首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four techniques for soil erosion assessment were compared over two consecutive seasons for bare-fallow plots and a maize-cowpea sequence in 1985 at IITA, Ibadan, Nigeria. The techniques used were: tracer (aluminium paint), nails (16 and 25), the rill method, and the Universal Soil Loss Equation (USLE). Soil loss estimated by these techniques was compared with that determined using the runoff plot technique. There was significantly more soil loss (P < 0·01) in bare-fallow than in plots under maize (Zea mays) or cowpea (Vigna unguiculata). In the first season, soil loss from plots sown to maize was 40·2 Mg ha?1 compared with 153·3 Mg ha?1 from bare-fallow plots. In the second season, bare-fallow plots lost 87·5 Mg ha?1 against 39·4 Mg ha?1 lost from plots growing cowpea. The techniques used for assessing erosion had no influence on the magnitude of soil erosion and did not interfere with the processes of erosion. There was no significant difference (P < 0·05) between soil erosion determined by the nails and the runoff plot technique. Soil loss determined on six plots (three under maize, three bare-fallow) by the rill technique, at the end of the season, was significantly lower (P < 0·05) than that determined by the runoff plot technique. The soil loss estimated by the rill method was 143·2, 108·8 and 121·9 Mg ha?1 for 11, 11, and 8 per cent slopes respectively, in comparison with 201·5, 162·0, and 166·4 Mg ha?1 measured by the runoff plot method. Soil loss measured on three bare-fallow plots on 10 different dates by the rill technique was also significantly lower (P < 0·01) than that measured by the runoff plot. In the first season the USLE significantly underestimated soil loss. On 11, 11, and 8 per cent slopes, respectively, soil loss determined by the USLE was 77, 92, and 63 per cent of that measured by the runoff plot. However, in the second season there was no significant difference between soil loss determined by the USLE and that determined by the conventional runoff plot technique.  相似文献   

2.
Unpaved roads are believed to be the primary source of terrigenous sediments being delivered to marine ecosystems around the island of St John in the eastern Caribbean. The objectives of this study were to: (1) measure runoff and suspended sediment yields from a road segment; (2) develop and test two event‐based runoff and sediment prediction models; and (3) compare the predicted sediment yields against measured values from an empirical road erosion model and from a sediment trap. The runoff models use the Green–Ampt infiltration equation to predict excess precipitation and then use either an empirically derived unit hydrograph or a kinematic wave to generate runoff hydrographs. Precipitation, runoff, and suspended sediment data were collected from a 230 m long, mostly unpaved road segment over an 8‐month period. Only 3–5 mm of rainfall was sufficient to initiate runoff from the road surface. Both models simulated similar hydrographs. Model performance was poor for storms with less than 1 cm of rainfall, but improved for larger events. The largest source of error was the inability to predict initial infiltration rates. The two runoff models were coupled with empirical sediment rating curves, and the predicted sediment yields were approximately 0·11 kg per square meter of road surface per centimetre of precipitation. The sediment trap data indicated a road erosion rate of 0·27 kg m?2 cm?1. The difference in sediment production between these two methods can be attributed to the fact that the suspended sediment samples were predominantly sand and silt, whereas the sediment trap yielded mostly sand and gravel. The combination of these data sets yields a road surface erosion rate of 0·31 kg m?2 cm?1, or approximately 36 kg m?2 year?1. This is four orders of magnitude higher than the measured erosion rate from undisturbed hillslopes. The results confirm the importance of unpaved roads in altering runoff and erosion rates in a tropical setting, provide insights into the controlling processes, and provide guidance for predicting runoff and sediment yields at the road‐segment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
