首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the applicability of an auto‐regressive model with exogenous inputs (ARX) in the frequency domain to structural health monitoring (SHM) is established. Damage sensitive features that explicitly consider non‐linear system input/output relationships are extracted from the ARX model. Furthermore, because of the non‐Gaussian nature of the extracted features, Extreme Value Statistics (EVS) is employed to develop a robust damage classifier. EVS provides superior performance to standard statistical methods because the data of interest are in the tails (extremes) of the damage sensitive feature distribution. The suitability of the ARX model, combined with EVS, to non‐linear damage detection is demonstrated using vibration data obtained from a laboratory experiment of a three‐story building model. It is found that the vibration‐based method, while able to discern when damage is present in the structure, is unable to localize the damage to a particular joint. An impedance‐based active sensing method using piezoelectric (PZT) material as both an actuator and a sensor is then investigated as an alternative solution to the problem of damage localization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents the feasibility of using an impedance‐based health monitoring technique in monitoring a critical civil facility. The objective of this research is to utilize the capability of the impedance method in identifying structural damage in those areas where a very quick condition monitoring is urgently needed, such as in a post‐earthquake analysis of a pipeline system. The basic principle behind this technique is to utilize high‐frequency structural excitation (typically greater than 30 kHz) through surface‐bonded piezoelectric sensors/actuators to detect changes in structural point impedance due to the presence of damage. Real‐time damage detection in pipes connected by bolted joints was investigated, and the capability of the impedance method in tracking and monitoring the integrity of the typical civil facility has been demonstrated. Data collected from the tests illustrates the capability of this technology to detect imminent damage under normal operating conditions and immediately after a natural disaster. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Damage to building structures due to underground blast‐induced ground motions is a primary concern in the corresponding determination of the safe inhabited building distance (IBD). Because of the high‐frequency nature of this category of ground motions and especially the presence of significant vertical component, the characteristics of structural response and damage differ from those under seismic type low‐frequency ground motions. This paper presents a numerical investigation aimed at evaluating reinforced concrete (RC) structure damage generated by underground blast‐induced ground excitation. In the numerical model, two damage indices are proposed to model reinforced concrete failure. A fracture indicator is defined to track the cracking status of concrete from micro‐ to macrolevel; the development of a plastic hinge due to reinforcement yielding is monitored by a plastic indicator; while the global damage of the entire structure is correlated to structural stiffness degradation represented by its natural frequency reduction. The proposed damage indices are calibrated by a shaking table test on a 1: 5‐scale frame model. They are then applied to analyse the structural damage to typical low‐ to high‐rise RC frames under blast‐induced ground motions. Results demonstrate a distinctive pattern of structural damage and it is shown that the conventional damage assessment methods adopted in seismic analysis are not applicable here. It is also found that the existing code regulation on allowable peak particle velocity of blast‐induced ground motions concerning major structural damage is very conservative for modern RC structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Past earthquake experiences indicate that most buildings designed in accordance with modern seismic design codes could survive moderate‐to‐strong earthquakes; however, the financial loss due to repairing cost and the subsequent business interruption can be unacceptable. Designing building structures to meet desired performance targets has become a clear direction in future seismic design practice. As a matter of fact, the performance of buildings is affected by structural as well as non‐structural components, and involves numerous uncertainties. Therefore, appropriate probabilistic approach taking into account structural and non‐structural damages is required. This paper presents a fuzzy–random model for the performance reliability analysis of RC framed structures considering both structural and non‐structural damages. The limit state for each performance level is defined as an interval of inter‐storey drift ratios concerning, respectively, the non‐structural and structural damage with a membership function, while the relative importance of the two aspects is reflected through the use of an appropriate cost function. To illustrate the methodology, herein the non‐structural damage is represented by infill masonry walls. The probabilistic drift limits for RC components and masonry walls from the associated studies are employed to facilitate the demonstration of the proposed model in an example case study. The results are compared with those obtained using classical reliability model based on single‐threshold performance definition. The proposed model provides a good basis for incorporating different aspects into the performance assessment of a building system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Partial‐strength composite steel–concrete moment‐resisting (MR) frame structures represent an open research field in seismic design from both a theoretical and an experimental standpoint. Among experimental techniques, vibration testing is a well‐known and powerful technique for damage detection, localization and quantification, where actual modal parameters of a structure at different states can be determined from test data by using system identification