首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudo‐dynamic tests on a large‐scale model of an existing six‐pier bridge were performed at the ELSA laboratory using the substructuring technique. Two physical pier models were constructed and tested in the laboratory, while the deck, the abutments and the remaining four piers were numerically modeled on‐line. These tests on a large‐scale model of an existing bridge are the first to have been performed considering non‐linear behavior for the modeled substructure. Asynchronous input motion, generated for the specific bridge site, was used for the abutments and the pier bases. Three earthquake tests with increasing intensities were carried out, aimed at the assessment of the seismic vulnerability of a typical European motorway bridge designed prior to the modern generation of seismic codes. The experimental results confirm the poor seismic behavior of the bridge, evidenced by irregular distribution of damage, limited deformation capacity, tension shift effects and undesirable failure locations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
It has been well documented that following a major earthquake a substantial percentage of economic loss results from downtime of essential lifelines in and out of major urban centres. This has thus led to an improvement of both performance‐based seismic design philosophies and to the development of cost‐effective seismic structural systems capable of guaranteeing a high level of protection, low structural damage and reduced downtime after a design‐level seismic event. An example of such technology is the development of unbonded post‐tensioned techniques in combination with rocking–dissipating connections. In this contribution, further advances in the development of high‐performance seismic‐resistant bridge piers are achieved through the experimental validation of unbonded post‐tensioned bridge piers with external, fully replaceable, mild steel hysteretic dissipaters. The experimental response of three 1 : 3 scale unbonded, post‐tensioned cantilever bridge piers, subjected to quasi‐static and pseudo‐dynamic loading protocols, are presented and compared with an equivalently reinforced monolithic benchmark. Minimal physical damage is observed for the post‐tensioned systems, which exhibit very stable energy dissipation and re‐centring properties. Furthermore, the external dissipaters can be easily replaced if severely damaged under a major (higher than expected) earthquake event. Thus, negligible residual deformations, limited repair costs and downtime can be achieved for critical lifeline components. Satisfactory analytical–experimental comparisons are also presented as a further confirmation of the reliability of the design procedure and of the modelling techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper deals with the seismic response assessment of an old reinforced concrete viaduct and the effectiveness of friction‐based retrofitting systems. Emphasis was laid on an old bridge, not properly designed to resist seismic action, consisting of 12 portal piers that support a 13‐span bay deck for each independent roadway. On the basis of an OpenSEES finite element frame pier model, calibrated in a previous experimental campaign with cyclic displacement on three 1:4 scale frame piers, a more complex experimental activity using hybrid simulation has been devised. The aim of the simulation was twofold: (i) to increase knowledge of non‐linear behavior of reinforced concrete frame piers with plain steel rebars and detailing dating from the late 1950s; and (ii) to study the effectiveness of sliding bearings for seismic response mitigation. Hence, to explore the performance of the as built bridge layout and also of the viaduct retrofitted with friction‐based devices, at both serviceability and ultimate limit state conditions, hybrid simulation tests were carried out. In particular, two frame piers were experimentally controlled with eight‐actuator channels in the as built case while two frame piers and eight sliding bearings were controlled with 18‐actuator channels in the isolated case. The remaining frame piers were part of numerical substructures and were updated offline to accurately track damage evolution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
With the launch of the high‐speed train project in California, the seismic risk is a crucial concern to the stakeholders. To investigate the seismic behavior of future California High‐Speed Rail (CHSR) bridge structures, a 3D nonlinear finite‐element model of a CHSR prototype bridge is developed. Soil‐structure and track‐structure interactions are accounted for in this comprehensive numerical model used to simulate the seismic response of the bridge and track system. This paper focuses on examining potential benefits and possible drawbacks of the a priori promising application of seismic isolation in CHSR bridges. Nonlinear time history analyses are performed for this prototype bridge subjected to two bidirectional horizontal historical earthquake ground motions each scaled to two different seismic hazard levels. The effect of seismic isolation on the seismic performance of the bridge is investigated through a detailed comparison of the seismic response of the bridge with and without seismic isolation. It is found that seismic isolation significantly reduces the deck acceleration and the force demand in the bridge substructure (i.e., piers and foundations), especially for high‐intensity earthquakes. However, seismic isolation increases the deck displacement (relative to the pile cap) and the stresses in the rails. These findings imply that seismic isolation can be promisingly applied to CHSR bridges with due consideration of balancing its beneficial and detrimental effects through using appropriate isolators design. The optimum seismic isolator properties can be sought by solving a performance‐based optimum seismic design problem using the nonlinear finite‐element model presented herein. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Steel rectangular section columns with stiffened plates are commonly used for elevated highway bridges in the urban areas of Japan. The seismic design of bridge piers is usually performed by dynamic analysis in the horizontal direction using various independent directional seismic acceleration data. However, this simple treatment does not reflect the effect of bilateral loading as a structural response to inelastic interaction. In this study, unidirectional and bidirectional loading hybrid tests were conducted to examine the seismic response and performance of square cross‐sections of steel bridge piers subjected to bidirectional seismic accelerations. Comparison of the results of unidirectional and bidirectional loading tests revealed that the maximum load is the same as the average of unidirectional loading in the NS and EW directions; however, the maximum response displacement and residual displacement increase in proportion with hard to soft ground types. Moreover, a modified seismic design is proposed considering these bidirectional loading effects. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Over the last two decades, the probabilistic assessment of reinforced concrete (RC) structures under seismic hazard has been developed rapidly. However, little attention has been devoted to the assessment of the seismic reliability of corroded structures. For the life‐cycle assessment of RC structures in a marine environment and earthquake‐prone regions, the effect of corrosion due to airborne chlorides on the seismic capacity needs to be taken into consideration. Also, the effect of the type of corrosive environment on the seismic capacity of RC structures has to be quantified. In this paper, the evaluation of the displacement ductility capacity based on the buckling model of longitudinal rebars in corroded RC bridge piers is established, and a novel computational procedure to integrate the probabilistic hazard associated with airborne chlorides into life‐cycle seismic reliability assessment of these piers is proposed. The seismic demand depends on the results of seismic hazard assessment, whereas the deterioration of seismic capacity depends on the hazard associated with airborne chlorides. In an illustrative example, an RC bridge pier was modeled as single degree of freedom (SDOF). The longitudinal rebars buckling of this pier was considered as the sole limit state when estimating its failure probability. The findings show that the life‐cycle reliability of RC bridge piers depends on both the seismic and airborne chloride hazards, and that the cumulative‐time failure probabilities of RC bridge piers located in seismic zones can be dramatically affected by the effect of airborne chlorides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper aims at clarifying the role of dynamic soil–structure interaction in the seismic assessment of structure and foundation, when the non‐linear coupling of both subsystems is accounted for. For this purpose, the seismic assessment of an ideal set of bridge piers on shallow foundations is considered. After an initial standard assessment, based on capacity design principles, the evaluation of the seismic response of the piers is carried out by dynamic simulations, where both the non‐linear responses of the superstructure and of the foundation are accounted for, in the latter case through the macro‐element modeling of the soil–foundation system. The results of the dynamic simulations point out the beneficial effects of the non‐linear response of the foundation, which provides a substantial contribution to the overall energy dissipation during seismic excitation, thus allowing the structural ductility demand to decrease significantly with respect to a standard fixed‐base or linear‐elastic base assessment. Permanent deformations at the foundation level, such as rotation and settlement, turn out to be of limited amount. Therefore, an advanced assessment approach of the integrated non‐linear system, consisting of the interacting foundation and superstructure, is expected to provide more rationale and economic results than the standard uncoupled approach, which, neglecting any energy dissipation at the foundation level, generally overestimates the ductility demand on the superstructure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The biaxial response of two bridge piers is experimentally investigated. A post‐tensioned precast bridge pier with external replaceable mild‐steel dissipaters is tested under biaxial loading. The performance of the post‐tensioned bridge pier is compared with a conventionally reinforced monolithic bridge pier. The experimental biaxial response is then compared with previous uniaxial experimental testing of identical bridge piers to understand the influence of biaxial loading, specifically concerning post‐tensioned rocking sections. A 3‐dimensional moment–curvature and moment–rotation analysis program is created to generate the monotonic section response of a conventional and post‐tensioned bridge pier. After comparing the accuracy of the