首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Fendek M  Fendekova M 《Ground water》2005,43(5):717-721
Estimation of available ground water is a basic aspect of ground water management. Mathematical modeling is one of the methods that can be effectively used to obtain such estimates. A numerical model was used to calculate available ground water in the Zohor depression-an aquifer transcending national boundaries between the Slovak Republic and Austria. The aquifer, formed by Quaternary sediments overlying Neogene sequences, is composed of various clays interbedded with layers of sand, gravel, sandstones, and conglomerates. The AQUA computer model package was used to simulate flow in the aquifer. For model compilation, the following data were used: (1) effective precipitation; (2) surface water levels in surface water gauging profiles; and (3) withdrawal amounts. Hydraulic parameters of the aquifer were estimated based on information from 86 wells located in the area. The model was verified using data on ground water levels from a monitoring network. The simulation of the aquifer system permitted the estimation of the available ground water in the study area, showing that an additional 587 L/s can be abstracted. Ground water inflows to the Morava River, which flows through the region, range from 745 to 3100 L/s.  相似文献   

2.
Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two‐dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two‐dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one‐dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two‐dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
The Ganga–Mahawa sub‐basin, which has an area of 1280 km2 forms the western part of the Central Ganga Plain in the Moradabad and Badaun districts of western Uttar Pradesh, India. The Bundelkhand granite forms the basement complex, overlain unconformably by the upper Vindhyan sequence, which is further overlain by the Neogene (Middle and Upper) Siwaliks and finally by Quaternary alluvium. Four geomorphological units, the Varanasi older alluvial plain, Aligarh older alluvial plain, terrace zones and the Ganga recent floodplain, abandoned channels, channel scars and meander scars represent various landforms. The hydrogeological cross‐sections indicate the occurrence of a single aquifer down to 120 m. Some influent seepage from the River Ganga could be seen around Gangeswari, but the rest of the River Ganga is effluent. Groundwater‐flow modelling was carried out to assess the degree of Ganga river and aquifer interaction. The River Ganga marks the western boundary; boundaries to the northeast and southeast are set as fixed heads to simulate lateral inflow into and outflow from the sub‐basin respectively. The eastern boundary is simulated as a no‐flow condition. The Mahawa and Badmar rivers are considered to be effluent. The area modelled is covered by a grid of 34 rows×46 columns with three layers, viz., an unconfined aquifer, an aquitard which is underlain by a semi‐confined to confined aquifer. The permeability distribution was inferred from morphometric analysis and pumping tests. Natural recharge due to monsoon rainfall forms the main input. The River Ganga stage data at Ahar, Naora and Ramghat has been used for assigning surface water levels and river bed elevations in the model. Abstraction from all existing deep and shallow tube wells has been assigned as output at various cells. A steady state flow simulation was carried out and calibrated against the June 1986 water level; subsequent transient conditions were calibrated up to May 1995. The computed groundwater balance was comparable to that estimated from field investigations. The aquifer modelling study has attempted to integrate all available information and provided a tool that could be used for predictive simulation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
The study focuses on the characterization of the groundwater salinity on the Nador coastal aquifer (Algeria). The groundwater quality has undergone serious deterioration due to overexploitation. Groundwater samplings were carried out in high and low waters in 2013, in order to study the evolution of groundwater hydrochemistry from the recharge to the coastal area. Different kinds of statistical analysis were made in order to identify the main hydrogeochemical processes occurring in the aquifer and to discriminate between different groups of groundwater. These statistical methods provide a better understanding of the aquifer hydrochem-istry, and put in evidence a hydrochemical classification of wells, showing that the area with higher salinity is located close to the coast, in the first two kilometers, where the salinity gradually increases as one approaches the seaside and suggests the groundwater salinization by sea-water intrusion.  相似文献   

