首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near‐surface processes is relevant to issues of runoff generation, groundwater–surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3‐D physics‐based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub‐surface flow and transport simulator. A recent investigation of sub‐surface flow within this experimental hillslope has generated important knowledge of threshold rainfall‐runoff response and its relation to patterns of transient water table development. This work has identified components of the 3‐D sub‐surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub‐surface stormflow. Here, we test the ability of a 3‐D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall‐runoff response and internal transient sub‐surface stormflow dynamics. We also provide a transparent illustration of physics‐based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field‐based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub‐surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Numerical transport models based on the advection‐dispersion equation (ADE) are built on the assumption that sub‐grid cell transport is Fickian such that dispersive spreading around the average velocity is symmetric and without significant tailing on the front edge of a solute plume. However, anomalous diffusion in the form of super‐diffusion due to preferential pathways in an aquifer has been observed in field data, challenging the assumption of Fickian dispersion at the local scale. This study develops a fully Lagrangian method to simulate sub‐grid super‐diffusion in a multidimensional regional‐scale transport model by using a recent mathematical model allowing super‐diffusion along the flow direction given by the regional model. Here, the time randomizing procedure known as subordination is applied to flow field output from MODFLOW simulations. Numerical tests check the applicability of the novel method in mapping regional‐scale super‐diffusive transport conditioned on local properties of multidimensional heterogeneous media.  相似文献   

3.
Stone covers on loessial slopes can increase the time of infiltration by slowing the velocity of the overland flow, which reduces the transport of solutes, but few mechanistic models have been tested under water‐scouring conditions. We carried out field experiments to test a previously proposed, physically based model of water and solute transport. The area of soil infiltration was calculated from the uncovered surface area, and Richards' equation and the kinematic wave equation were used to describe water infiltration and flow along slopes with stone covers. The transport of chemicals into the run‐off from the surface soil, presumably by diffusion, and their movement in the soil profile could be described by the convection–diffusion equations of the model. The simulated and measured data correlated well. The stones on the soil surface reduced the area available for infiltration but increased the Manning coefficient, eventually leading to increased water infiltration and decreased solute loss with run‐off. Our results indicated that the traditional model of water movement and solute migration could be used to simulate water transport and solute migration for stone‐covered soil on loessial slopes.  相似文献   

4.
The vertical portion of a shale gas well, known as the “tophole” is often drilled using an air‐hammer bit that may introduce pressures as high as 2400 kPa (350 psi) into groundwater while penetrating shallow aquifers. A 3‐D TOUGH2 model was used to simulate the flow of groundwater under the high hydraulic heads that may be imposed by such trapped compressed air, based on an observed case in West Virginia (USA) in 2012. The model realizations show that high‐pressure air trapped in aquifers may cause groundwater to surge away from the drill site at observable velocities. If dissolved methane is present within the aquifer, the methane can be entrained and transported to a maximum distance of 10.6 m per day. Results from this study suggest that one cause of the reported increase in methane concentrations in groundwater near shale gas production wells may be the transport of pre‐existing methane via groundwater surges induced by air drilling, not necessarily direct natural gas leakage from the unconventional gas reservoir. The primary transport mechanisms are advective transport of dissolved methane with water flow, and diffusive transport of dissolved methane.  相似文献   

5.
