首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
A shore platform on the western coast of Galicia in northwestern Spain has been inherited from interglacial stages when sea level was similar to today. The wide, gently sloping intertidal platform is backed in places by supratidal rock ledges, and in other places by a steeper and narrower supratidal ramp. The gradient of the intertidal platform is consistent with the relationship between platform gradient and tidal range, but the slope of the ramp is much too high. The abandoned and degraded sea cliff is grass-covered along most of this coast, and the ledges and the ramp, which extend up to several metres above the highest tides, are covered by lichen and, in places, by salt-tolerant plants. Radiocarbon-dated sediments in the cliff, which range up to 36 000 years in age, lie on top of an ancient beach deposit. The former beach, remnants of which are found in situ on the ramp and rock ledges, as well as two caves that are filled with the dated sediments, are probably last interglacial in age. The morphological and sedimentary evidence suggests that the supratidal ramp and ledges were also formed during the last interglacial stage, whereas the wider intertidal platform is probably the product of several older interglacials, when sea level was generally similar to today. A general model is proposed for the inheritance of shore platforms in macro- and microtidal environments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Deposits of late‐Holocene beach sand buried conifer forests episodically emerge on beaches of the Oregon coast. Simultaneously, sand dunes buried late‐Holocene forests growing on marine terraces landward of the beaches. Dune ramps, up to 60 m in elevation, connected the beach and dune deposits. The average age of wood samples from stumps rooted on the shore platforms is 3·07 ± 1·45 ka. The average age of wood and charcoal samples embedded in forest soil on the marine terraces is 3·27 ± 1·46 ka. Between 1994 and 2006, winter storm waves exposed more than 4·5 km2 of late‐Holocene forest soil on shore platforms at 19 localities. Rooted stumps without soil were uncovered at an additional 14 localities. Once exposed, wave action eroded the soil rapidly (one to two years). The intact forest soil and roots on the shore platforms must have been nearly continuously buried, protected and preserved prior to recent exposure. The late‐Holocene buried forest provides the basis for a conceptual model of coastal evolution. A three stage reversal of erosion and sand supply must have occurred: (1) wave erosion switched to seaward advancement of forests, (2) forest growth and soil development switched to burial beneath beach and dune sand and (3) burial and preservation switched to wave erosion, truncation of dune ramps and landward retreat of sea cliffs. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Beaches are common features of many rocky shorelines and can be considered to be constrained by the underlying geology. In mesotidal to macrotidal areas the slope of the substrate and sediment supply are the primary factors in constraining the size and development of beaches on shore platforms. In microtidal settings it is not known if these factors are wholly responsible for determining the presence of beaches on shore platforms, nor the contribution of other factors such as hydrodynamics. The microtidal coast of Victoria, Australia, is surveyed in this study in order to quantify the morphological boundary conditions that constrain beach development on semi‐horizontal shore platforms. An ample sediment supply indicates that the underlying geology is controlling the presence and absence of beaches. Where beaches occur they always overlie a rock ramp which is the steepest part of the platform. The two most important morphological constraints were platform width and height both of which significantly correlated with beach volume. An elevational threshold exists at just over +1.0 m where beaches cannot accumulate. Below this threshold, platform width appears to be the principle constraining factor in beach accumulation. An evolutionary model is inferred which suggests that dissipation of wave energy associated with platform widening plays an important role in allowing beaches to accumulate. The model suggests beaches on platforms will be particularly sensitive to sea level rise. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The Atlantic coast of Galicia (NW Spain) is a high-energy environment where shingle beaches are currently developing. These coarser sediments alternate with sandy deposits which are also considered as beaches typical of a low-energy environment. The physical association of both types of sediment with contrasted sedimentary significance raises problems of interpretation. The study of four outcrops of fossil aeolianites on this coast has allowed us to reconstruct their evolution from the end of the Upper Pleistocene to the present day. Their chronology, estimated by optically stimulated luminescence between 35 and 14 ky at the end of the last glaciation (MIS2), coincides with a local sea level 120 m below the present one. This implies a coastline shifted several kilometres from its current location and the subaerial exposure of a wide strip of the continental shelf covered by sands. The wind blew sand to form dunes towards the continent, covering the coastal areas, which then emerged with no other limitation than the active river channels. Sea-level rise during the Holocene transgression has progressively swamped these aeolian deposits, leaving only flooded dunes, relict coastal dunes and climbing dunes on cliffs up to 180 m high. The aeolian process continued as long as there was a sandy source area to erode, although accretion finished when the sea reached its current level (Late Holocene). Since then, the wind turned from accretion to erosion of the dunes and sand beaches. This erosion exposes the older shingle beaches (probably of Eemian age) buried under the aeolian sands, as well as old, submerged forest remains and megalithic monuments. The destruction of sand beaches and dunes currently observed along the Galician coast is linked, according to most researchers, to anthropogenic global warming. However, their management should consider these evolutive issues.  相似文献   

