首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
E. Rosa  M. Larocque 《水文研究》2008,22(12):1866-1875
Flow dynamics within a peatland are governed by hydraulic parameters such as hydraulic conductivity, dispersivity and specific yield, as well as by anisotropy and heterogeneity. The aim of this study is to investigate hydraulic parameters variability in peat through the use of different field and laboratory methods. An experimental site located in the Lanoraie peatland complex (southern Quebec, Canada) was used to test the different approaches. Slug and bail tests were performed in piezometer standpipes to investigate catotelm hydraulic conductivity. Combined Darcy tests and tracer experiments were conducted on cubic samples using the modified cube method (MCM) to assess catotelm hydraulic conductivity, anisotropy and dispersivity. A new laboratory method is proposed for assessing acrotelm hydraulic conductivity and gravity drainage using a laboratory experimental tank. Most of slug tests' recovery curves were characteristic of compressible media, and important variability was observed depending on the initial head difference. The Darcy experiments on cubic samples provided reproducible results, and anisotropy (Kh > Kv) was observed for most of samples. All tracer experiments displayed asymmetrical breakthrough curves, suggesting the presence of retardation and/or dual porosity. Hydraulic conductivity estimates performed using the experimental tank showed K variations over a factor of 44 within the upper 40 cm of the acrotelm. The results demonstrate that the intrinsic variability associated with the different field and laboratory methods is small compared with the spatial variability of hydraulic parameters. It is suggested that a comprehensive assessment of peat hydrological properties can be obtained through the combined use of complementary field and laboratory investigations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The vertical hydraulic conductivity (Kv) of a stream or lake sediment is often determined in the field using standpipe tests. Calculation of Kv is based on the assumption that the hydraulic head in the pipe is equal to that of the stream or lake stage. In this work, a modified equation for Kv is developed for the standpipe test which is applicable when this assumption is not valid. The equation involves not only the hydraulic head at different times but also the difference in the hydraulic head (a) between the groundwater level and river stage. The effects of certain factors on Kv, such as the ratio of the hydraulic head at different times (h1/h2), the difference a, and the initial water table height (h0), are also discussed. The results show that when h1/h2 is constant, the relative error (Er) in Kv increases with the ratio a/h2. Furthermore, if a/h2 < 0.05, then for any value of h1/h2, Er is less than 5% using the modified equation. Also, if a/h2 is large, hydraulic head readings with larger h1/h2 ratios must be used to avoid large Er values. The results of a field test also indicate that the error in Kv decreases as the value of h0 increases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The constant‐head permeameter test (CHPT) is widely used in sandy samples as a standard method in the laboratory to investigate hydraulic conductivity (K). However, it neither can be used to consistently determine directional hydraulic conductivity (DHC) nor guarantee the comparability of measured K values of samples with different sizes. Therefore, this paper proposes an integrated laboratory method, called modified CHPT (MCHPT), for the efficient determination and verification of consistent DHC values in fine‐to‐medium sandy sediments, based on a new methodological framework. A precise and standardized procedure for preparing the experimental setup of MCHPT was conducted, based on the integrated experimental setup of CHPT and tracer tests. Moreover, a formula was yielded for the time‐optimized sample saturation control. In comparison with grain size‐based methods, the validity of consistent Kh and Kv values determined by MCHPT was convincing.  相似文献   

4.