The objective of this study was to quantify components of the water balance related to root‐water uptake in the soil below a hedgerow. At this local scale, a two‐dimensional (2D) flow domain in the xz plane 6 m long and 1·55 m deep was considered. An attempt was made to estimate transpiration using a simulation model. The SWMS‐2D model was modified and used to simulate temporally and spatially heterogeneous boundary conditions. A function with a variable spatial distribution of root‐water uptake was considered, and model calibration was performed by adjusting this root‐water uptake distribution. Observed data from a previous field study were compared against model predictions. During the validation step, satisfactory agreement was obtained, as the difference between observed and modelled pressure head values was less than 50 cm for 80% of the study data. Hedge transpiration capacity is a significant component of soil‐water balance in the summer, when predicted transpiration reaches about 5·6 mm day?1. One of the most important findings is that hedge transpiration is nearly twice that of a forest canopy. In addition, soil‐water content is significantly different whether downslope or upslope depending on the root‐water uptake. The high transpiration rate was mainly due to the presence of a shallow water table below the hedgerow trees. Soil‐water content was not a limiting factor for transpiration in this context, as it could be in one with a much deeper water table. Hedgerow tree transpiration exerts a strong impact not only on water content within the vadose zone but also on the water‐table profile along the transect. Results obtained at the local scale reveal that the global impact of hedges at the catchment scale has been underestimated in the past. Transpiration rate exerts a major influence on water balance at both the seasonal and annual scales for watersheds with a dense network of hedgerows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
《Advances in water resources》2005,28(11):1254-1266
A detailed model was formulated to describe the non-isothermal transport of water in the unsaturated soil zone. The model consists of the coupled equations of mass conservation for the liquid phase, gas phase and water vapor and the energy conservation equation. The water transport mechanisms considered are convection in the liquid phase, and convection, diffusion and dispersion of vapor in the gas phase. The boundary conditions at the soil–atmosphere interface include dynamical mass flux and energy flux that accounts for radiation transport. Comparison of numerical simulations results with published experimental data demonstrated that the present model is able to describe water and energy transport dynamics, including situations of low and moderate soil moisture contents. Analysis of field studies on soil drying suggests that that dispersion flux of the water vapor near the soil surface, which is seldom considered in soil drying models, can make a significant contribution to the total water flux.  相似文献   

7.
Accurate estimates of seasonal evapotranspiration (ET) at different temporal and spatial scales are essential for understanding the biological and environmental determinants of ecosystem water balance in arid regions and the patterns of water utilization by the vegetation. For this purpose, remote sensing ET estimates of a Patagonian desert in Southern Argentina were verified with field measurements of soil evaporation and plant transpiration using an open top chamber. Root distribution and seasonal variation in soil volumetric water content were also analysed. There was a high correlation between remote sensing and field measurements of ecosystem water fluxes. A substantial amount of the annual ET occurred in spring and early summer (73.4 mm) using winter rain stored in the soil profile and resulting in water content depletion of the upper soil layers. A smaller amount of annual ET was derived from few rainfall events occurring during the mid or late summer (41.4 mm). According to remote sensing, the 92.9% of the mean annual precipitation returns to the atmosphere by transpiration or evaporation from the bare soil and by canopy interception. Only 7.1% infiltrates to soil layers deeper than 200 cm contributing to the water table recharge. Fourier time series analysis, cross‐correlation methods and multiple linear regression models were used to analyse 11 years of remote sensing data to assess determinants of water fluxes. A linear model predicts well the variables that drive complex ecosystem processes such as ET. Leaf area index and air temperature were not linearly correlated to ET because of the multiple interaction among variables resulting in time lags with ET variations and thus these two variables were not included in the linear model. Soil water content, the fraction of photosynthetic active radiation and precipitation explained 86% of the ET monthly variations. The high volumetric water content and the small seasonal variations at 200‐cm depth were probably the result of little water uptake from deeper soil horizons by roots with low hydraulic conductivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A detailed seasonal study of soil vapor intrusion at a cold climate site with average yearly temperature of 1.9 °C was conducted at a house with a crawlspace that overlay a shallow dissolved‐phase petroleum hydrocarbon (gasoline) plume in North Battleford, Saskatchewan, Canada. This research was conducted primarily to assess if winter conditions, including snow/frost cover, and cold soil temperatures, influence aerobic biodegradation of petroleum vapors in soil and the potential for vapor intrusion. Continuous time‐series data for oxygen, pressure differentials, soil temperature, soil moisture, and weather conditions were collected from a high‐resolution monitoring network. Seasonal monitoring of groundwater, soil vapor, crawlspace air, and indoor air was also undertaken. Petroleum hydrocarbon vapor attenuation and biodegradation rates were not significantly reduced during low temperature winter months and there was no evidence for a significant capping effect of snow or frost cover that would limit oxygen ingress from the atmosphere. In the residual light nonaqueous phase liquid (LNAPL) source area adjacent to the house, evidence for biodegradation included rapid attenuation of hydrocarbon vapor concentrations over a vertical interval of approximately 0.9 m, and a corresponding decrease in oxygen to less than 1.5% v/v. In comparison, hydrocarbon vapor concentrations above the dissolved plume and below the house were much lower and decreased sharply within a few tens of centimeters above the groundwater source. Corresponding oxygen concentrations in soil gas were at least 10% v/v. A reactive transport model (MIN3P‐DUSTY) was initially calibrated to data from vertical profiles at the site to obtain biodegradation rates, and then used to simulate the observed soil vapor distribution. The calibrated model indicated that soil vapor transport was dominated by diffusion and aerobic biodegradation, and that crawlspace pressures and soil gas advection had little influence on soil vapor concentrations.  相似文献   

9.