5.
Infragravity wave (IGW) transformation was quantified from field measurements on two shore platforms on New Zealand's east coast, making this the first study to describe the presence, characteristics and behaviour of IGWs on rock platform coasts. Data was collected using a cross‐shore array of pressure transducers during a 22 hour experiment on Oraka shore platform and a 36 hour experiment at Rothesay Bay shore platform. A low pass Fourier filter was used to remove gravity wave frequency oscillations, allowing separate analysis of IGWs and the full wave spectrum. Offshore IGW heights were measured to be 7 cm (Oraka) and 9 cm (Rothesay Bay), which were 21% (Oraka) and 7.5% (Rothesay Bay) the height of incident wave height. At the cliff toe, significant IGW height averaged 15 cm at Oraka and 13 cm at Rothesay Bay. This increase in IGW height over the platform during both experiments is attributed to shoaling of 40 to 55% over the last 50–60 m before the cliff toe, respectively. Shoaling across the platform was quantified as the change in IGW height from the platform edge to cliff toe, resulting in a maximum increase of 1·88 and 2·63 on Rothesay Bay and Oraka platforms. IGW height at the cliff toe showed a strong correlation with incident wave height. The proportional increase in IGW height shows a strong correlation to water level on each platform. The rate of shoaling of long period waves on the shallow, horizontal platforms increased at higher water levels resulting in a super elevation in water level at the cliff toe during high tide. Greater IGW shoaling was also observed on the wider (Oraka) shore platform. Results from this study show the first measurements of IGWs on shore platforms and identify long wave motion a significant process in a morphodynamic understanding of rock coast. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A mathematical model was used to investigate the effect of glacially induced fluctuations in sea level on the evolution of wave‐cut shore platforms and erosional continental shelves during the Quaternary. The model used two deep‐water wave sets, which were used to calculate breaker height and depth, and the force of the waves at the waterline, according to the width and bottom roughness of the surf zone and the gradient of the submarine slope. The model also incorporated an erosional threshold related to the strength of the rocks, the number of hours each year in which the water level is at each intertidal elevation and the amount and persistence of the debris at the cliff foot. Most runs were made using a sea level model that consisted of 26 glacial cycles from 2 million to 0·9 million years ago, and nine, of approximately twice the amplitude and wavelength, in the last 0·9 million years. The model emphasized the dynamic association between the contemporary intertidal platform and the continental shelf. Both surfaces trend towards a state of static equilibrium under oscillating sea level conditions, when attenuated waves are unable to continue eroding the rock. If there has not been enough time to reduce the gradient of the shallower portions of the continental shelf, however, intertidal shore platforms can be in a temporary, though possibly long‐lasting, state of dynamic equilibrium. The model suggests that most platforms are, at least in part, inherited from one, or in many cases more, interglacial stages when sea level was similar to today's. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
In November 2002, the sinking of the Prestige oil tanker off the Galician coast (N.W. Spain) caused the largest ecological catastrophe in the history of Spain, affecting the coast called the 'Costa da Morte' (Galicia, N.W. Spain). This work is focused on the study of the oil contamination of the intertidal area of two beaches located on this stretch of coast. The study of twenty cores extracted from both beaches has identified fuel embedded in the sedimentary column up to a depth of 2.38 m (this being the maximum depth of extraction). This, along with the presence of oil below the groundwater indicates the existence of a new factor which determines the burial of oil: the morphodynamic behaviour of the beach. Furthermore, this morphodynamic variation conditions the physical appearance of the buried oil. Four different types have been identified: tar-balls (cm), particles (mm), oil coatings on sediment grains and on emulsion, with distribution patterns conditioned by the degree of wave exposure. The analysis of the information obtained have permitted the development of a conceptual model of the burial and oil evolution in the sedimentary column in relation to wave exposure, and thus to the morphodynamic variability of the beach.  相似文献   

8.
The formation of beach rocks has a close relationship to storm deposits, denoted by beach and storm processes in association with depositional characteristics of the beach rocks found in Pui O and Lower Cheung Sha bays on the southern coast of Lantau Island, Hong Kong. Although not all beach rocks have an origin of storm deposits, it is certain that some of them with very coarse shells and shell fragments developing on sandy beaches originate from storm deposits. The cementation of beach rocks on a beach was affected directly by the texture and structure of the beach rocks and wave energy varying along the beach.  相似文献   