After the Valley Complex Fire burned 86 000 ha in western Montana in 2000, two studies were conducted to determine the effectiveness of contour‐felled log, straw wattle, and hand‐dug contour trench erosion barriers in mitigating postfire runoff and erosion. Sixteen plots were located across a steep, severely burned slope, with a single barrier installed in 12 plots (four per treatment) and four plots left untreated as controls. In a rainfall‐plus‐inflow simulation, 26 mm h?1 rainfall was applied to each plot for 1 h and 48 L min?1 of overland flow was added for the last 15 min. Total runoff from the contour‐felled log (0·58 mm) and straw wattle (0·40 mm) plots was significantly less than from the control plots (2·0 mm), but the contour trench plots (1·3 mm) showed no difference. The total sediment yield from the straw wattle plots (0·21 Mg ha?1) was significantly less than the control plots (2·2 Mg ha?1); the sediment yields in the contour‐felled log plots (0·58 Mg ha?1) and the contour trench plots (2·5 Mg ha?1) were not significantly different. After the simulations, sediment fences were installed to trap sediment eroded by natural rainfall. During the subsequent 3 years, sediment yields from individual events increased significantly with increasing 10 min maximum intensity and rainfall amounts. High‐intensity rainfall occurred early in the study and the erosion barriers were filled with sediment. There were no significant differences in event or annual sediment yields among treated and control plots. In 2001, the overall mean annual sediment yield was 21 Mg ha?1; this value declined significantly to 0·6 Mg ha?1 in 2002 and 0·2 Mg ha?1 in 2003. The erosion barrier sediment storage used was less than the total available storage capacity; runoff and sediment were observed going over the top and around the ends of the barriers even when the barriers were less than half filled. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

5.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Ten representative research sites were selected in eastern Spain to assess soil erosion rates and processes in new citrus orchards on sloping soils. The experimental plots were located at representatives sites on limestone, in areas with 498 to 715 mm year?1 mean annual rainfall, north‐facing slopes, herbicide treated, and new (less than 3 years old) plantations. Ten rainfall simulation experiments (1 h at 55 mm h?1 on 0·25 m2 plots) were carried out at each of the 10 selected study sites to determine the interill soil erosion and runoff rates. The 100 rainfall simulation tests (10 × 10 m) showed that ponding and runoff occurred in all the plots, and quickly: 121 and 195 s, respectively, following rainfall initiation. Runoff discharge was one third of the rainfall, and sediment concentration reached 10·4 g L?1. The soil erosion rates were 2·4 Mg ha?1 h?1 under 5‐year return period rainfall thunderstorms. These are among the highest soil erosion rates measured in the western Mediterranean basin, similar to badland, mine spoil and road embankment land surfaces. The positive relationship between runoff discharge and sediment concentration (r2 = 0·83) shows that the sediment availability is very high. Soil erosion rates on new citrus orchards growing on sloped soils are neither tolerable nor sustainable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The concentrations of7Be have been measured in Pacific and Atlantic ocean water for the past several years to determine the deposition velocity of aerosol particles on the ocean surface.7Be is produced at a relatively constant rate in the atmosphere by spallation reactions of cosmic rays with atmospheric nitrogen and oxygen. Immediately after its formation7Be becomes attached to aerosol particles, and therefore can serve as tracers of the subsequent behavior of these particles. Isopleths of7Be surface water concentrations,7Be inventory in the ocean, and deposition velocity have been prepared for the Pacific Ocean from 30°S to 60°N and for the Atlantic Ocean from 10°N to 55°N. The concentrations, inventories and deposition velocities tended to be higher in regions where precipitation was high, and generally increased with latitude. The average flux of7Be across the ocean surface was calculated to be 0.027 atoms cm?2 s?1 which is probably not significantly greater than the worldwide average7Be flux across land and ocean surfaces of 0.022 atoms cm?2 s?1 calculated by Lal and Peters. The average deposition velocity was calculated to be 0.80 cm s?1. This value may be 10–50% too low, since it was calculated using atmospheric7Be concentrations which were measured at continental stations. Measurements of atmospheric7Be concentrations at ocean stations suggest that the concentrations at the continental stations averaged 10–50% higher than the concentrations over the ocean.  相似文献   

8.
