首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
3.
In the last two decades the major focus of study in forest water and carbon balances in eastern Siberia has been on the effect of rain during the growing season. Little attention has been paid to the contribution of snowmelt water. The results of the present study indicate that weather conditions during the snowmelt period as well as the soil moisture conditions carried from the previous year's growing season strongly determined the water availability for the forest ecosystem at the beginning of the next growing season. In the forest–grassland intermingled ecosystem of lowland Central Yakutia, gradual snowmelt water flow from the forest into the adjacent grassland depressions increased when soil moisture was high and air temperature was low, whereas low soil moisture and high air temperatures accelerated soil thawing and consequently snowmelt water infiltration into the forest soil. We found that snow depth did not determine the volume of snowmelt water moving to the grassland depression since the thermokarst lake water level in the adjacent grassland was about 25 cm lower in 2005 than in May 2006, even though maximum snow depth reached 57 cm and 43 cm in the winter of 2004–05 and 2005–06, respectively. The contribution of snowmelt water to forest growth as well as the flow of water from the forest to the grasslands showed a strong annual variability. We conclude that warmer springs and high variability in precipitation regimes as a result of climate change will result in more snowmelt water infiltration into the forest soil when the previous year's precipitation is low while more snowmelt water will flow into the thermokarst lake when the previous year's precipitation is high. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In the cold semiarid Canadian prairies, groundwater recharge is focussed under numerous topographic depressions, in which snowmelt runoff converges. Agricultural land uses on the uplands surrounding the depressions affect snow accumulation, snowmelt infiltration, evapotranspiration (ET) and soil moisture dynamics, thereby influencing snowmelt runoff and depression-focussed recharge. The objective of this study is to compare the differences in hydrological processes under two common land uses in the Canadian prairies, namely grazed grass and annual crop, and examine how they affect groundwater recharge. A short-term (3 years) paired catchment study was used for detailed observation of hydrological processes in two depressions, supplemented by a longer-term (17 years) data set covering a larger scale to quantify the differences in snowmelt runoff between the two land uses. Compared to the grazed grassland, the cropland had a shorter and more intense period of ET, and root water uptake restricted to the shallower (top 0–80 cm) soil zone. The amount of snowmelt runoff was greater in the grazed grassland primarily due to a higher amount of snow accumulation, which was dictated by differences in topography. This finding was contrary to previous studies in the Canadian prairies that indicated substantially smaller snowmelt runoff in ungrazed grassland, but was consistent with the larger-scale remote sensing results, which showed only a marginal difference between grazed grasslands and croplands. Groundwater recharge rates were estimated using the chloride mass balance method for the present condition using “modern” pore water containing tritium. The rates were similar between the grazed grassland and croplands, implying similarity in snowmelt runoff characteristics. These results suggest that groundwater recharge will continue to be focussed under depressions in the future, though the amount and seasonality of recharge may be influenced by warmer winters.  相似文献   