5.
The Longxi region contains different kinds of Cenozoic sediments, including eolian deposits, reworked loess, fluvial and lacustrine deposits. The provenance evolution of these sediments is of great significance in exploring the uplift, tectonic deformation and associated with geomorphic evolution of the Northeastern Tibetan Plateau. In this paper, we used the single-grain zircon provenance analysis to constrain the provenances for the Paleogene alluvial conglomerates and for the Neogene fluvial-lacustrine sediments, and compared them with results from the loess deposits since the Miocene. The results show that: (1) the Paleogene alluvial conglomerates contain a large number of detrital zircons ranging from 560 to 1100 Ma that were derived from the Yangzi Block. However, the sediments of early Miocene have much fewer zircons of this age span, which are characterized by an abundance of zircon ages in the ranges of 200–360 Ma. This indicates that the Paleogene alluvial conglomerates mainly come from the middle and/or southern West Qinling, and the early Miocene sediments are primarily from the northern West Qinling; (2) Late Neogene fluvial sediments (11.5 Ma onward) in Tianshui-Qinan region are dominated by zircon ages of 380–450 Ma. This zircon population is similar to that of the exposed intrusive rocks of southern part of the Liupan Mountains, implying that the southern part of Liupan Mountains probably had already uplifted by 11.5 Ma; (3) Late Miocene lacustrine sediments in Tianshui region have a zircon age spectra that is remarkably different from coeval fluvial deposits, but is similar to the zircon age distributions of the Miocene loess in Qinan region, late Miocene-Pliocene Hipparion red clay and Quaternary loess. This indicates that fine particles within these Miocene lacustrine sediments in Tianshui region may be dominated by aeolian materials. This study reveals that provenance changes of Cenozoic sediments in Tianshui-Qinan region and its geomorphic evolution are closely related to the multi-stage uplift of the Northeastern Tibetan Plateau. In particular, the major uplift of the Northern Tibetan Plateau during late Oligocene-early Miocene may have not only provided the source areas and wind dynamic conditions for the deposits of the Miocene loess, but also provided the geomorphic conditions for its accumulation.  相似文献   

6.
The Neogene sediments of Gansu Group from northwestern China contain eolian and fluvial deposits.The origins of these sediments are very important for exploring the onset of Asian inland aridification,the pattern of paleo-atmospheric circulation,and the regional tectonics and geomorphic evolution during the Miocene.Here we present detrital-zircon age spectra of typical eolian and fluvial deposits from highlands and subsidence basin,and compare them with those of surrounding eroded mountain(such as the West Qinling Mountains and Liupan Mountains)materials and Quaternary loess derived from the Asian inlands.The results reveal that(1)the detrital-zircon age spectrum of the Miocene eolian sample is remarkably different from the eroded materials of the West Qinling Mountains and the Miocene fluvial deposits from Tianshui region,but very similar to the Quaternary loess deposits.This indicates that the provenance of Miocene eolian sediments is similar with the Quaternary loess,and thus further confirms the previous conclusions that the distribution of Asian arid lands and the pattern of atmospheric circulation during the Miocene are broadly similar with the Quaternary.(2)The detrital-zircon age spectrum of the fluvial deposits(with age about 11.5 Ma)from Tianshui region is different from the eroded materials of West Qinling Mountains,but similar with that of the Liupan Mountains to the east,which may suggest that the Liupan Mountains have already been exhumed by11.5 Ma.  相似文献   

7.
A variety of multivariate statistical procedures were applied to three separate sets of quantitative analytical data from a coastal aquifer located in Malia, Crete (Greece), in order to identify the major hydrochemical processes affecting the groundwater quality and to investigate the evolution of groundwater composition in three different sampling periods. Two of them were carried out on October 2001 and September 2002 at the end of the dry season and the third on April 2002 at the end of the wet period. Two factors were found that explained major hydrochemical processes in the aquifer. These factors reveal the existence of an intensive intrusion of seawater and mechanisms of nitrate contamination of groundwater. Bivariate plots of the scores of the two main factors showed that the seawater intrusion and nitrate pollution processes are maintained through three surveys and that the process of nitrate pollution increases from the first to the second dry survey. Q‐mode factor analysis and discriminant analysis of the three sampling periods clearly showed a seasonal variation of the whole chemistry of groundwater samples. This seasonal variation can be attributed to the freshwater recharge and seawater intrusion that affect the groundwater quality of the Malia aquifer. The results of trend surface analysis are in agreement with those of factor analysis. Moreover, the fourth‐order trend surfaces of EC, Cl? and NO3? showed that the salinization process is more intensive during the first dry period and the spatial variation of NO3? maxima plumes are strongly affected by the flow regime of the Malia aquifer. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In eastern England the Chalk aquifer is covered by extensive Pleistocene deposits which influence the hydraulic conditions and hydrochemical nature of the underlying aquifer. In this study, the results of geophysical borehole logging of groundwater temperature and electrical conductivity and depth sampling for major ion concentrations and stable isotope compositions (δ18O and δ2H) are interpreted to reveal the extent and nature of the effective Chalk aquifer of north Norfolk. It is found that the Chalk aquifer can be divided into an upper region of fresh groundwater, with a Cl concentration of typically less than 100 mg l−1, and a lower region of increasingly saline water. The transition between the two regions is approximately 50 m below sea-level, and results in an effective aquifer thickness of 50–60 m in the west of the area, but less than 25 m where the Eocene London Clay boundary is met in the east of the area. Hydrochemical variations in the effective aquifer are related to different hydraulic conditions developed in the Chalk. Where the Chalk is confined by low-permeability Chalky Boulder Clay, isotopically depleted groundwater (δ18O less than −7.5‰) is present, in contrast to those areas of unconfined Chalk where glacial deposits are thin or absent (δ18O about −7.0‰). The isotopically depleted groundwater is evidence for groundwater recharge during the late Pleistocene under conditions when mean surface air temperatures are estimated to have been 4.5°C cooler than at the present day, and suggests long groundwater residence times in the confined aquifer. Elevated molar Mg:Ca ratios of more than 0.2 resulting from progressive rock-water interaction in the confined aquifer also indicate long residence times. A conceptual hydrochemical model for the present situation proposes that isotopically depleted groundwater, occupying areas where confined groundwater dates from the late Pleistocene, is being slowly modified by both diffusion and downward infiltration of modem meteoric water and diffusive mixing from below with an old saline water body.  相似文献   

