distance of sliding. This velocity weakening behavior is essentially identical with that found by several previous workers on the same material at lower normal stress. (4) Our results are well described by a two state variable constitutive law. The values of the constitutive parameters are quite similar to those found previously at low normal stress, but the characteristic distance is about an order of magnitude smaller than that found at 10 MPa normal stress with thicker layers of coarser gouge. (5) We have approximated our results with a one state variable constitutive law and compared the results with the predictions of existing nonlinear stability analysis; in addition, we have extended the stability analysis to systems possessing two state variables. With such formulations good agreement is found between the experimentally observed and theoretically predicted transitions between stable and unstable sliding. These results allow a better understanding of the instabilities that lead to earthquakes.  相似文献   

16.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The use of base isolation in developed countries including the U.S. and Japan has already been recognized as a very effective method for upgrading the seismic resistance of structures. In this study, an advanced base‐isolation system called the multiple friction pendulum system (MFPS) is investigated to understand its performance on seismic mitigation through full‐scale component and shaking table tests. The component tests of the advanced Teflon composite coated on the sliding surface show that the friction coefficient of the lubricant material is a function of the sliding velocity in the range of 0.03–0.12. The experimental results also indicate that there were no signs of degradation of the sliding interface observed after 2000 cycles of sliding displacements. A full‐scale MFPS isolator under a vertically compressive load of 8830 KN (900 tf) and horizontally cyclic displacements was tested in order to assess the feasibility of the MFPS isolator for its practical use. After 248 cycles of horizontal displacement reversals, the behaviour of the base isolator was almost identical to its behaviour during the first few cycles. The experimental results of the shaking table tests of a full‐scale steel structure isolated with MFPS isolators show that the MFPS device can isolate seismic transmitted energy effectively under soft‐soil‐deposit site earthquakes with long predominant periods as well as strong ground motions with short predominant periods. These test results demonstrate that the MFPS isolator possesses excellent durability and outstanding earthquake‐proof capability. Furthermore, the numerical results show that the mathematical model proposed in this study can well predict the seismic responses of a structure isolated with MFPS isolators. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Critical non‐structural equipments, including life‐saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., are vulnerable to strong earthquakes, and the failure of these equipments may result in a heavy economic loss. In this connection, innovative control systems and strategies are needed for their seismic protections. This paper presents the performance evaluation of passive and semi‐active control in the equipment isolation system for earthquake protection. Through shaking table tests of a 3‐story steel frame with equipment on the first floor, a magnetorheological (MR)‐damper together with a sliding friction pendulum isolation system is placed between the equipment and floor to reduce the vibration of the equipment. Various control algorithms are used for this semi‐active control studies, including the decentralized sliding mode control (DSMC) and LQR control. The passive‐on and passive‐off control of MR damper is used as a reference for the discussion on the control effectiveness. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
李成玉    王义龙  吴东平   《世界地震工程》2022,38(4):120-131
柱脚节点是钢结构体系中的关键部位,其损伤将直接影响到结构体系的性能。基于损伤控制理念,提出了一种装配式L形连接件滑移摩擦柱脚节点。利用有限元软件ABAQUS建立了柱脚节点模型,考虑摩擦界面是否设置填充板和外连接件是否设置加劲肋,以及改变轴压比、连接件竖肢和水平肢厚度等因素,分析不同参数对节点受力模式、滞回曲线、耗能能力和损伤特征的影响。结果表明:柱脚节点主要承受摩擦力和轴压荷载的作用,柱端在受力过程中发生滑移,通过摩擦机制耗能,避免主体结构发生塑性损伤。填充板的设置增强了结构的摩擦性能,且在不同轴压荷载下均具有良好的延性和转动性能。在设置填充板的结构中,合理设置连接件竖肢厚度、水平肢厚度和加劲肋,在保证了节点摩擦耗能性能实现的同时,充分发挥了保护主体结构优势,达到了损伤控制的预期。  相似文献   

20.
The non-linear dynamic response of the rigid block is linearized by means of a friction model that implicitly considers block response through an experimental parameter obtained from shaking table experiments. In view of the great difficulty in carrying out shaking table experiments, in this technical note some recommendations to estimate friction model parameters are given. The selection of parameters considers the sliding response mode of the block–plane-excitation system: stick–slip or continuous sliding. Once all the friction parameters and block response mode were estimated, a methodology was proposed to compute rigid block dynamic response. The numerical results were then compared to actual experimental data for a rigid block sliding on a geotextile–wood interface, along an inclined plane subjected to base harmonic acceleration. Experiments were carried out for both the stick–slip and the continuous sliding modes. Computed and measured responses for both cases showed good agreement, thus indicating that the methodology developed in this research is adequate to capture the physics (of non-linear nature) of rigid blocks sliding on frictional interfaces subjected to complex harmonic loading. The findings encourage the extension of the linearization technique to the more general seismic loading case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号