5.
Despite the potential impact of winter soil water movements in cold regions, relatively few field studies have investigated cold‐season hydrological processes that occur before spring‐onset of snowmelt infiltration. The contribution of soil water fluxes in winter to the annual water balance was evaluated over 5 years of field observations at an agricultural field in Tokachi, Hokkaido, Japan. In two of the winters, soil frost reached a maximum depth of 0·2 m (‘frozen’ winters), whereas soil frost was mostly absent during the remaining three winters (‘unfrozen’ winters). Significant infiltration of winter snowmelt water, to a depth exceeding 1·0 m, occurred during both frozen and unfrozen winters. Such infiltration ranged between 126 and 255 mm, representing 28–51% of total annual soil water fluxes. During frozen winters, a substantial quantity of water (ca 40 mm) was drawn from deeper layers into the 0–0·2 m topsoil layer when this froze. Under such conditions, the progression and regression of the freezing front, regulated by the thickness of snow cover, controlled the quantity of soil water flux below the frozen layer. During unfrozen winters, 13–62 mm of water infiltrated to a depth of 0·2 m, before the spring snowmelt. These results indicate the importance of correctly evaluating winter soil water movement in cold regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This study integrated spatially distributed field observations and soil thermal models to constrain the impact of frozen ground on snowmelt partitioning and streamflow generation in an alpine catchment within the Niwot Ridge Long-Term Ecological Research site, Colorado, USA. The study area was comprised of two contrasting hillslopes with notable differences in topography, snow depth and plant community composition. Time-lapse electrical resistivity surveys and soil thermal models enabled extension of discrete soil moisture and temperature measurements to incorporate landscape variability at scales and depths not possible with point measurements alone. Specifically, heterogenous snowpack thickness (~0–4 m) and soil volumetric water content between hillslopes (~0.1–0.45) strongly influenced the depths of seasonal frost, and the antecedent soil moisture available to form pore ice prior to freezing. Variable frost depths and antecedent soil moisture conditions were expected to create a patchwork of differing snowmelt infiltration rates and flowpaths. However, spikes in soil temperature and volumetric water content, as well as decreases in subsurface electrical resistivity revealed snowmelt infiltration across both hillslopes that coincided with initial decreases in snow water equivalent and early increases in streamflow. Soil temperature, soil moisture and electrical resistivity data from both wet and dry hillslopes showed that initial increases in streamflow occurred prior to deep soil water flux. Temporal lags between snowmelt infiltration and deeper percolation suggested that the lateral movement of water through the unsaturated zone was an important driver of early streamflow generation. These findings provide the type of process-based information needed to bridge gaps in scale and populate physically based cryohydrologic models to investigate subsurface hydrology and biogeochemical transport in soils that freeze seasonally.  相似文献   

7.
Twelve modified passive capillary samplers (M‐PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil‐water endmembers in the watershed. The seasonally integrated stable isotope composition (δ18O and δ2H) of soil‐meltwater collected with M‐PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow‐subsurface measurements. The M‐PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow‐subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M‐PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M‐PCAPS design appears to be a useful, robust methodology to quantify soil‐water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil‐meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In the discontinuous permafrost zone of the Northwest Territories (NWT), Canada, snow covers the ground surface for half the year. Snowmelt constitutes a primary source of moisture supply for the short growing season and strongly influences stream hydrographs. Permafrost thaw has changed the landscape by increasing the proportional coverage of permafrost-free wetlands at the expense of permafrost-cored peat plateau forests. The biophysical characteristics of each feature affect snow water equivalent (SWE) accumulation and melt rates. In headwater streams in the southern Dehcho region of the NWT, snowmelt runoff has significantly increased over the past 50 years, despite no significant change in annual SWE. At the Fort Simpson A climate station, we found that SWE measurements made by Environment and Climate Change Canada using a Nipher precipitation gauge were more accurate than the Adjusted and Homogenized Canadian Climate Dataset which was derived from snow depth measurements. Here, we: (a) provide 13 years of snow survey data to demonstrate differences in end-of-season SWE between wetlands and plateau forests; (b) provide ablation stake and radiation measurements to document differences in snow melt patterns among wetlands, plateau forests, and upland forests; and (c) evaluate the potential impact of permafrost-thaw induced wetland expansion on SWE accumulation, melt, and runoff. We found that plateaus retain significantly (p < 0.01) more SWE than wetlands. However, the differences are too small (123 mm and 111 mm, respectively) to cause any substantial change in basin SWE. During the snowmelt period in 2015, wetlands were the first feature to become snow-free in mid-April, followed by plateau forests (7 days after wetlands) and upland forests (18 days after wetlands). A transition to a higher percentage cover of wetlands may lead to more rapid snowmelt and provide a more hydrologically-connected landscape, a plausible mechanism driving the observed increase in spring freshet runoff.  相似文献   