9.
The study area is located on the western part of the alluvium‐filled gap between the Rajmahal hills on the west and the Garo hills on the east. Groundwater occurs under unconfined condition in a thick zone of saturation within the Quaternary alluvial sediments. Three hydrochemical facies with distinct characteristics have been identified which are dominated in general by alkaline earths and weak acids. The major‐ion chemistry of the area is controlled by weathering of silicate minerals, rainfall recharge, ion‐exchange processes and anthropogenic activities such as irrigation return flow and the application of inorganic fertilizers and pesticides. A stoichiometric approach suggests that mineral dissolution and anthropogenic activities contribute 79% and 21% of the total cations dissolved in groundwater. Principal component analysis (PCA) of 42 groundwater samples using 13 chemical parameters indicates that the combined processes of recharge of groundwater from rainfall, sediment water interaction, groundwater flow, infiltration of irrigation return water (which is arsenic rich due to the use of arsenic‐bearing pesticides, wood preservatives, etc. and the pumping of arsenic‐rich groundwater for agriculture purpose), oxidation of natural or anthropogenic organic matter and the reductive dissolution of ferric iron and manganese oxides play a key role in the evolution of groundwater in the study area. Factor 2 scores, associated with the infiltration of irrigation return water and spatial distribution of arsenic concentration reveal that the groundwater of the municipal area will not be affected by arsenic in the future in spite of heavy groundwater abstraction. Another PCA with geologic, geomorphic, anthropogenic, geochemical and landuse factors indicates that arsenic concentration in groundwater increases with increasing area of mango orchards, sand lithofacies and nitrate and decreases with increasing distance of paleochannel from the monitored well and depth of bore wells. High loading on nitrate may be attributed to the use of fertilizer, pesticides, etc. in mango orchards and agricultural land. High loadings on log pCO2, mango orchards (with negative sign) and phosphate (with positive sign) indicate that mango orchards provide the organic waste material which is decomposed to form organic carbon. The organic carbon undergoes oxidative carbon degeneration by different oxidants and increases the concentration of CO2 in the aquifer. The reducing condition thus developed in the aquifer helps to dissolve the arsenic adsorbed on iron hydroxide or oxy‐hydroxide coated margins of sand, iron rich heavy mineral grain margins, clay minerals and Fe–Mn concretions present in the aquifer matrix. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The concentrations of chlorofluorocarbons (CFC‐11, CFC‐12 and CFC‐113) and tritium (3H) content in groundwater were used to date groundwater age, delineate groundwater flow systems and estimate flow velocity in the Hohhot basin. The estimated young groundwater age is fallen in the bracket of 21 ~ 50 a and indicates the presence of two different age profiles and flow systems in the shallow groundwater system. Older age waters occur under the topographically low areas, where the aquifer is double‐layer aquifer system consisting of shallow unconfined‐semi‐confined aquifer and deep confined aquifer. This reflects long flow paths associated with regional flow. Groundwater (range from 21 to 34 years) in the north piedmont and east hilly areas, where the aquifer is a single‐layer aquifer consisting of alluvial fans, are typically younger than those in the low areas. The combination of CFCs dating with hydrogeological information indicates that both local and regional flow systems are present at the basin. The regional groundwater flow mainly flows from the north and east to the southwest, the local groundwater flow system occurs nearby the Hohhot city. The mean regional groundwater flow velocity of the shallow groundwater is estimated about 0.73 km/a. These findings can aid in refining hydrogeological conceptual model of the study area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The primary objective of this study was to evaluate use of the hydraulic profiling tool‐groundwater sampler (HPT‐GWS) log data as an indicator of water quality (level of dissolved ionic species) in an alluvial aquifer. The HPT‐GWS probe is designed for direct push advancement into unconsolidated formations. The system provides both injection pressure logs and electrical conductivity (EC) logs, and groundwater may be sampled at multiple depths as the probe is advanced (profiling). The combination of these three capabilities in one probe has not previously been available. During field work it was observed that when HPT corrected pressure (Pc) indicates a consistent aquifer unit then bulk formation EC can be used as an indicator of water quality. A high correlation coefficient (R 2 = 0.93) was observed between groundwater specific conductance and bulk formation EC in the sands and gravels of the alluvial aquifer studied. These results indicate that groundwater specific conductance is exerting a controlling influence on the bulk formation EC of the coarse‐grained unit at this site, and probably many similar sites, consistent with Archie's Law. This simple relationship enables the use of the EC and Pc logs, with targeted water samples and a minimum of core samples, to rapidly assess groundwater quality over extended areas at high vertical resolution. This method was used to identify both a brine impacted zone at the base of the aquifer investigated and a groundwater recharge lens developing below storm water holding ponds in the upper portion of the same aquifer. Sample results for trace level, naturally occurring elements (As, Ba, U) further demonstrate the use of this system to sample for low level groundwater contamination.  相似文献   