9.
The southwest coast of England was subjected to an unusually energetic sequence of Atlantic storms during the 2013/2014 winter, with the 8‐week period from mid‐December to mid‐February representing the most energetic period since at least 1953. A regional analysis of the hydrodynamic forcing and morphological response of these storms along the SW coast of England highlighted the importance of both storm‐ and site‐specific conditions. The key factor that controls the Atlantic storm wave conditions along the south coast of southwest England is the storm track. Energetic inshore wave conditions along this coast require a relatively southward storm track which enables offshore waves to propagate up the English Channel relatively unimpeded. The timing of the storm in relation to the tidal stage is also important, and coastal impacts along the macro‐tidal southwest coast of England are maximised when the peak storm waves coincide with spring high tide. The role of storm surge is limited and rarely exceeds 1 m. The geomorphic storm response along the southwest coast of England displayed considerable spatial variability; this is mainly attributed to the embayed nature of the coastline and the associated variability in coastal orientation. On west‐facing beaches typical of the north coast, the westerly Atlantic storm waves approached the coastline shore‐parallel, and the prevailing storm response was offshore sediment transport. Many of these north coast beaches experienced extensive beach and dune erosion, and some of the beaches were completely stripped of sediment, exposing a rocky shore platform. On the south coast, the westerly Atlantic storm waves refract and diffract to become southerly inshore storm waves and for the southeast‐facing beaches this results in large incident wave angles and strong eastward littoral drift. Many south coast beaches exhibited rotation, with the western part of the beaches eroding and the eastern part accreting. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

10.
The bio-reef-chert suite is an important ore-bearing rock assemblage and one of the metallogenic rock suites of superlarge ore deposits. It is formed as a fixed and ordered suite in space and time, and composed of different rocks formed by different geological processes. It is the product of basin evolution at special stage in a special geological setting. It is also the comprehensive product of normal sedimentary process, biological process in basin, hydrothermal sedimentary process under basin base and magmatic process in the deep lithosphere.  相似文献   

11.
An Erratum has been published for this article in Earth Surface Processes and Landforms 27(7) 2004, 931. Lord Howe Island, in the northern Tasman Sea, is a remnant of a much larger Late Miocene basaltic shield volcano. Much of the island's coastline is exposed to waves that have unlimited fetch, but a marked contrast is provided by a fringing coral reef and lagoon that very effectively attenuate wave energy along a portion of the western coastline. The geology of the island is varied, with hard and resistant basalt lavas, breccias and tuffs of intermediate resistance, and highly erodible eolianites. This variability provides an excellent opportunity to examine the in?uence of rock resistance on the development of the spectacular rock coast landforms that occur around the island. The hardness of rocks and the extent of weathering around the coastline were assessed using a Schmidt hammer, and statistical analysis was undertaken to remove outlying values. On all but one occasion, higher mean rebound values were returned from fresh surfaces than weathered surfaces, but only half of these differences were statistically signi?cant. Shore platforms with two distinct levels are juxtaposed along two stretches of coastline and Schmidt hammer results lend support to hypotheses that the raised surfaces may be inherited features. Relative rock resistance was assessed through a combination of Schmidt hammer data and measurements of joint density, and constrained on the basis of morphological data. This approach formed a basis for examining threshold conditions for sea‐cliff erosion at Lord Howe Island in the context of the distribution of resistant plunging cliffs and erosional shore platforms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Rocky shores are complex landforms that result from marine erosion and subaerial weathering. They are time‐integrated features where their present day form is the result of instantaneous erosion, often on the millimetre to sub‐metre scale, occurring for centuries to millennia. As a result, research on rocky coasts focuses on a range of temporal and spatial scales from granular‐scale swelling of a rock surface and instantaneous wave impact to modelling millennial‐scale sea level drivers. The challenge for rocky coast researchers is either to upscale or to downscale their results to the human‐timescales of greatest interest to managers. The research presented in Earth Surface Processes and Landforms over the past 3 years highlights the range of spatial and temporal approaches to the study of coastal cliffs and shore platforms. We identify a key temporal and spatial gap in current research. Seasonal–annual timeframes over hundreds of metres to kilometre scale studies appear to be lacking and are likely critical in understanding the future evolution of rocky coasts, especially their response to climate change. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
The coast of Wellington, New Zealand, is tectonically active and contains a series of uplifted and contemporary shore platforms that are developed in Triassic Greywacke. The platform profiles are rugged with relief of metre scale common. The surveyed platforms were formed at, and at two distinct levels 1–1·5 and 2–2·5 m above, mean sea level. They range in width up to 70 m and are highly fractured with fracture densities in excess of 20[sol ]m2 common. The rate of development of these platforms is rapid, with lateral erosion rates of up to 0·15 m[sol ]yr calculated, allowing platform development to occur over centennial scales. Even given this rapid development, continued instantaneous uplift of the coast has meant they are unable to reach an equilibrium state, whereby the effectiveness of wave processes in removing material is reduced by platform extension. The co‐seismic uplift means that the rear of the platforms is raised beyond the limits of marine process and has become an area of deposition. Although no direct process measurements were made the highly fractured nature of the bedrock appears to play a major role in platform evolution, with wave processes being easily able to pluck blocks as evidenced by fresh erosion scars and active gravel beaches at the rear of many platforms. This coast therefore represents an extremely dynamic youthful shore platform environment, where the processes of marine abrasion can be observed over historical timescales. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Trinidad and Tobago beaches were periodically sampled for tar between July 1980 and September 1981. This project was carried out by the Institute of Marine Affairs in cooperation with the United Nations. The Caribbean coasts of both islands were almost pristine, whereas pollution on the Atlantic coast beaches was comparable to that of other coasts along major tanker routes. The source of high tar concentrations on the Atlantic coasts may be attributed to the residues from tanker bilge cleanings, which are carried along the South Equatorial Current, eventually to strand on the islands' beaches. In the dry season (January to April) north-westerly currents and north-easterly winds prevail and more tar strands on Trinidad than on Tobago. In the wet season (June to November), however, when currents are more northerly and south-easterly wind prevail, the reverse situation holds and more tar strands on Tobago.  相似文献   