section analysis program to the experimental testing of the monolithic pier, the program is validated against the experimental testing of the post‐tensioned bridge pier. This section analysis program is then used in the calibration of a macro‐model to capture the entire cyclic response of the post‐tensioned bridge pier. The macro‐model adopts multiple linear‐elastic compression‐only springs at the rocking interface, combined with non‐linear inelastic springs for each of the mild‐steel dissipaters and returns encouraging results at both local and global levels. The paper concludes with a number of biaxial moment‐interaction design charts for monolithic and post‐tensioned bridge piers as a function of mechanical and geometric section properties. The design charts define the biaxial yield surface at nominal yield and at the design section capacity defined by one of three material limit states. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A simplified seismic design procedure for steel portal frame piers installed with hysteretic dampers is proposed, which falls into the scope of performance‐based design philosophy. The fundamental goal of this approach is to design a suite of hysteretic damping devices for existing and new bridge piers, which will assure a pre‐defined target performance against future severe earthquakes. The proposed procedure is applicable to multi‐degree‐of‐freedom systems, utilizing an equivalent single‐degree‐of‐freedom methodology with nonlinear response spectra (referred to as strength‐demanded spectra) and a set of formulae of close‐form expressions for the distribution of strength and stiffness produced in the structure by the designed hysteretic damping devices. As an illustrative example, the proposed procedure is applied to a design of a simple steel bridge pier of portal frame type with buckling‐restrained braces (one of several types of hysteretic dampers). For the steel portal frame piers, an attempt is made to utilize not only the displacement‐based index but also the strain‐based index as pre‐determined target performance at the beginning of design. To validate this procedure, dynamic inelastic time‐history analyses are performed using the general‐purpose finite element program ABAQUS. The results confirm that the proposed simplified design procedure attains the expected performance level as specified by both displacement‐based and strain‐based indices with sufficient accuracy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Modern highway bridges in Illinois are often installed with economical elastomeric bearings that allow for thermal movement of the superstructure, and steel fixed bearings and transverse retainers that prevent excessive movement from service‐level loadings. In the event of an earthquake, the bearing system has the potential to provide a quasi‐isolated response where failure of sacrificial elements and sliding of the bearings can cause a period elongation and reduce or cap the force demands on the substructure. A computational model that has been calibrated for the expected nonlinear behaviors is used to carry out a parametric study to evaluate quasi‐isolated bridge behavior. The study investigates different superstructure types, substructure types, substructure heights, foundation types, and elastomeric bearing types. Overall, only a few bridge variants were noted to unseat for design‐level seismic input in the New Madrid Seismic Zone, indicating that most structures in Illinois would not experience severe damage during their typical design life. However, Type II bearing systems, which consist of an elastomeric bearing and a flat PTFE slider, would in some cases result in critical damage from unseating at moderate and high seismic input. The sequence of damage for many bridge cases indicates yielding of piers at low‐level seismic input. This is caused by the high strength of the fixed bearing element, which justifies further calibration of the quasi‐isolation design approach. Finally, the type of ground motion, pier height, and bearing type were noted to have significant influence on the global bridge response. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The seismic behavior of steel bridge piers partially filled with concrete under actual earthquake conditions was investigated by using 20 square section specimens subjected to static cyclic loading tests and single‐directional and bidirectional hybrid loading tests. Acceleration records of two horizontal NS and EW directional components for hard (GT1), medium (GT2), and soft grounds (GT3), obtained during the 1995 Kobe earthquake, were adopted in dynamic tests. Experimental results clearly showed that maximum and residual displacements under actual earthquake conditions cannot be accurately estimated by conventional single‐directional loading tests, especially for GT2 and GT3. A modified admissible displacement was proposed on the basis of bidirectional loading test results. The concrete fill can effectively improve the seismic resistance performance if the concrete inside the steel bridge piers is sufficiently high in quantity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Bridge design should take into account not only safety and functionality, but also the cost effectiveness of investments throughout a bridge life‐cycle. This paper presents a probabilistic approach to compute the life‐cycle cost (LCC) of corroding reinforced concrete (RC) bridges in earthquake‐prone regions. The approach is developed by combining cumulative seismic damage and damage associated with