12.
Las Tablas de Daimiel National Park is one of Spain's most representative groundwater‐dependent ecosystems. Under natural conditions, water inflows combined brackish surface water from River Gigüela with freshwater inputs from River Guadiana and the underlying aquifer. Since the mid‐1970s, aquifer overexploitation caused the desiccation of the wetlands and neighbouring springs. The National Park remained in precarious hydrological conditions for three decades, with the only exception of rapid floods due to extreme rainfall events and sporadic water transfers from other basins. In the late 2000s, a decrease in groundwater abstraction and an extraordinarily wet period reversed the trend. The aquifer experienced an unexpected recovery of groundwater levels (over 20 m in some areas), thus restoring groundwater discharge to springs and wetlands. The complex historical evolution of the water balance in this site has resulted in substantial changes in surface and groundwater quality. This becomes evident when comparing the pre‐1980 groundwater quality and the hydrochemical status in the wetland in two different periods, under “dry” and “wet” conditions. Although the system is close to full recovery from the groundwater‐level viewpoint, bouncing back in the major hydrochemical constituents has not yet been obtained. These still appear to evolve in response to the previous overexploitation state. Moreover, in some sectors, there are groundwater‐dependent ecosystems that remain different to those found in preoverexploitation times. The experience of Las Tablas de Damiel provides an observatory of long‐term changes in wetland water quality, demonstrating that the effects of aquifer overexploitation on aquatic ecosystems are more than a mere alteration of the water balance and that groundwater quality is the key to aquifer and aquatic ecosystem sustainability.  相似文献   

13.
Principal component analysis (PCA) was applied to hydrochemical and isotopic data of 34 groundwater samples. This allowed the reduction of 20 variables to four significant PCs that explain 81.9% of the total variance; F1 (47.1%) explains the groundwater mineralization, whereas F2 (17%) shows isotopic enrichment and nitrate pollution. Based on an iso-factor scores map of F1, three water zones were delineated: Zone A (F1 < ?1), with fresh groundwater from the unconfined aquifer; Zone B (1 > F1 > ?1), with moderate mineralization from the confined–unconfined aquifer boundary; and Zone C (F1 > 1), with the most mineralized hot water from the confined aquifer. The iso-factor scores map of F2 delineates positive values representing samples from the unconfined aquifer, with freshwater and nitrate contamination associated with stable isotope enrichment, whereas negative values represent samples from the confined aquifer. The results clearly demonstrate the usefulness of PCA in groundwater hydrochemistry investigations.  相似文献   