15.
16.
17.
Knowledge and understanding of shore platform erosion and tidal notch development in the tropics and subtropics relies mainly on short‐term studies conducted on recently deposited carbonate rocks, predominantly Holocene and Quaternary reef limestones and aeolianites. This paper presents erosion rates, measured over a 10 year period on notches and platforms developed on the Permian, Ratburi limestone at Phang Nga Bay, Thailand. In so doing it contributes to informing a particular knowledge gap in our understanding of the erosion dynamics of shore platform and tidal notch development in the tropics and subtropics – notch erosion rates on relatively hard, ancient limestones measured directly on the rock surface using a micro‐erosion meter (MEM) over time periods of a decade or more. The average intertidal erosion rate of 0.231 mm/yr is lower than erosion rates measured over 2–3 years on recent, weaker carbonate rocks. Average erosion rates at Phang Nga vary according to location and site and are, in rank order from highest to lowest: Mid‐platform (0.324 mm/yr) > Notch floor (0.289 mm/yr) > Rear notch wall (0.228 mm/yr) > Lower platform (0.140 mm/yr) > Notch roof (0.107 mm/yr) and Supratidal (0.095 mm/yr). The micro‐relief of the eroding rock surfaces in each of these positions exhibits marked differences that are seemingly associated with differences in dominant physical and bio‐erosion processes. The results begin to help inform knowledge of longer term shore platform erosion dynamics, models of marine notch development and have implications for the use of marine notches as indicators of changes in sea level and the duration of past sea levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
1 INTRODUCnONThe comPonents of terrigenous sedimenop rocks indicate not only provenance information, but alsotoctOnic evolution of basin. The chdrical composition of the soure rOCks is probaby the major conttDon the chendstry of sedimentny rocks although this can be greaily modified by subsequent Processes(Rollinson l993). Thus, through exndning Petrological and chendcal comPosihons of tenigenoussedlinmp rocks, the comPonentS of the provenance or somee rOCks - which are conunnly a fun…  相似文献   

19.
Four sample sets of the Upper and Middle Loire river sands were analyzed in order to study the impact of natural and anthropogenic factors on their petrographic composition in space (on an 800 km stretch) and time. Composition was determined by modal analysis of three sand-size fractions using a polarizing optical microscope and calculated for each sample (“standard sand” = Sst). The watershed is composed mainly of endogenic (Massif Central) and sedimentary (southern Parisian Basin) rocks. B-set sands collected in channels for different water flows in 1996 show that Sst compositions vary by only 5 %. Present-day sands in the Upper Loire and Middle Loire have very high petrographic immaturity comparing to others worldwide fluvial sands, although bio-climatic conditions favor sand maturation by source-rock weathering in the watershed. This shows the strong impact of the Massif Central on sediment yield due to relief rejuvenation as a consequence of the formation of the Alps during the Quaternary. Fluvial sands stored during the Weichselian and the Holocene in the Middle Loire floodplain, although partly weathered since their deposition, show higher inputs from the endogenic rocks of the Massif Central than present-day deposits. This can be explained by Weichselian periglacial conditions and the development of crop farming since the Neolithic, which favored mechanical erosion, particularly in the Massif Central which is characterized by a cold, humid climate and steep slopes. The upstream-downstream change in the composition of presently deposited sand is low in the diked area. It shows however that basalt and some heavy mineral grains are vulnerable to abrasion during transport and indicates a marked sediment yield from ancient sediment stored in the floodplain. This is in line with the high incision of the river bed over the last 150 years partly due to dam construction and aggregate mining.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号