Streambed hydraulic conductivity is one of the main factors controlling variability in surface water‐groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were therefore determined from in‐stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in‐stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater‐dominated stream. Seasonal small‐scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional inner bend of the stream, whereas high Kv values were observed at the erosional outer bend and near the middle of the channel. Calculated Kv values were related to the thickness of the organic streambed sediment layer and also showed higher temporal variability than Kh because of sedimentation and scouring processes affecting the upper layers of the streambed. Test locations at the channel bend showed a more heterogeneous distribution of streambed properties than test locations in the straight channel, whereas within the channel bend, higher spatial variability in streambed attributes was observed across the stream than along the stream channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This article presents the results of a field investigation of saturated hydraulic conductivity Ksat and bulk density (ρbd) in an Atlantic blanket bog in the southwest of Ireland. Starting at a peatland stream and moving along an uphill transect toward the peatland interior, ρbd and Ksat were examined at regular intervals. Saturated horizontal hydraulic conductivity (Khsat) and vertical (Kvsat) was estimated at two depths: 10–20 and 30–40 cm below the peat surface, whereas ρbd was estimated for the full profile. We consider two separate zones, one a riparian zone extending 10 m from the stream and a second zone in the bog interior. We found that the Ksat was higher (~10–5 m s–1) in the bog interior than that in the riparian zone (~10–6 m s–1), whereas the converse applied to bulk density, with lowest density (~0.055 g cm–3) at the interior and highest (~0.11 g cm–3) at the riparian zone. In general, we found Khsat to be approximately twice the Kvsat. These results support the idea that the lower Ksat at the margins control the hydrology of blanket peatlands. It is therefore important that the spatial variation of these two key properties be accommodated in hydrological models if the correct rainfall runoff characteristics are to be correctly modelled. Stream flow analysis over 3 years at the peatland catchment outlet showed that the stream runoff was composed of 8% base flow and 92% flood flow, suggesting that this blanket peatland is a source rather than a sink for floodwaters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Anisotropy and heterogeneity of hydraulic conductivity (K) are seldom considered in models of mire hydrology. We investigated the effect of anisotropy and heterogeneity on groundwater flow in bog peat using a steady‐state groundwater model. In five model simulations, four sets of K data were used. The first set comprised measured K values from an anisotropic and heterogeneous bog peat. These data were aggregated to produce the following simplified data sets: an isotropic and heterogeneous distribution of K; an isotropic and homogeneous distribution; and an anisotropic and homogeneous distribution. We demonstrate that, where anisotropy and heterogeneity exist, groundwater flow in bog peat is complex. Fine‐scale variations in K have the potential to influence patterns and rates of groundwater flow. However, for our data at least, it is heterogeneity and not anisotropy that has the greater influence on producing complex patterns of groundwater flow. We also demonstrate that patterns and rates of groundwater flow are simplified and reduced when measured K values are aggregated to create a more uniform distribution of K. For example, when measured K values are aggregated to produce isotropy and homogeneity, the rate of modelled seepage is reduced by 28%. We also show that when measured K values are used, the presence of a drainage ditch can increase seepage through a modelled cross‐section. Our work has implications for the accurate interpretation of hydraulic head data obtained from peat soils, and also the understanding of the effect of drainage ditches on patterns and rates of groundwater flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Xunhong Chen 《水文研究》2011,25(2):278-287
Characterization of streambed hydraulic conductivity from the channel surface to a great depth below the channel surface can provide needed information for the determination of stream‐aquifer hydrologic connectedness, and it is also important to river restoration. However, knowledge on the streambed hydraulic conductivity for sediments 1 m below the channel surface is scarce. This study describes a method that was used to determine the distribution patterns of streambed hydraulic conductivity for sediments from channel surface to a depth of 15 m below. The method includes Geoprobe's direct‐push techniques and Permeameter tests. Direct‐push techniques were used to generate the electrical conductivity (EC) logs and to collect sequences of continuous sediment cores from river channels, as well as from the alluvial aquifer connected to the river. Permeameter tests on these sediment cores give the