Most studies on runoff and soil loss from olive orchards were performed on plots, despite the fact that measurements that examine a range of erosive processes on different scales are essential to evaluate the suitability of the use and soil management of this type of land. The main environmental limitations of much of the land used for olive orchards in the Mediterranean are the steep slopes and the shallow soil depth – and this was the case in the study area. Soil erosion and runoff over two hydrological years (2005–2006 and 2006–2007) were monitored in an olive orchard microcatchment of 6·1 ha under no‐tillage with spontaneous grass in order to evaluate its hydrological and erosive behaviour. Moreover, soil parameters such as organic matter (%OM), bulk density (BD) and hydraulic saturated conductivity (Ks) were also examined in the microcatchment to describe management effects on hydrological balance and on erosive processes. In the study period, the results showed runoff coefficients of 6·0% in the first year and 0·9% in the second. The differences respond to the impact of two or three yearly maximum events which were decisive in the annual balances. On the event scale, although maximum rainfall intensity values had a big influence on peak flows and runoff, its importance on mean sediment concentrations and sediment discharges was difficult to interpret due to the likely control of grass cover on volume runoff and on soil protection. In the case of annual soil erosion, they were measured as 1·0 Mg ha?1 yr?1 and 0·3 Mg ha?1 yr?1. Both are lower than the tolerance values evaluated in Andalusia (Spain). These results support the implementation of no‐tillage with spontaneous grass cover for sloping land, although the reduced infiltration conditions determined by Ks in the first horizon suggest grass should be allowed to grow not only in spring but also in autumn. In addition, specific measurements to control gullies, which have formed in the terraced area in the catchment, should be included since it is expected that they could be the main sources of sediments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Cosmogenic7Be(t1/2 = 53.3days) has been used to estimate particle-mixing rates in the upper layers of lacustrine and near-shore marine sediments. Excess210Pb and/or239,240Pu have provided limits on rates of sediment accumulation in these environments and indices of the efficiency of the sediments as collectors of reactive nuclides over longer time scale.In sediment cores from Long Island Sound (marine) and Lake Whitney (fresh-water)7Be was measurable in the top 2–3 cm. Diffusion-analog particle-mixing coefficients calculated from these data are in the range of 10?7 cm2/s. For Long Island Sound the coefficients are lower by factors of 3–6 than those estimated from the depth distributions of excess234Th at the same stations [14]. For Lake Whitney the calculated mixing coefficient is an upper limit because of the possibility of a sampling artifact.Measurements of total (wet + dry) atmospheric deposition of7Be in New Haven give an average flux of 0.07 dpm/cm2 day during March-November, 1977; this is equivalent to a steady-state inventory of 5.4 dpm/cm2 in a perfect collector. Sediment cores from Long Island Sound contain about half this7Be inventory, consistent with either a mean residence time for7Be in the water column of about one half-life or with post-depositional loss of7Be from Long Island Sound sediments. The Lake Whitney cores contain about 5 dpm/cm2, much nearer the atmospheric delivery. A higher inventory of7Be in fresh-water, as compared to marine, sediments could be due either to a shorter mean residence time for7Be in fresh water or to lateral transport processes in the lake or its catchment. High inventories of excess210Pb and239,240Pu in Lake Whitney sediments demonstrate the importance of lateral transport on longer time scales at least.  相似文献   

10.
The upland planation surface in the Piedmont of central New Jersey consists of summit flats, as much as 130 km2 in area, that truncate bedding and structure in diabase, basalt, sandstone, mudstone and gneiss. These flats define a low‐relief regional surface that corresponds in elevation to residual hills in the adjacent Coastal Plain capped by a fluvial gravel of late Miocene age. A Pliocene fluvial sand is inset 50 m below the upland features. These associations suggest a late Miocene or early Pliocene age for the surface. To assess exposure age and erosional history, a 4·4 m core of clayey diabase saprolite on a 3 km2 remnant of the surface was sampled at six depths for atmospherically produced cosmogenic 10Be. The measured inventory, assuming a deposition rate of 1·3 × 106 atoms cm−2 a−1, yields a minimum exposure age of 227 000 years, or, assuming continuous surface erosion, a constant erosion rate of 10 m Ma−1. Because the sample site lies about 60 m above the aggradation surface of the Pliocene fluvial deposit, and itself supports a pre‐Pliocene fluvial gravel lag, this erosion rate is too high. Rather, episodic surface erosion and runoff bypassing probably have produced an inventory deficit. Reasonable estimates of surface erosion (up to 10 m) and bypassing (up to 50 per cent of total precipitation) yield exposure ages of as much as 6·4 Ma. These results indicate that (1) the surface is probably of pre‐Pleistocene age and has been modified by Pleistocene erosion, and (2) exposure ages based on 10Be inventories are highly sensitive to surface erosion and runoff bypassing. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