methods. However, the identification of semi‐rigid connections in framed structures is limited, and hence this paper focuses on a series of vibration experiments that were carried out on a realistic MR frame structure, following the application of pseudo‐dynamic and quasi‐static cyclic loadings at the European laboratory for structural assessment of the Joint Research Centre at Ispra, Italy, with the scope of understanding the structural behaviour and identifying changes in the dynamic response. From the forced vibration response, natural frequencies, damping ratios, modal displacements and rotations were extracted using the circle fitting technique. These modal parameters were used for local and global damage identification by updating a 3D finite element model of the intact structure. The identified results were then correlated with observations performed on the structure to understand further the underlying damage mechanisms. Finally, the latin hypercube sampling technique, a variant of the Monte Carlo method, was employed in order to study the sensitivity of the updated parameters of the 3D model to noise on the modal inputs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A theoretical framework is presented for the estimation of the physical parameters of a structure (i.e., mass, stiffness, and damping) from measured experimental data (i.e., input–output or output‐only data). The framework considers two state‐space models: a physics‐based model derived from first principles (i.e., white‐box model) and a data‐driven mathematical model derived by subspace system identification (i.e., black‐box model). Observability canonical form conversion is introduced as a powerful means to convert the data‐driven mathematical model into a physically interpretable model that is termed a gray‐box model. Through an explicit linking of the white‐box and gray‐box model forms, the physical parameters of the structural system can be extracted from the gray‐box model in the form of a finite element discretization. Prior to experimental verification, the framework is numerically verified for a multi‐DOF shear building structure. Without a priori knowledge of the structure, mass, stiffness, and damping properties are accurately estimated. Then, experimental verification of the framework is conducted using a six‐story steel frame structure under support excitation. With a priori knowledge of the lumped mass matrix, the spatial distribution of structural stiffness and damping is estimated. With an accurate estimation of the physical parameters of the structure, the gray‐box model is shown to be capable of providing the basis for damage detection. With the use of the experimental structure, the gray‐box model is used to reliably estimate changes in structural stiffness attributed to intentional damage introduced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Fragility functions are commonly used in performance‐based earthquake engineering for predicting the damage state of a structure subjected to an earthquake. This process often involves estimating the structural damage as a function of structural response, such as the story drift ratio and the peak floor absolute acceleration. In this paper, a new framework is proposed to develop fragility functions to be used as a damage classification/prediction method for steel structures based on a wavelet‐based damage sensitive feature (DSF). DSFs are often used in structural health monitoring as an indicator of the damage state of the structure, and they are easily estimated from recorded structural responses. The proposed framework for damage classification of steel structures subjected to earthquakes is demonstrated and validated with a set of numerically simulated data for a four‐story steel moment‐resisting frame designed based on current seismic provisions. It is shown that the damage state of the frame is predicted with less variance using the fragility functions derived from the wavelet‐based DSF than it is with fragility functions derived from an alternate acceleration‐based measure, the spectral acceleration at the first mode period of the structure. Therefore, the fragility functions derived from the wavelet‐based DSF can be used as a probabilistic damage classification model in the field of structural health monitoring and an alternative damage prediction model in the field of performance‐based earthquake engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a method for evaluating the residual structural capacity of earthquake‐affected steel structures. The method first quantifies the damage severity of a beam by computing the dynamic‐strain‐based damage index. Next, the model used to analyze the structure is updated based on the damage index, to reflect the observed damage conditions. The residual structural capacity is then estimated in terms of changes in stiffness and strength, which can be applied by structural engineers, via a nonlinear static analysis of the updated model. The main contributions of this paper are in performance evaluation of the dynamic‐strain‐based damage index for seismically induced damage using a newly developed substructure testing environment, consideration of various damage patterns in composite beams, and extension of a local damage evaluation technique to a residual capacity estimation procedure by incorporating the model‐updating technique. In laboratory testing, the specimens were damaged quasi‐statically, and vibration tests were conducted as the damage proceeded. First, a bare steel beam–column connection was tested, and then a similar one with a floor slab was used for a more realistic case. The estimated residual structural capacities for these specimens were compared with the static test results. The results verified that the proposed method can provide fine estimates of the stiffness and strength deteriorations within 10% for the specimen without the floor slab and within 30% for that with the floor slab. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Sustainability and resilience are issues that are recognized worldwide, and increased attention should be placed on strategies to design and maintain infrastructure systems that are hazard resilient, damage tolerant, and sustainable. In this paper, a methodology to evaluate the seismic sustainability and resilience of both conventional and base‐isolated steel buildings is presented. Furthermore, the proposed approach is used to explore the difference between the performance associated with these buildings by considering the three pillars of sustainability: economic, social, and environmental. Sustainability and resilience are both considered to cover a comprehensive performance‐based assessment content. The uncertainties associated with performance and consequence evaluation of structural and non‐structural components are incorporated within the assessment process. The proposed performance‐based assessment approach is illustrated on conventional and base‐isolated steel buildings under given seismic scenarios. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Output‐only system identification is developed here towards assessing current modal dynamic properties of buildings under seismic excitation. Earthquake‐induced structural response signals are adopted as input channels for two different Operational Modal Analysis (OMA) techniques, namely, a refined Frequency Domain Decomposition (rFDD) algorithm and an improved Data‐Driven Stochastic Subspace Identification (SSI‐DATA) procedure. Despite that short‐duration, non‐stationary, earthquake‐induced structural response signals shall not fulfil traditional OMA assumptions, these implementations are specifically formulated to operate with seismic responses and simultaneous heavy damping (in terms of identification challenge), for a consistent estimation of natural frequencies, mode shapes, and modal damping ratios. A linear ten‐storey frame structure under a set of ten selected earthquake base‐excitation instances is numerically simulated, by comparing the results from the two identification methods. According to this study, best up‐to‐date, reinterpreted OMA techniques may effectively be used to characterize the current dynamic behaviour of buildings, thus allowing for potential Structural Health Monitoring approaches in the Earthquake Engineering range.  相似文献   

11.
In this paper an approach is developed for establishing optimal maintenance (repair) strategies of structures in seismic zones. The approach is based on expected future costs and the main decision variable is a damage threshold for repair given an acceptable reliability level. It is considered that structural damage accumulates over a number of earthquakes until a threshold is reached or exceeded, after which the structure is repaired so that there is no remaining damage. A Markov model is implemented for such a process of damage accumulation during future earthquakes. An algorithm is proposed for computing non‐linear structural response to earthquakes using a damage function model. This algorithm is used to evaluate transition probabilities between damage states based on simulations of future earthquakes of given intensities. Expressions are derived for evaluating expected life‐cycle damage costs and structural reliability as a function of time and of the damage threshold for repair. As an application, a single‐degree‐of‐freedom structural system is studied. In addition, the paper addresses the case of instrumented structures where information from earthquake response records is available. Such information is incorporated into the formulation for maintenance strategies by means of a Bayesian approach for updating the probability distribution of structural damage and of non‐linear behaviour parameters so that predictions about costs and reliability are improved. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A structure's health or level of damage can be monitored by identifying changes in structural or modal parameters. However, the fundamental modal frequencies can sometimes be less sensitive to (localized) damage in large civil structures, although there are developing algorithms that seek to reduce this difficulty. This research directly identifies changes in structural stiffness due to modeling error or damage using a structural health monitoring method based on adaptive least mean square (LMS) filtering theory. The focus is on computational simplicity to enable real‐time implementation. Several adaptive LMS filtering based approaches are used to analyze the data from the IASC–ASCE Structural Health Monitoring Task Group Benchmark problem. Results are compared with those from the task group and other published results. The proposed methods are shown to be very effective, accurately identifying damage to within 1%, with convergence times of 0.4–13.0 s for the twelve different 4 and 12 degree of freedom benchmark problems. The resulting modal parameters match to within 1% those from the benchmark problem definition. Finally, the methods developed require 1.4–14.0 Mcycles of computation and therefore could easily be implemented in real time. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
A methodology is introduced to assess the post‐earthquake structural safety of damaged buildings using a quantitative relationship between observable structural component damage and the change in collapse vulnerability. The proposed framework integrates component‐level damage simulation, virtual inspection, and structural collapse performance assessment. Engineering demand parameters from nonlinear response history analyses are used in conjunction with component‐level damage simulation to generate multiple realizations of damage to key structural elements. Triggering damage state ratios, which describe the fraction of components within a damage state that results in an unsafe placard assignment, are explicitly linked to the increased collapse vulnerability of the damaged building. A case study is presented in which the framework is applied to a 4‐story reinforced concrete frame building with masonry infills. The results show that when subjected to maximum considered earthquake level ground motions, the probability of experiencing enough structural damage to trigger an unsafe placard, leading to building closure, is more than 2 orders of magnitude higher than the risk of collapse.  相似文献   

14.