Jos C. van Dam 《水文研究》2000,14(6):1101-1117
Single domain models may seriously underestimate leaching of nutrients and pesticides to groundwater in clay soils with shrinkage cracks. Various two‐domain models have been developed, either empirical or physically based, which take into account the effects of cracks on water flow and solute transport. This paper presents a model concept that uses the clay shrinkage characteristics to derive crack volume and crack depth under transient field conditions. The concept has been developed to simulate field average behaviour of a field with cracks, rather than flow and transport at a small plot. Water flow and solute transport are described with basic physics, which allow process and scenario analysis. The model concept is part of the more general agrohydrological model SWAP, and is applied to a field experiment on a cracked clay soil, at which water flow and bromide transport were measured during 572 days. A single domain model was not able to mimic the field‐average water flow and solute transport. Incorporation of the crack concept considerably improved the simulation of water content and bromide leaching to the groundwater. Still deviations existed between the measured and simulated bromide concentration profiles. The model did not reproduce the observed bromide retardation in the top layer and the high bromide dispersion resulting from water infiltration at various soil depths. A sensitivity analysis showed that the amounts of bromide leached were especially sensitive to the saturated hydraulic conductivity of the top layer, the solute transfer from the soil matrix to crack water flow and the mean residence time of rapid drainage. The shrinkage characteristic and the soil hydraulic properties of the clay matrix showed a low sensitivity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
There is an identified need for fully representing groundwater–surface water transition zone (i.e., the sediment zone that connects groundwater and surface water) processes in modeling fate and transport of contaminants to assist with management of contaminated sediments. Most existing groundwater and surface water fate and transport models are not dynamically linked and do not consider transition zone processes such as bioturbation and deposition and erosion of sediments. An interface module is developed herein to holistically simulate the fate and transport by coupling two commonly used models, Environmental Fluid Dynamics Code (EFDC) and SEAWAT, to simulate surface water and groundwater hydrodynamics, while providing an enhanced representation of the processes in the transition zone. Transition zone and surface water contaminant processes were represented through an enhanced version of the EFDC model, AQFATE. AQFATE also includes SEDZLJ, a state‐of‐the‐science surface water sediment transport model. The modeling framework was tested on a published test problem and applied to evaluate field‐scale two‐ and three‐dimensional contaminant transport. The model accurately simulated concentrations of salinity from a published test case. For the field‐scale applications, the model showed excellent mass balance closure for the transition zone and provided accurate simulations of all transition zone processes represented in the modeling framework. The model predictions for the two‐dimensional field case were consistent with site‐specific observations of contaminant migration. This modeling framework represents advancement in the simulation of transition zone processes and can help inform risk assessment at sites where contaminant sources from upland areas have the potential to impact sediments and surface water.  相似文献   

11.
12.