14.
Abstract

The western reservoirs represent the principal groundwater system in Morocco. Demographic, industrial and agricultural developments during the last decade have markedly altered groundwater quality. The Mamora coastal aquifer system is among the Atlantic systems which are most heavily threatened by pollution. Agricultural and industrial activities, and rapid urban growth contribute to the pollution of the groundwater. Contamination transport is facilitated by a high permeability of the aquifer formations. In order to assess the actual groundwater quality of the Mamora aquifer and to understand the influence of the factors generating the pollution, an extensive multidisciplinary research programme is in progress, with hydrochemistry and microbiology playing essential roles. The present paper concerns the spatial distribution of physico-chemical parameters in the groundwater, subjected to domestic, industrial and agricultural pollution. Fifty-seven samples were analysed for several parameters (Ca2+, Mg2+, Na+, K+, Cl?, SO4 2?, HCO3 ?, NO3 ?, pH, electrical conductivity and temperature). The microbiological analysis of 143 samples reveals the presence of four kinds of indicator bacteria in the groundwater resources: faecal Streptococci, faecal coliform, Escherichia coli and Clostridium. The physico-chemical results and bacteriological monitoring show that the nitrate and bacteria concentrations exceed the maximum admissible levels, notably around pumping stations in the sectors of Sidi Taibi, Sidi Ahmed Taleb and Aïn Sbaâ. Contamination is generated by uncontrolled anthropogenic activities and accentuated by the high intrinsic vulnerability of the aquifer system. Several parameters appeared to exceed admissibility standards. Measures are recommended to prevent groundwater pollution in the region.  相似文献   

15.
A recently developed approach to carbon isotope methodology (process recognition via isotope diagrams) is applied in a multidisciplinary study of precipitation‐recharged aquifers of the lowlands–plains area of the Manawatu (south‐west North Island). Urban and rural areas rely on groundwater from the upper levels of a deep basin sequence comprising marine and terrestrial sediments of Pleistocene age. Hydrochemical and isotopic (18O, 3H, 13C and 14C) data are merged with known details of geology and hydrogeology to reveal two separate confined aquifers within the depth range to 200 m. The shallower of these, below unconfined, locally recharged groundwater, is recharged on the foothills of the Ruahine Range to the north‐east of the study area; flow direction is NE–SW. The deeper confined aquifer is recharged on the Tararua Range to the immediate east; flow direction essentially is transverse (SE–NW) to that in the shallower aquifer. Two processes are identified as dominant contributors to concentration and isotopic composition of dissolved inorganic carbon (DIC), namely addition of CO2 from decay of organic materials and carbonate dissolution. Limitations of carbon isotope methods in determining residence times are illustrated by the data. Although the confined groundwater is essentially tritium‐free, only a few samples showed conclusive evidence of significant ageing on the time‐scale of 14C. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Differences in the impact of irrigation with freshwater versus wastewater on the underlying shallow groundwater quality were investigated in the Coastal Aquifer of Israel. Seven research boreholes were drilled to the top-most 3–5 m of the saturated zone (the water table region-WTR) in the agricultural fields. The unsaturated zone and the WTR below the irrigated fields consist mainly of clayey sands, while the main aquifer comprises mainly of calcareous sandstones and sands. We show that the salinity and composition of the groundwater at the WTR are highly variable over a distance of less than 1 km and are controlled by the irrigating water and the processes in the overlying unsaturated zone. Tritium data in this groundwater (4.6 tritium units (TU)) support that these water are modern recharge. The water at the WTR is more saline and has a different chemical composition relative to the overlying irrigation water. High SAR values (sodium adsorption ratio) in wastewater irrigation lead to absorption of Na+ onto the clay and release of Ca2+ into the recharging water, resulting in low Na/Cl (0.4 compared to 1.2 in the wastewater) and high Ca/Cl ratios. In contrast, in the freshwater-irrigated field the irrigation water pumped from the aquifer (Na/Cl=0.9; SAR=0.6) is modified into Na-rich groundwater (Na/Cl=2.0) due to reverse base-exchange reactions. The high NO3 concentration (>100 mg/l) in the WTR below both fields is derived from the agricultural activities. In the freshwater field, the source of NO3 is fertilizer leachates, whereas in the wastewater field, where less fertilizers are applied, nitrate is probably derived from nitrification of the NH4 in the wastewater. Some of the original inorganic nitrogen in the wastewater is consumed by the agricultural plants, resulting in a lower inorganic-N/Cl ratio in the WTR as compared to that in the wastewater. This study demonstrates the important role of the composition of irrigation water, combined with lithology and land use, in determining the quality of the water that recharge the aquifer below agricultural fields.  相似文献   