By identifying changes in stiffness parameters, structural damage can be detected and monitored. Although considerable progress has been made in this research area, many challenges remain in achieving robust structural identification based on incomplete and noisy measurement signals. The identification task is made even more difficult if measurement of input force is to be eliminated. To this end, an output‐only structural identification strategy is proposed to identify unknown stiffness and damping parameters. A non‐classical approach based on genetic algorithms (GAs) is adopted. The proposed strategy makes use of the recently developed GA‐based method of search space reduction, which has shown to be able to accurately and reliably identify structural parameters from measured input and output signals. By modifying the numerical integration scheme, input can be computed as the parameter identification task is in progress, thereby eliminating the need to measure forces. Numerical and experimental results demonstrate the power of the strategy in accurate and efficient identification of structural parameters and damage using only incomplete acceleration measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
This work presents a novel neural network‐based approach to detect structural damage. The proposed approach comprises two steps. The first step, system identification, involves using neural system identification networks (NSINs) to identify the undamaged and damaged states of a structural system. The partial derivatives of the outputs with respect to the inputs of the NSIN, which identifies the system in a certain undamaged or damaged state, have a negligible variation with different system errors. This loosely defined unique property enables these partial derivatives to quantitatively indicate system damage from the model parameters. The second step, structural damage detection, involves using the neural damage detection network (NDDN) to detect the location and extent of the structural damage. The input to the NDDN is taken as the aforementioned partial derivatives of NSIN, and the output of the NDDN identifies the damage level for each member in the structure. Moreover, SDOF and MDOF examples are presented to demonstrate the feasibility of using the proposed method for damage detection of linear structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Lumped parameter models with a so called “gyro‐mass” element (GLPMs) have been proposed recently in response to a strong demand for efficiently and accurately representing frequency‐dependent impedance functions of soil–foundation systems. Although GLPMs are considered to be powerful tools for practical applications in earthquake engineering, some problems remain. For instance, although GLPMs show fairly close agreement with the target impedance functions, the accuracy of the transfer functions and the time‐histories of dynamic responses in structural systems comprising GLPMs have never been verified. Furthermore, no assessment has been performed on how much difference appears in the accuracy of dynamic responses obtained from GLPMs and those from conventional Kelvin–Voigt models comprising a spring and a dashpot arranged in parallel with various frequency‐independent constants. Therefore, in this paper, these problems are examined using an example of 2×4 pile groups embedded in a layered soil medium, supporting a single‐degree‐of‐freedom system subjected to ground motions. The results suggest that GLPMs are a new option for highly accurate computations in evaluating the dynamic response of structural systems comprising typical pile groups, rather than conventional Kelvin–Voigt models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper evaluates a recent record selection and scaling procedure of the authors that can determine the probabilistic structural response of buildings behaving either in the elastic or post‐elastic range. This feature marks a significant strength on the procedure as the probabilistic structural response distribution conveys important information on probability‐based damage assessment. The paper presents case studies that show the utilization of the proposed record selection and scaling procedure as a tool for the estimation of damage states and derivation of site‐specific and region‐specific fragility functions. The method can be used to describe exceedance probabilities of damage limits under a certain target hazard level with known annual exceedance rate (via probabilistic seismic hazard assessment). Thus, the resulting fragility models can relate the seismicity of the region (or a site) with the resulting building performance in a more accurate manner. Under this context, this simple and computationally efficient record selection and scaling procedure can be benefitted significantly by probability‐based risk assessment methods that have started to be considered as indispensable for developing robust