corrosion due to environmental conditions. Cumulative seismic damage is obtained from a low‐cycle fatigue analysis. Chloride‐induced corrosion of steel reinforcement is computed based on Fick's second law of diffusion. The proposed methodology accounts for the uncertainties in the ground motion parameters, the distance from the source, the seismic demand on the bridge, and the corrosion initiation time. The statistics of the accumulated damage and the cost of repairs throughout the bridge life‐cycle are obtained by Monte‐Carlo simulation. As an illustration of the proposed approach, the effects of design parameters on the LCC of an example RC bridge are studied. The results are valuable in better estimating the condition of existing bridges and, therefore, can help to schedule inspection and maintenance programs. In addition, by taking into consideration the two deterioration processes over a bridge life‐cycle, it is possible to estimate the optimal design parameters by minimizing, for example, the expected cost throughout the life of the structure. A comparison between the effects of the two deterioration processes shows that, in seismic regions, the cumulative seismic damage affects the reliability of bridges over time more than the corrosion even for corrosive environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The scope of this study is to investigate the effect of the direction of seismic excitation on the fragility of an already constructed, 99‐m‐long, three‐span highway overpass. First, the investigation is performed at a component level, quantifying the sensitivity of local damage modes of individual bridge components (namely, piers, bearings, abutments, and footings) to the direction of earthquake excitation. The global vulnerability at the system level is then assessed for a given angle of incidence of the earthquake ground motion to provide a single‐angle, multi‐damage probabilistic estimate of the bridge overall performance. A multi‐angle, multi‐damage, vulnerability assessment methodology is then followed, assuming uniform distribution for the angle of incidence of seismic waves with respect to the bridge axis. The above three levels of investigation highlight that the directivity of ground motion excitation may have a significant impact on the fragility of the individual bridge components, which shall not be a priori neglected. Most importantly, depending on the assumptions made for the component to the system level transition, this local sensitivity is often suppressed. It may be therefore necessary, based on the ultimate purpose of the vulnerability or the life cycle analysis, to obtain a comprehensive insight on the multiple damage potential of all individual structural and foundation components under multi‐angle excitation, to quantify the statistical correlation among the distinct damage modes and to identify the components that are both most critical and sensitive to the direction of ground motion and carefully define their limit states which control the predicted bridge fragility. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
预应力节段拼装桥墩在地震作用下具有良好的自复位能力,而既有的损伤模型无法准确评估预应力节段桥墩的地震损伤。鉴于此,有必要研究预应力节段拼装桥墩的地震损伤模型。从预应力节段桥墩的自复位特点和损伤机理出发,对自复位性能表征方法进行简化,提出采用自复位修正因子来对桥墩在地震作用下的累积耗能进行修正,从而获得考虑桥墩自复位性能的地震损伤评估模型。在此基础上,划分预应力节段拼装桥墩的损伤状态,最后验证该地震损伤模型及损伤分级方法的适用性。结果表明:预应力节段桥墩的自复位性能与耗能损伤之间呈现明显的相关性,考虑桥墩自复位的地震损伤模型和分级方法适用于不同的预应力节段拼装桥墩,为定量评估预应力节段拼装桥墩在地震作用下的损伤程度打下基础。  相似文献   

15.
In light of recent earthquakes, structures damaged during an initial seismic event (mainshock) may be more vulnerable to severe damage and collapse during a subsequent event (aftershock). In this paper, a framework for the development of aftershock fragilities is presented; these aftershock fragilities define the likelihood that a bridge damaged during an initial event will exhibit a given damage state following one or more subsequent events. The framework is capable of (i) quantifying the cumulative damage of unrepaired bridges subjected to mainshock–aftershock sequences (effect of multiple earthquakes) and (ii) evaluating the effectiveness of column repair schemes such as steel and fiber‐reinforced‐polymer jackets (post‐repair effect of jackets). To achieve this aim, the numerical model of repaired columns is validated using existing experimental results. A non‐seismically designed bridge is chosen as a case study and is modeled for three numerical bridge models: a damaged (but unrepaired) bridge model, and two bridge models with columns repaired with steel and fiber‐reinforced polymer jackets. A series of back‐to‐back dynamic analyses under successive earthquakes are performed for each level of existing damage. Using simulated results, failure probabilities of components for multiple limit states are computed for each bridge model and then are used to evaluate the relative vulnerability of components associated with cumulative damage and column repair. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway lines are rapidly developed to connect major cities worldwide. This paper presents a finite element method‐based framework for dynamic analysis of coupled bridge–train systems under non‐uniform seismic ground motion, in which rail–wheel interactions and possible separations between wheels and rails are taken into consideration. The governing equations of motion of the coupled bridge–train system are established in an absolute coordinate system. Without considering the decomposition of seismic responses into pseudo‐static and inertia‐dynamic components, the equations of motion of the coupled system are formed in terms of displacement seismic ground motions. The mode superposition method is applied to the bridge structure to make the problem manageable while the Newmark‐β method with an iterative computation scheme is used to find the best solution for the problem concerned. Eight high‐speed trains running over a multi‐span steel truss‐arch bridge subject to earthquakes are taken as a case study. The results from the case study demonstrate that the spatial variation of seismic ground motion affects dynamic responses of the bridge–train system. The ignorance of pseudo‐static component when using acceleration seismic ground motions as input may underestimate seismic responses of the bridge–train system. The probability of separation between wheels and rails becomes higher with increasing train speed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents an analytical investigation on the seismic design and response of coupled wall structures that use unbonded post‐tensioned steel coupling beams. Both monolithic cast‐in‐place reinforced concrete wall piers and precast concrete wall piers are considered. Steel top and seat angles are used at the coupling beam ends for energy dissipation. The seismic design of prototype structures to achieve target displacement‐based performance objectives is evaluated based on nonlinear static and dynamic time history analyses. Additional recommendations are provided on shear design. Comparisons with ‘conventional’ structures that use embedded steel coupling beams as well as isolated walls with no coupling are provided. The results indicate that while the peak lateral displacements of unbonded post‐tensioned coupled wall structures are larger than the peak displacements of structures with embedded beams, the residual displacements are significantly reduced as a result of the restoring effect of the post‐tensioning steel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In Italy, as in other high seismic risk countries, many bridges, nowadays deemed ‘strategic’ for civil protection interventions after an earthquake, were built without antiseismic criteria, and therefore their seismic assessment is mandatory. Accordingly, the development of a seismic assessment procedure that gives reliable results and, at the same time, is sufficiently simple to be applied on a large population of bridges in a short time is very useful. In this paper, a displacement‐based procedure for the assessment of multi‐span RC bridges, satisfying these requirements and called direct displacement‐based assessment (DDBA), is proposed. Based on the direct displacement‐based design previously developed by Priestley et al., DDBA idealizes the multi DOF bridge structure as an equivalent SDOF system and hence defines a safety factor in terms of displacement. DDBA was applied to hypothetical bridge configurations. The same structures were analyzed also using standard force‐based approach. The reliability of the two methods was checked performing IDA with response spectrum compatible accelerograms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In the new trend of seismic design methodology, the static pushover analysis is recommended for simple or regular structures whilst the time‐history analysis is recommended for complex structures. To this end, the applicable range of the pushover analysis has to be clarified. This study aims at investigating the applicability of pushover analysis to multi‐span continuous bridge systems with thin‐walled steel piers. The focus is concentrated on the response demand predictions in longitudinal or transverse directions. The pushover analysis procedure for such structures is firstly summarized and then parametric studies are carried out on bridges with different types of superstructure‐pier bearing connections. The considered parameters, such as piers' stiffness distribution and pier–0.5ptdeck stiffness ratio, are varied to cover both regular and irregular structures. Finally, the relation of the applicability of pushover analysis to different structural formats is demonstrated and a criterion based on the higher modal contribution is proposed to quantitatively specify the applicable range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Highway bridges in highly seismic regions can sustain considerable residual displacements in their columns following large earthquakes. These residual displacements are an important measure of post‐earthquake functionality, and often determine whether or not a bridge remains usable following an earthquake. In this study, a self‐centering system is considered that makes use of unbonded, post‐tensioned steel tendons to provide a restoring force to bridge columns to mitigate the problem of residual displacements. To evaluate the proposed system, a code‐conforming, case‐study bridge structure is analyzed both with conventional reinforced concrete columns and with self‐centering, post‐tensioned columns using a formalized performance‐based earthquake engineering (PBEE) framework. The PBEE analysis allows for a quantitative comparison of the relative performance of the two systems in terms of engineering parameters such as peak drift ratio as well as more readily understood metrics such as expected repair costs and downtime. The self‐centering column system is found to undergo similar peak displacements to the conventional system, but sustains lower residual displacements under large earthquakes, resulting in similar expected repair costs but significantly lower expected downtimes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号