An understanding of the sources of variation in the use of erosion plots and of their feasibility to meet the objectives of each specific research project is key to improving future field designs, selecting data for modelling purposes and furthering knowledge of soil erosion processes. Our own field experiences from ongoing research on soil erosion processes since 1989, have allowed us to detect several methodological problems that cause measurement variability. Here several examples are presented concerning: (i) differences in long‐term soil erosion data between open and closed plots; (ii) differences in soil loss derived from replica soil erosion plots; and (iii) differences in soil loss data derived from plots at a range of spatial scales. Closed plots are not the most suitable method for long‐term monitoring of soil erosion rates due to the risk of exhaustion of available material within the plot. The difference in time after which exhaustion occurs depends on the surface soil characteristics, the climatological conditions and the size of the plots. We detected four and seven years as ‘time to exhaustion’. Different results are frequently obtained between pairs of replica plots. Differences up to a factor of nine have been detected in total soil loss between replica plots due to different spatial patterns of surface components. Different constraints appear depending on the spatial scale of measurement of soil loss. We obtained lower runoff percentages at coarser scales; however, larger sediment concentrations are observed at coarser scales (1·32 g l?1, catchment; 0·30 g l?1, 30 m2; 0·17 g l?1, 1 m2 scales). The smaller the plot, the larger the hydrological disconnection within the system, the lower the energy flows due to short distances and the quicker the response to runoff due to an artificial decrease of concentration times for continuous flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
An Erratum has been published for this article in Earth Surface Processes and Landforms 29(13) 2004, 1707. In the semi‐arid Arroyo Chavez basin of New Mexico, a 2·28 km2 sub‐basin of the Rio Puerco, we contrasted short‐term rates (3 years) of sediment yield measured with sediment traps and dams with long‐term, geologic rates (~10 000 years) of sediment production measured using 10Be. Examination of erosion rates at different time‐scales provides the opportunity to contrast the human impact on erosion with background or geologic rates of sediment production. Arroyo Chavez is grazed and we were interested in whether differences in erosion rates observed at the two time‐scales are due to grazing. The geologic rate of sediment production, 0·27 kg m?2 a?1 is similar to the modern sediment yields measured for geomorphic surfaces including colluvial slopes, gently sloping hillslopes, and the mesa top which ranged from 0·12 to 1·03 kg m?2 a?1. The differences between modern sediment yield and geologic rates of sediment production were most noticeable for the alluvial valley ?oor, which had modern sediment yields as high as 3·35 kg m?2 a?1. The hydraulic state of the arroyo determines whether the alluvial valley ?oor is aggrading or degrading. Arroyo Chavez is incised and the alluvial valley ?oor is gullied and piped and is a source of sediment. The alluvial valley ?oor is also the portion of the basin most modi?ed by human disturbance including grazing and gas pipeline activity, both of which serve to increase erosion rates. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The nature and rates of fluvial and slope processes change over time and space as urbanized areas replace forested land in Singapore. Storm-based and time-based data, from undisturbed rainforests, heavily disturbed construction sites, urban grass-covered slopes and an experimental plot, are collected to observe the impact of rainwater on the soil moisture conditions, surface microtopography, runoff generation, sediment movement, and ground lowering in the three different categories of land use. The undisturbed forested environment is characterized by high throughfall (58% of total rainfall) and frequent negative soil moisture suctions. The slow and unconcentrated overland flow during heavy storms is restricted by the forest floor microtopography. No rills develop. Ground lowering is recorded as 3·2–3·4 mm a?1. But sediment movement is episodic and suspended sediment concentrations in overland flow are 172–222 mg l?1. During urban construction, gully development is rapid on the bare slopes, runoff generation, voluminous, and sediment-laden discharges (5200–75498 mg l?1) lead to sediment plumes at channel mouths. Ground lowering rates are measured at 132·4 mm a?1. Once grass-covered, runoff carries less suspended sediment (800 mg l?1) and ground lowering rates are reduced, but depend on the condition of the cover, ranging from 0·2 to 8·2 mm a?1. As urban development continues, environments are altered both in time as well as spatially.  相似文献   

16.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A new, multi‐tracer method is used to track erosion, translocation, and redeposition of sediment in a small watershed, thus allowing for the ?rst time a complete, spatially distributed, sediment balance to be made as a function of landscape position. A 0·68 ha watershed near Coshocton, Ohio, USA was divided into six morphological units, each tagged with one of six rare earth element oxides. Sediment translocation was evaluated by collecting run‐off and by spatially sampling the soil surface. Average measured erosion rate was 6·1 t ha?1, but varied between 40·4 t ha?1 loss from the lower channels to 24·1 t ha?1 gain on the toeslope. With this technique it was possible for the ?rst time to itemize the sediment budget for landscape elements into three components: (1) the soil from the element that left the watershed with run‐off; (2) soil from the element that was redeposited on lower positions, with the spatial distribution of that deposition; and (3) soil originating from the upper positions and deposited on the element, with quanti?cation of relative source areas. The results are incongruous with the current morphology of the watershed, suggesting that diffusion‐type erosion must also play a major role in de?ning the evolution of this landscape. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A database composed of 673 natural rainfall events with sediment concentration measurements at the field or plot scale was analysed. Measurements were conducted on similar soil type (loess soils prone to sealing phenomenon) to apprehend the variability and complexity involved in interrill erosion processes attributable to soil surface conditions. The effects of the dominant controlling factors are not described by means of equations; rather, we established a classification of potential sediment concentration domain according to combination of the dominant parameters. Thereby, significant differences and evolution trends of mean sediment concentration between the different parameter categories are identified. Further, when parameter influences interact, it allows us to discern the relative effects of factors according to their respective degree of expression. It was shown that crop cover had a major influence on mean sediment concentration, particularly when soil surface roughness is low and when maximum 6‐min intensity of rainfall events exceeds 10 mm h?1: mean sediment concentration decreases from 8·93 g l?1 for 0–20 per cent of coverage to 0·97 g l?1 for 21–60 per cent of coverage. The established classification also indicates that the increase of the maximum 6‐min intensity of the rainfall factor leads to a linear increase of mean sediment concentration for crop cover over 21 per cent (e.g. from 2·96 g l?1 to 14·44 g l?1 for the 1–5 cm roughness class) and to an exponential increase for low crop cover (e.g. from 3·92 g l?1 to 58·76 g l?1 for the 1–5 cm roughness class). The implication of this work may bring perspective for erosion prediction modelling and give references for the development of interrill erosion equation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Surfactants are chemical compounds that can change the contact angle of a water drop on solid surfaces and are commonly used to increase infiltration into water repellent soil. Since production fields with water repellent soil often contain areas of wettable soil, surfactants applied to such fields worldwide will likely be applied to wettable soil, with unknown consequences for irrigation‐induced erosion, runoff, or soil water relations. We evaluated surfactant and simulated sprinkler irrigation effects on these responses for three wettable, Pacific Northwest soils, Latahco and Rad silt loams, and Quincy sand. Along with an untreated control, we studied three surfactants: an alkyl polyglycoside (APG) in solution at a concentration of 18 g active ingredient (AI) kg?1, a block copolymer at 26 g kg?1, and a blend of the two at 43 g kg?1. From 2005 to 2009 in the laboratory, each surfactant was sprayed at a rate of 46·8 l ha?1 onto each soil packed by tamping into 1·2‐ by 1·5‐m steel boxes. Thereafter, each treated soil was irrigated twice at 88 mm h?1 with surfactant‐free well water. After each irrigation, runoff and sediment loss were measured and soil samples were collected. While measured properties differed among soils and irrigations, surfactants had no effect on runoff, sediment loss, splash loss, or tension infiltration, compared to the control. Across all soils, however, the APG increased volumetric water contents by about 3% (significant at p≤0·08) at matric potentials from 0 to ? 20 kPa compared to the control. With a decrease in the liquid–solid contact angle on treated soil surfaces, surfactant‐free water appeared able to enter, and be retained in pores with diameters ≥ 15 µm. All told, surfactants applied at economic rates to these wettable Pacific Northwest soils posed little risk of increasing either runoff or erosion or harming soil water relations. Moreover, by increasing water retention at high potentials, surfactants applied to wettable soils may allow water containing pesticides or other agricultural chemicals to better penetrate soil pores, thereby increasing the efficacy of the co‐applied materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The results of erosion studies carried out at three representative sites in the European Mediterranean basin are discussed. The objectives of the study are to clarify the underlying processes affecting soil erosion and to quantify erosion and runoff in the framework of mitigation of land degradation. The study was carried out at three instrumented field stations using similar layouts and experimental set-ups and harmonized field procedures. Runoff and sediment yield from bounded plots were measured for different types of land use for longer periods. The runoff and sediment values were found to be relatively low, and showed average annual values between 2·0 and 8·9 1 m−2 for runoff, and between 20·2 and 28·1 g m−2 for sediment yield. The results show that the individual plot response on an event basis shows no relationship between runoff and sediment yield for two of the three sites. On an annual average basis a significant relationship is found between the runoff and sediment yield. Significant differences were observed between different types of land use, especially between semi-natural vegetation, burned and abandoned field cover types on the one hand, and agricultural fields on the other hand. The runoff and erosion values were lowest for the semi-natural fields. It was found that in non-cultivated fields the bounded plots might suffer from depletion of available sediment. It can be concluded that erosion figures are very low for the sites studied, and that the maintenance of semi-natural vegetation may help in the prevention of runoff generation and erosion. It can be concluded that the use of bounded plots may not be as ideal as might be expected from its wide application. In some cases open plots, especially under semi-natural land use, may produce much better results, especially when measuring over longer periods. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号