earthquake loss models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper reviews the theoretical principles of subspace system identification as applied to the problem of estimating black‐box state‐space models of support‐excited structures (e.g., structures exposed to earthquakes). The work distinguishes itself from past studies by providing readers with a powerful geometric interpretation of subspace operations that relates directly to theoretical structural dynamics. To validate the performance of subspace system identification, a series of experiments are conducted on a multistory steel frame structure exposed to moderate seismic ground motions; structural response data is used off‐line to estimate black‐box state‐space models. Ground motions and structural response measurements are used by the subspace system identification method to derive a complete input–output state‐space model of the steel frame system. The modal parameters of the structure are extracted from the estimated input–output state‐space model. With the use of only structural response data, output‐only state‐space models of the system are also estimated by subspace system identification. The paper concludes with a comparison study of the modal parameters extracted from the input–output and output‐only state‐space models in order to quantify the uncertainties present in modal parameters extracted from output‐only models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Dense networks of wireless structural health monitoring systems can effectively remove the disadvantages associated with current wire‐based sparse sensing systems. However, recorded data sets may have relative time‐delays due to interference in radio transmission or inherent internal sensor clock errors. For structural system identification and damage detection purposes, sensor data require that they are time synchronized. The need for time synchronization of sensor data is illustrated through a series of tests on asynchronous data sets. Results from the identification of structural modal parameters show that frequencies and damping ratios are not influenced by the asynchronous data; however, the error in identifying structural mode shapes can be significant. The results from these tests are summarized in Appendix A. The objective of this paper is to present algorithms for measurement data synchronization. Two algorithms are proposed for this purpose. The first algorithm is applicable when the input signal to a structure can be measured. The time‐delay between an output measurement and the input is identified based on an ARX (auto‐regressive model with exogenous input) model for the input–output pair recordings. The second algorithm can be used for a structure subject to ambient excitation, where the excitation cannot be measured. An ARMAV (auto‐regressive moving average vector) model is constructed from two output signals and the time‐delay between them is evaluated. The proposed algorithms are verified with simulation data and recorded seismic response data from multi‐story buildings. The influence of noise on the time‐delay estimates is also assessed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Fragility curves are generally developed using a single parameter to relate the level of shaking to the expected structural damage. The main goal of this work is to use several parameters to characterize the earthquake ground motion. The fragility curves will, therefore, become surfaces when the ground motion is represented by two parameters. To this end, the roles of various strong‐motion parameters on the induced damage in the structure are compared through nonlinear time‐history numerical calculations. A robust structural model that can be used to perform numerous nonlinear dynamic calculations, with an acceptable cost, is adopted. The developed model is based on the use of structural elements with concentrated nonlinear damage mechanics and plasticity‐type behavior. The relations between numerous ground‐motion parameters, characterizing different aspects of the shaking, and the computed damage are analyzed and discussed. Natural and synthetic accelerograms were chosen/computed based on a consideration of the magnitude‐distance ranges of design earthquakes. A complete methodology for building fragility surfaces based on the damage calculation through nonlinear numerical analysis of multi‐degree‐of‐freedom systems is proposed. The fragility surfaces are built to represent the probability that a given damage level is reached (or exceeded) for any given level of ground motion characterized by the two chosen parameters. The results show that an increase from one to two ground‐motion parameters leads to a significant reduction in the scatter in the fragility analysis and allows the uncertainties related to the effect of the second ground‐motion parameter to be accounted for within risk assessments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号