17.
Neighboring springs draining fractured‐rock aquifers can display large differences in water quality and flow regime, depending on local variations of the connectivity and the aperture size distribution of the fracture network. Consequently, because homogeneous equivalent parameters cannot be assumed a priori for the entire regional aquifer, the vulnerability to pollution of such springs has to be studied on a case by case basis. In this paper, a simple lumped‐parameter model usually applied to estimate the mean transit time of water (or tracer) is presented. The original exponential piston‐flow model was modified to take land‐use distribution into account and applied to predict the evolution of atrazine concentration in a series of springs draining a fractured sandstone aquifer in Luxembourg, where despite a nationwide ban in 2005, atrazine concentrations still had not begun to decrease in 2009. This persistence could be explained by exponentially distributed residence times in the aquifer, demonstrating that in some real world cases, models based on the groundwater residence time distribution can be a powerful tool for trend reversal assessments as recommended for instance by current European Union guidelines.  相似文献   

18.
Climate change and sea‐level rise will have severe impacts on coastal water resources around the world. However, whereas the influence of marine inundation is well documented in the literature, the impact of groundwater inundation on coastal communities is not well known. Here, core analysis, groundwater monitoring, and ground penetrating radar are utilized to assess the groundwater regime of the surficial aquifer on Bogue Banks Barrier Island (USA). Then, geospatial techniques are used to assess the relative roles and extents of groundwater and marine inundation on the dune‐dominated barrier island under sea‐level rise scenarios of 0.2, 0.5, and 1.0 m above current conditions by 2100. Additionally, the effects of rising water tables on onsite wastewater treatment systems (OWTS) are modelled using the projected sea‐level rise scenarios. The results indicate that the surficial aquifer comprising fine to medium sands responds quickly to precipitation. Water‐level measurements reveal varying thicknesses of the vadose zone (>3 to 0 m) and several groundwater mounds with radial flow patterns. Results from projected sea‐level rise scenarios suggest that owing to aquifer properties and morphology of the island, groundwater inundation may occur at the same rate as marine inundation. Furthermore, the area inundated by groundwater may be as significant as that affected by marine inundation. The results also show that the proportion of land in the study area where OWTS may be perpetually compromised by rising water tables under worst case scenarios may range from ~43 to ~54% over an 86‐year‐period. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Zekai Şen  Essam Wagdani 《水文研究》2008,22(12):1788-1795
In arid‐region wadis, groundwater storage lies within shallow Quaternary alluvium deposits, which are connected with the present‐day hydrological cycle and, therefore, are replenished due to occasional runoff and flash flood occurrences. The groundwater resources are precious in these environments; therefore, their potentiality must be assessed with care in the best manner. The aquifer potentiality is calculated after the storativity and transmissivity parameter estimations, which require rather long‐duration field tests with restrictive assumptions in the theoretical model developments, such as the homogeneity and isotropy. It is the main purpose of this paper to expose the fundamentals of the slope‐matching procedure (SMP) and its application for short‐duration field tests in arid‐region aquifers. In this manner, the subsurface hydrogeological behaviours of the bored land pieces at and around the well locations are prospected in a detailed and refined manner. It is shown that in many cases the classical techniques are appropriate, inconvenient and inapplicable with conclusive reliable results and conclusions. The application of the SMP is presented for some aquifer tests from the central western part of the Kingdom of Saudi Arabia. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
David F. Boutt 《水文研究》2017,31(7):1479-1497
This study analyzes a long‐term regional compilation of water table response to climate variability based on 124 long‐term groundwater wells distributed across New England, USA, screened in a variety of geologic materials. The New England region of the USA is located in a humid‐temperature climate underlain by low‐storage‐fractured metamorphic and crystalline bedrock dissected by north–south trending valleys filled with glacial and post‐glacial valley fill sediments. Uplands are covered by thin glacial till that comprises more than 60% of the total area. Annual and multi‐annual responses of the water table to climate variability are assessed to understand how local hydraulic properties and hydrogeologic setting (located in recharge/discharge region) of the aquifer influence the hydrologic sensitivity of the aquifer system to climate variability. This study documents that upland aquifer systems dominated by thin deposits of surface till comprise ~70% of the active and dynamic storage of the region. Total aquifer storage changes of +5 to ?7 km3 occur over the region during the study interval. The storage response is dominated by thin and low permeability surficial till aquifer that fills and drains on a multi‐annual basis and serves as the main mechanism to deliver water to valley fill aquifers and underlying bedrock aquifers. Whereas the till aquifer system is traditionally neglected as an important storage reservoir, this study highlights the importance of a process‐based understanding of how different landscape hydrogeologic units contribute to the overall hydrologic response of a region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号