9.
Warm winters and high precipitation in north-eastern Japan generate snow covers of more than three meters depth and densities of up to 0.55 g cm−3. Under these conditions, rain/snow ratio and snowmelt have increased significantly in the last decade under increasing warm winters. This study aims at understanding the effect of rain-on-snow and snowmelt on soil moisture under thick snow covers in mid-winter, taking into account that snowmelt in spring is an important source of water for forests and agriculture. The study combines three components of the Hydrosphere (precipitation, snow cover and soil moisture) in order to trace water mobility in winter, since soil temperatures remained positive in winter at nearly 0.3°C. The results showed that soil moisture increased after snowmelt and especially after rain-on-snow events in mid-winter 2018/2019. Rain-on-snow events were firstly buffered by fresh snow, increasing the snow water equivalent (SWE), followed by water soil infiltration once the water storage capacity of the snowpack was reached. The largest increase of soil moisture was 2.35 vol%. Early snowmelt increased soil moisture with rates between 0.02 and 0.035 vol% hr−1 while, rain-on-snow events infiltrated snow and soil faster than snowmelt and resulted in rates of up to 1.06 vol% hr−1. These results showed the strong connection of rain, snow and soil in winter and introduce possible hydrological scenarios in the forest ecosystems of the heavy snowfall regions of north-eastern Japan. Effects of rain-on-snow events and snowmelt on soil moisture were estimated for the period 2012–2018. Rain/snow ratio showed that only 30% of the total precipitation in the winter season 2011/2012 was rain events while it was 50% for the winter 2018/2019. Increasing climate warming and weakening of the Siberian winter monsoons will probably increase rain/snow ratio and the number of rain-on-snow events in the near future.  相似文献   

10.
Rain‐on‐snow events have generated major floods around the world, particularly in coastal, mountainous regions. Most previous studies focused on a limited number of major rain‐on‐snow events or were based primarily on model results, largely due to a lack of long‐term records from lysimeters or other instrumentation for quantifying event water balances. In this analysis, we used records from five automated snow pillow sites in south coastal British Columbia, Canada, to reconstruct event water balances for 286 rain‐on‐snow events over a 10‐year period. For large rain‐on‐snow events (event rainfall >40 mm), snowmelt enhanced the production of water available for run‐off (WAR) by approximately 25% over rainfall alone. For smaller events, a range of antecedent and meteorological factors influenced WAR generation, particularly the antecedent liquid water content of the snowpack. Most large events were associated with atmospheric rivers. Rainfall dominated WAR generation during autumn and winter events, whereas snowmelt dominated during spring and summer events. In the majority of events, the sensible heat of rain contributed less than 10% of the total energy consumed by snowmelt. This analysis illustrated the importance of understanding the amount of rainfall occurring at high elevations during rain‐on‐snow events in mountainous regions.  相似文献   

11.
Modelling nutrient transport during snowmelt in cold regions remains a major scientific challenge. A key limitation of existing nutrient models for application in cold regions is the inadequate representation of snowmelt, including hydrological and biogeochemical processes. This brief period can account for more than 80% of the total annual surface runoff in the Canadian Prairies and Northern Canada and processes such as atmospheric deposition, overwinter redistribution of snow, ion exclusion from snow crystals, frozen soils, and snow‐covered area depletion during melt influence the distribution and release of snow and soil nutrients, thus affecting the timing and magnitude of snowmelt runoff nutrient concentrations. Research in cold regions suggests that nitrate (NO3) runoff at the field‐scale can be divided into 5 phases during snowmelt. In the first phase, water and ions originating from ion‐rich snow layers travel and diffuse through the snowpack. This process causes ion concentrations in runoff to gradually increase. The second phase occurs when this snow ion meltwater front has reached the bottom of the snowpack and forms runoff to the edge‐of‐the‐field. During the third and fourth phases, the main source of NO3 transitions from the snowpack to the soil. Finally, the fifth and last phase occurs when the snow has completely melted, and the thawing soil becomes the main source of NO3 to the stream. In this research, a process‐based model was developed to simulate hourly export based on this 5‐phase approach. Results from an application in the Red River Basin of southern Manitoba, Canada, shows that the model can adequately capture the dynamics and rapid changes of NO3 concentrations during this period at relevant temporal resolutions. This is a significant achievement to advance the current nutrient modelling paradigm in cold climates, which is generally limited to satisfactory results at monthly or annual resolutions. The approach can inform catchment‐scale nutrient models to improve simulation of this critical snowmelt period.  相似文献   