profiles of vertical hydraulic conductivity (Kv) of the channel sediments and the aquifer materials. This method was applied to produce Kv profiles for a streambed and an alluvial aquifer in the Platte River Valley of Nebraska, USA. Comparison and statistical analysis of the Kv profiles from the river channel and from the proximate alluvial aquifer indicates a special pattern of Kv in the channel sediments. This depth‐dependent pattern of Kv distribution for the channel sediments is considered to be produced by hyporheic processes. This Kv‐distribution pattern implied that the effect of hyporheic processes on streambed hydraulic conductivity can reach the sediments about 9 m below the channel surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Our understanding of hydraulic properties of peat soils is limited compared with that of mineral substrates. In this study, we aimed to deduce possible alterations of hydraulic properties of peat soils following degradation resulting from peat drainage and aeration. A data set of peat hydraulic properties (188 soil water retention curves [SWRCs], 71 unsaturated hydraulic conductivity curves [UHCs], and 256 saturated hydraulic conductivity [Ks] values) was assembled from the literature; the obtained data originated from peat samples with an organic matter (OM) content ranging from 23 to 97 wt% (weight percent; and according variation in bulk density) representing various degrees of peat degradation. The Mualem‐van Genuchten model was employed to describe the SWRCs and UHCs. The results show that the hydraulic parameters of peat soils vary over a wide range confirming the pronounced diversity of peat. Peat decomposition significantly modifies all hydraulic parameters. A bulk density of approximately 0.2 g cm?3 was identified as a critical threshold point; above and below this value, macroporosity and hydraulic parameters follow different functions with bulk density. Pedotransfer functions based on physical peat properties (e.g., bulk density and soil depth) separately computed for bog and fen peat have significantly lower mean square errors than functions obtained from the complete data set, which indicates that not only the status of peat decomposition but also the peat‐forming plants have a large effect on hydraulic properties. The SWRCs of samples with a bulk density of less than 0.2 g cm?3 could be grouped into two to five classes for each peat type (botanical composition). The remaining SWRCs originating from samples with a bulk density of larger than 0.2 g cm?3 could be classified into one group. The Mualem‐van Genuchten parameter values of α can be used to estimate Ks if no Ks data are available. In conclusion, the derived pedotransfer functions provide a solid instrument to derive hydraulic parameter values from easily measurable quantities; however, additional research is required to reduce uncertainty.  相似文献   

9.
Determination of saturated hydraulic conductivity, Ks, and the van Genuchten water retention curve θ(h) parameters is crucial in evaluating unsaturated soil water flow. The aim of this work is to present a method to estimate Ks, α and n from numerical analysis of an upward infiltration process at saturation (Cap0), with (Cap0 + h) and without (Cap0) an overpressure step (h) at the end of the wetting phase, followed by an evaporation process (Evap). The HYDRUS model as well as a brute-force search method were used for theoretical loam soil parameter estimation. The uniqueness and the accuracy of solutions from the response surfaces, Ks–n, α–n and Ks–α, were evaluated for different scenarios. Numerical experiments showed that only the Cap0 + Evap and Cap0 + h + Evap scenarios were univocally able to estimate the hydraulic properties. The method gave reliable results in sand, loam and clay-loam soils.  相似文献   

10.
This study evaluated the spatial variability of streambed vertical hydraulic conductivity (Kv) in different stream morphologies in the Frenchman Creek Watershed, Western Nebraska, using different variogram models. Streambed Kv values were determined in situ using permeameter tests at 10 sites in Frenchman, Stinking Water and Spring Creeks during the dry season at baseflow conditions. Measurements were taken both in straight and meandering stream channels during a 5 day period at similar flow conditions. Each test site comprised of at least three transects and each transect comprised of at least three Kv measurements. Linear, Gaussian, exponential and spherical variogram models were used with Kriging gridding method for the 10 sites. As a goodness-of-fit statistic for the variogram models, cross-validation results showed differences in the median absolute deviation and the standard deviation of the cross-validation residuals. Results show that using the geometric means of the 10 sites for gridding performs better than using either all the Kv values from the 93 permeameter tests or 10 Kv values from the middle transects and centre permeameters. Incorporating both the spatial variability and the uncertainty involved in the measurement at a reach segment can yield more accurate grid results that can be useful in calibrating Kv at watershed or sub-watershed scales in distributed hydrological models.  相似文献   

11.