Models must effectively represent velocities and celerities if they are to address the old water paradox. Celerity information is recorded indirectly in hydrograph observations, whereas velocity information is more difficult to measure and simulate effectively, requiring additional assumptions and parameters. Velocity information can be obtained from tracer experiments, but we often lack information on the influence of soil properties on tracer mobility. This study features a combined experimental and modelling approach geared towards the evaluation of different structures in the multiple interacting pathways (MIPs) model and validates the representation of velocities with laboratory tracer experiments using an undisturbed soil column. Results indicate that the soil microstructure was modified during the experiment. Soil water velocities were represented using MIPs, testing how the (a) shape of the velocity distribution, (b) transition probability matrices (TPMs), (c) presence of immobile storage, and (d) nonstationary field capacity influence the model's performance. In MIPs, the TPM controls exhanges of water between pathways. In our experiment, MIPs were able to provide a good representation of the pattern of outflow. The results show that the connectedness of the faster pathways is important for controlling the percolation of water and tracer through the soil. The best model performance was obtained with the inclusion of immobile storage, but simulations were poor under the assumption of stationary parameters. The entire experiment was adequately simulated once a time‐variable field capacity parameter was introduced, supporting the need for including the effects of soil microstructure changes observed during the experiment.  相似文献   

13.
Periodic paddy field flooding is a major source of groundwater recharge. Many paddy fields thus are used as groundwater recharge ponds after harvesting the first crop of the summer. Following rice harvesting, paddy field surfaces may crack into fissures as a result of drainage and exposure to sunlight. Field observation indicates that applying precipitation to the paddy field can increase the rate of infiltration. To quantitatively evaluate the amount of infiltration in a cracked paddy field, this study sets up a simple soil crack model to simulate the field infiltration process. A three‐dimensional groundwater model FEMWATER is adopted to simulate water movement in the paddy field subjected to various crack conditions. Using the field and laboratory data of irrigation water requirements, soil physical properties, hydraulic conductivities and soil profiles obtained from Ten‐Chung, FEMWATER simulates the water movement in the dry cracked paddy. Simulation results show that if the cracks develop extensively and penetrate the ploughed soil, the infiltration rate may increase significantly. The infiltration fluxes of crack with depths of 80, 60 and 27·5 cm are 18·77, 14·50 and 8·06 times higher than that of 20 cm, respectively. The simulation results of cracks with 80 cm depth correlated closely with field observations. The results of the study elucidate the processes of unsaturated water movement in a dry cracked paddy field. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Highland agriculture is intensifying rapidly in South‐East Asia, leading to alarmingly high applications of agrochemicals. Understanding the fate of these contaminants requires carefully planned monitoring programmes and, in most cases, accurate simulation of hydrological pathways into and through water bodies. We simulate run‐off in a steep mountainous catchment in tropical South‐East Asia. To overcome calibration difficulties related to the mountainous topography, we introduce a new calibration method, named A Nash–Sutcliffe Efficiency Likelihood Match (ANSELM), that allows the assignment of optimal parameters to different hydrological response units in simulations of stream discharge with the Soil and Water Assessment Tool (SWAT) hydrological model. ANSELM performed better than the Parasol calibration tool built into SWAT in terms of model efficiency and computation time. In our simulation, the most sensitive model parameters were those related to base flow generation, surface run‐off generation, flow routing and soil moisture change. The coupling of SWAT with ANSELM yielded reasonable simulations of both wet‐season and dry‐season storm hydrographs. Nash–Sutcliffe model efficiencies for daily stream flow during two validation years were 0.77 and 0.87. These values are in the upper range or even higher than those reported for other SWAT model applications in temperate or tropical regions. The different flow components were realistically simulated by SWAT, and showed a similar behaviour in all the study years, despite inter‐annual climatic differences. The realistic partitioning of total stream flow into its contributing components will be an important factor for using this hydrological model to simulate solute transport in the future. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Methane emissions from hydroelectric reservoirs can comprise a considerable portion of anthropogenic methane. However, lack of data on CH4 emissions in different geographical regions and high spatial‐temporal variability in the emission rates of reservoirs has led to uncertainties regarding regional emission estimates of CH4. In the subtropical plateau climate region, we used the Ertan hydroelectric reservoir as a study area. The CH4 flux at the air‐water interface was assessed by floating chambers and factors influencing emissions, including the distance from the dam, water depth, seasonal variation in wet and dry season, air‐water temperature gradient and wind speed, and was also studied through a year‐long systematic sampling and monitoring experiment. The results showed that the surface of the reservoir was a source of CH4 during the sampling period and the annual average CH4 flux was 2·80 ± 1·52 mg m?2 d?1. CH4 flux (and its variation) was higher in the shallow water areas than in the deep‐water areas. CH4 flux near the dam was significantly higher than that of other locations farther from the dam in the dry season. The seasonal variations of CH4 emission in wet and dry seasons were minor and significant diurnal variations were observed in wet and dry seasons. Exponential relationships between the CH4 flux and air‐water temperature gradient were found. Air‐water temperature gradient was an important factor influencing diurnal variations of CH4 flux in the Ertan hydroelectric reservoir. These results indicate that systematic sampling is needed to better estimate CH4 flux through coverage of the spatial variation of different water depths, measuring‐point distance from the dam, seasonal variation in wet and dry seasons and changes in climate factors (such as air‐water temperature gradient). Our results also provide a fundamental parameter for CH4 emission estimation of global reservoirs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The need to understand and simulate hydrological phenomena and their interactions, and the impact of anthropogenic and climate changes on natural environments have promoted the study of evaporation from bare soils in arid climates. In closed Altiplano basins, such as those encountered in arid and hyper arid basins in northern Chile, evaporation from shallow groundwater is the main source of aquifer depletion, and thus, its study is crucial for water resources management. The objective of this work is to understand the mechanisms of evaporation in saline soils with shallow water tables, in order to better quantify evaporation fluxes and improve our understanding of the water balance in these regions. To achieve this objective, a model that couples fluid flow with heat transfer was developed and calibrated using column experiments with saline soils from the Huasco salt flat basin, Chile. The model enables determination of both liquid and water vapour fluxes, as well as the location of the evaporation front. Experimental results showed that salt transport inside the soil profile modified the water retention curve, highlighting the importance of including salt transport when modelling the evaporation processes in these soils. Indeed, model simulations only agreed with the experimental data when the effect of salt transport on water retention curves was taken into account. Model results also showed that the evaporation front is closer to the soil surface as the water table depth reduces. Therefore, the model allows determining the groundwater level depth that results in disconnection of liquid fluxes in the vadose zone. A sensitivity analysis allowed understanding the effect of water‐flux enhancements mechanisms on soil evaporation. The results presented in this study are important as they allow quantifying the evaporation that occurs in bare soils from Altiplano basins, which is typically the main water discharge in these closed basins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Drastic groundwater resource depletion due to excessive extraction for irrigation is a major concern in many parts of India. In this study, an attempt was made to simulate the groundwater scenario of the catchment using ArcSWAT. Due to the restriction on the maximum initial storage, the deep aquifer component in ArcSWAT was found to be insufficient to represent the excessive groundwater depletion scenario. Hence, a separate water balance model was used for simulating the deep aquifer water table. This approach is demonstrated through a case study for the Malaprabha catchment in India. Multi‐site rainfall data was used to represent the spatial variation in the catchment climatology. Model parameters were calibrated using observed monthly stream flow data. Groundwater table simulation was validated using the qualitative information available from the field. The stream flow was found to be well simulated in the model. The simulated groundwater table fluctuation is also matching reasonably well with the field observations. From the model simulations, deep aquifer water table fluctuation was found very severe in the semi‐arid lower parts of the catchment, with some areas showing around 60 m depletion over a period of eight years. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A terrestrial hydrological model, developed to simulate the high‐latitude water cycle, is described, along with comparisons with observed data across the pan‐Arctic drainage basin. Gridded fields of plant rooting depth, soil characteristics (texture, organic content), vegetation, and daily time series of precipitation and air temperature provide the primary inputs used to derive simulated runoff at a grid resolution of 25 km across the pan‐Arctic. The pan‐Arctic water balance model (P/WBM) includes a simple scheme for simulating daily changes in soil frozen and liquid water amounts, with the thaw–freeze model (TFM) driven by air temperature, modelled soil moisture content, and physiographic data. Climate time series (precipitation and air temperature) are from the National Centers for Environmental Prediction (NCEP) reanalysis project for the period 1980–2001. P/WBM‐generated maximum summer active‐layer thickness estimates differ from a set of observed data by an average of 12 cm at 27 sites in Alaska, with many of the differences within the variability (1σ) seen in field samples. Simulated long‐term annual runoffs are in the range 100 to 400 mm year?1. The highest runoffs are found across northeastern Canada, southern Alaska, and Norway, and lower estimates are noted along the highest latitudes of the terrestrial Arctic in North America and Asia. Good agreement exists between simulated and observed long‐term seasonal (winter, spring, summer–fall) runoff to the ten Arctic sea basins (r = 0·84). Model water budgets are most sensitive to changes in precipitation and air temperature, whereas less affect is noted when other model parameters are altered. Increasing daily precipitation by 25% amplifies annual runoff by 50 to 80% for the largest Arctic drainage basins. Ignoring soil ice by eliminating the TFM sub‐model leads to runoffs that are 7 to 27% lower than the control run. The results of these model sensitivity experiments, along with other uncertainties in both observed validation data and model inputs, emphasize the need to develop improved spatial data sets of key geophysical quantities (particularly climate time series) to estimate terrestrial Arctic hydrological budgets better. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The numerical simulation of long‐term large‐scale (field to regional) variably saturated subsurface flow and transport remains a computational challenge, even with today's computing power. Therefore, it is appropriate to develop and use simplified models that focus on the main processes operating at the pertinent time and space scales, as long as the error introduced by the simpler model is small relative to the uncertainties associated with the spatial and temporal variation of boundary conditions and parameter values. This study investigates the effects of various model simplifications on the prediction of long‐term soil salinity and salt transport in irrigated soils. Average root‐zone salinity and cumulative annual drainage salt load were predicted for a 10‐year period using a one‐dimensional numerical flow and transport model (i.e. UNSATCHEM) that accounts for solute advection, dispersion and diffusion, and complex salt chemistry. The model uses daily values for rainfall, irrigation, and potential evapotranspiration rates. Model simulations consist of benchmark scenarios for different hypothetical cases that include shallow and deep water tables, different leaching fractions and soil gypsum content, and shallow groundwater salinity, with and without soil chemical reactions. These hypothetical benchmark simulations are compared with the results of various model simplifications that considered (i) annual average boundary conditions, (ii) coarser spatial discretization, and (iii) reducing the complexity of the salt‐soil reaction system. Based on the 10‐year simulation results, we conclude that salt transport modelling does not require daily boundary conditions, a fine spatial resolution, or complex salt chemistry. Instead, if the focus is on long‐term salinity, then a simplified modelling approach can be used, using annually averaged boundary conditions, a coarse spatial discretization, and inclusion of soil chemistry that only accounts for cation exchange and gypsum dissolution–precipitation. We also demonstrate that prediction errors due to these model simplifications may be small, when compared with effects of parameter uncertainty on model predictions. The proposed model simplifications lead to larger time steps and reduced computer simulation times by a factor of 1000. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Data from six monitoring stations were combined with a soil‐water dynamics model (HYDRUS 1D) to achieve physically‐based estimates of shallow water‐table recharge in representative hydropedological settings of the glaciated midwestern U.S.A. Calibration involved inverse modeling that yielded optimized hydraulic parameters. Root mean square errors for modeled versus measured soil moisture contents were generally within 3% for all soil layers at the six study sites. The optimized models also accurately simulated recharge values that corresponded to observed water‐table fluctuations. Optimized parameter values were consistent with estimates from a pedotransfer function, lab analyses, and field experiments. Forward modeling indicated that shallow water‐table recharge in mid‐continent glacial settings is approximately 35% of precipitation, but interannual and monthly variability is significant. Soil parent materials and horizon characteristics influence recharge primarily through their control on Ks with clay‐rich till parent materials producing values as low as 16% and coarse‐grained outwash parent materials producing values as high as 58% of precipitation. During the three‐year study period, distinct seasonality of recharge was observed with most recharge occurring in the winter (seasonal mean of all sites was 66% of precipitation) and lesser but interannually stable amounts in the spring (44%), summer (13%), and autumn (16%). This research underscores the importance of incorporating pedological information into models of soil‐water dynamics and groundwater recharge. © 2015 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号