12.
M. Su  W. J Stolte  G van der Kamp 《水文研究》2000,14(14):2405-2422
A hydrological model (SLURP) that was designed for simulating hydrological processes taking place in large river basins was, with minimal modification, used successfully to simulate water level variations over a 28‐year period (1969–1996) for a 3‐ha prairie wetland in Saskatchewan. The model calculates a water balance based on precipitation, snowmelt, evaporation, surface runoff and subsurface flow on a daily time‐step. The model was first calibrated for two periods (1969–1973 for cropland and 1987–1990 for grassland), then it was applied to records outside the calibration periods. The model reproduced the wetland water level variations during a 28‐year period with good accuracy. The wetland water levels were most sensitive to the infiltration coefficient of surface soil under frozen conditions and to maximum soil moisture storage. The applicability of the model and the calibrated parameters to a smaller wetland, with an area of 0·24 ha, was examined. This simulation indicated that scale effects are important, probably largely in relation to snow redistribution by wind. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   

14.
Snow interception in a coniferous stand leads to considerable short-range variability in snowcover depth, which in turn affects the water and heat regime of the soil. To study the coupling between snow accumulation, frost penetration, and hydrological response, plot-scale experiments were conducted in a subalpine spruce forest. The stony, sandy–loamy Spodosol was highly permeable and had an organic layer of 5–15 cm thickness. Within two plots, one underneath a tree crown and one in a canopy gap, we measured near-surface runoff, soil temperature, and liquid water content. Snow and frost depths varied more in space than between two winter periods at given locations. Frost penetration was greater near the trunk, where a higher portion of snowmelt water drained downslope close to the surface than in the gap due to frost-induced reduction of infiltration. In both years, the spring snowmelt occurred over two distinct periods. During the first snowmelt, the water percolated primarily through the frozen layer and part of it probably refroze within the frozen layer, thereby raising the total water and ice content. During the second event, near-surface runoff was more pronounced.  相似文献   

15.
Infiltration into frozen soil is a key hydrological process in cold regions. Although the mechanisms behind point‐scale infiltration into frozen soil are relatively well understood, questions remain about upscaling point‐scale results to estimate hillslope‐scale run‐off generation. Here, we tackle this question by combining laboratory, field, and modelling experiments. Six large (0.30‐m diameter by 0.35‐m deep) soil cores were extracted from an experimental hillslope on the Canadian Prairies. In the laboratory, we measured run‐off and infiltration rates of the cores for two antecedent moisture conditions under snowmelt rates and diurnal freeze–thaw conditions observed on the same hillslope. We combined the infiltration data with spatially variable data from the hillslope, to parameterise a surface run‐off redistribution model. We used the model to determine how spatial patterns of soil water content, snowpack water equivalent (SWE), and snowmelt rates affect the spatial variability of infiltration and hydrological connectivity over frozen soil. Our experiments showed that antecedent moisture conditions of the frozen soil affected infiltration rates by limiting the initial soil storage capacity and infiltration front penetration depth. However, shallow depths of infiltration and refreezing created saturated conditions at the surface for dry and wet antecedent conditions, resulting in similar final infiltration rates (0.3 mm hr?1). On the hillslope‐scale, the spatial variability of snowmelt rates controlled the development of hydrological connectivity during the 2014 spring melt, whereas SWE and antecedent soil moisture were unimportant. Geostatistical analysis showed that this was because SWE variability and antecedent moisture variability occurred at distances shorter than that of topographic variability, whereas melt variability occurred at distances longer than that of topographic variability. The importance of spatial controls will shift for differing locations and winter conditions. Overall, our results suggest that run‐off connectivity is determined by (a) a pre‐fill phase, during which a thin surface soil layer wets up, refreezes, and saturates, before infiltration excess run‐off is generated and (b) a subsequent fill‐and‐spill phase on the surface that drives hillslope‐scale run‐off.  相似文献   

16.
17.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
C. L. I. Ho  C. Valeo 《水文研究》2005,19(2):459-473
Urban winter hydrology has garnered very little attention owing to the general notion that high‐intensity rainfalls are the major flood‐generating events in urban areas. As a result, few efforts have been made to research urban snow and its melt characteristics. This study investigates the characteristics of urban snow that differentiate it from rural snow, and makes recommendations for incorporating these characteristics into an urban snowmelt model. A field study was conducted from the fall of 2001 to the spring of 2002 in the city of Calgary, Canada. Snow depths and densities, soil moisture, soil temperature, snow albedo, net radiation, snow evaporation, and surface temperature were measured at several locations throughout the winter period. The combination of urban snow removal practices and the physical elements that exist in urban areas were found to influence the energy balance of the snowpack profoundly. Shortwave radiation was found to be the main source of energy for urban snow; as a consequence, the albedo of urban snow is a very important factor in urban snowmelt modelling. General observations lead to the classification of snow as one of four types: snow piles, snow on road shoulders, snow on sidewalk edges, and snow in open areas. This resulted in the development of four separate functions for the changing snow albedo values. A study of the frozen ground conditions revealed that antecedent soil moisture conditions had very little impact on frozen ground, and thus frozen ground very nearly always acts as a near impervious area. Improved flood forecasting for urban catchments in cold regions can only be achieved with accurate modelling of urban winter runoff that involves the energy balance method, incorporating snow redistribution and urban snow‐cover characteristics, and using small time steps. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Studies on hydrological processes are often emphasized in resource and environmental studies. This paper identifies the hydrological processes in different landscape zones during the wet season based on the isotopic and hydrochemical analysis of glacier, snow, frozen soil, groundwater and other water sources in the headwater catchment of alpine cold regions. Hydrochemical tracers indicated that the chemical compositions of the water are typically characterized by: (1) Ca? HCO3 type in glacier snow zone, (2) Mg? Ca? SO4 type for surface runoff and Ca? Mg? HCO3 type for groundwater in alpine desert zone, (3) Ca? Mg? SO4 type for surface water and Ca? Mg? HCO3 type for groundwater in alpine shrub zone, and (4) Ca? Na? SO4 type in surface runoff in the alpine grassland zone. The End‐Members Mixing Analysis (EMMA) was employed for hydrograph separation. The results showed that the Mafengou River in the wet season was mainly recharged by groundwater in alpine cold desert zones and shrub zones (52%), which came from the infiltration and transformation of precipitation, thawed frozen soil water and glacier‐snow meltwater. Surface runoff in the glacier‐snow zone accounted for 11%, surface runoff in alpine cold desert zones and alpine shrub meadow zones accounted for 20%, thawed frozen soil water in alpine grassland zones accounted for 9% of recharge and precipitation directly into the river channel (8%). This study suggested that the whole catchment precipitation did not produce significant surface runoff directly, but mostly transformed into groundwater or interflow, and finally arrived in the river channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Vast regions of the northern hemisphere are exposed to snowfall and seasonal frost. This has large effects on spatiotemporal distribution of infiltration and groundwater recharge processes as well as on the fate of pollutants. Therefore, snow and frost need to be central inherent elements of risk assessment and management schemes. However, snow and frost are often neglected or treated summarily or in a simplistic way by groundwater modellers. Snow deposition is uneven, and the snow is likely to sublimate, be redistributed and partly melt during the winter influencing the mass and spatial distribution of snow storage available for infiltration, the presence of ice layers within and under the snowpack and, therefore, also the spatial distribution of depths and permeability of the soil frost. In steep terrain, snowmelt may travel downhill tens of metres in hours along snow layers. The permeability of frozen soil is mainly influenced by soil type, its water and organic matter content, and the timing of the first snow in relation to the timing of sub‐zero temperatures. The aim with this paper is to review the literature on snow and frost processes, modelling approaches with the purpose to visualize and emphasize the need to include these processes when modelling, managing and predicting groundwater recharge for areas exposed to seasonal snow and frost. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号