Streambed horizontal hydraulic conductivity (Kh) has a substantial role in controlling exchanges between stream water and groundwater. We propose a new approach for determining Kh of the shallow streambed sediments. Undisturbed sediment samples were collected using tubes that were horizontally driven into streambeds. The sediment columns were analysed using a permeameter test (PT) on site. This new test approach minimizes uncertainties due to vertical flow in the vicinity of test tube and stream stage fluctuations in the computation of the Kh values. Ninety‐eight PTs using the new approach were conducted at eight sites in four tributaries of the Platte River, east‐central Nebraska, USA. The Kh values were compared with the nondirectional hydraulic conductivity values (Kg) determined from 12 empirical grain‐size analysis methods. The grain‐size analysis methods used the same sediment samples as Kh tests. Only two methods, the Terzaghi and Shepherd methods, yielded Kg values close to the Kh values. Although the Sauerbrei method produced a value relatively closer to Kh than other nine grain‐size analysis methods, the values from this method were not as reliable as the methods of Terzaghi and Shepherd due to the inconsistent fluctuation of the average estimates at each of the test sites. The Zunker, Zamarin, Hazen, Beyer, and Kozeny methods overestimated Kh, while the Slichter, US Bureau of Reclamation (USBR), Harleman, and Alyamani and Sen methods underestimated Kh. Any of these specific grain‐size methods might yield good estimates of streambed Kh at some sites, but give poor estimates at other sites, indicating that the relationship between Kg and Kh is significantly site dependent in our study. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The vertical hydraulic conductivity (Kv), elastic (Sske), and inelastic (Sskv) skeletal specific storage of aquitards are three of the most critical parameters in land subsidence investigations. Two new analytic methods are proposed to estimate the three parameters. The first analytic method is based on a new concept of delay time ratio for estimating Kv and Sske of an aquitard subject to long‐term stable, cyclic hydraulic head changes at boundaries. The second analytic method estimates the Sskv of the aquitard subject to linearly declining hydraulic heads at boundaries. Both methods are based on analytical solutions for flow within the aquitard, and they are jointly employed to obtain the three parameter estimates. This joint analytic method is applied to estimate the Kv, Sske, and Sskv of a 34.54‐m thick aquitard for which the deformation progress has been recorded by an extensometer located in Shanghai, China. The estimated results are then calibrated by PEST (Doherty 2005), a parameter estimation code coupled with a one‐dimensional aquitard‐drainage model. The Kv and Sske estimated by the joint analytic method are quite close to those estimated via inverse modeling and performed much better in simulating elastic deformation than the estimates obtained from the stress‐strain diagram method of Ye and Xue (2005). The newly proposed joint analytic method is an effective tool that provides reasonable initial values for calibrating land subsidence models.  相似文献   

13.
Field determined hydraulic and chemical transport properties can be useful for the protection of groundwater resources from land-applied chemicals. Most field methods to determine flow and transport parameters are either time or energy consuming and/or they provide a single measurement for a given time period. In this study, we present a dripper-TDR field method that allows measurement of hydraulic conductivity and chemical transport parameters at multiple field locations within a short time period. Specifically, the dripper-TDR determines saturated hydraulic conductivity (Ks), macroscopic capillary length (λc), immobile water fraction (θim/θ), mass exchange coefficient (α) and dispersion coefficient (Dm). Multiple dripper lines were positioned over five crop rows in a field. Background and step solutions were applied through drippers to determine surface hydraulic conductivity parameters at 44 locations and surface transport properties at 38 locations. The hydraulic conductivity parameters (Ks, λc) were determined by application of three discharge rates from the drippers and measurements of the resultant steady-state flux densities at the soil surface beneath each dripper. Time domain reflectometry (TDR) was used to measure the bulk electrical conductivity of the soil during steady infiltration of a salt solution. Breakthrough curves (BTCs) for all sites were determined from the TDR measurements. The Ks and λc values were found to be lognormally distributed with average values of 31.4 cm h−1 and 6.0 cm, respectively. BTC analysis produced chemical properties, θim/θ, α, and Dm with average values of 0.23, 0.0036 h−1, and 1220 cm2 h−1, respectively. The estimated values of the flow and transport parameters were found to be within the ranges of values reported by previous studies conducted at nearby field locations. The dripper TDR method is a rapid and useful technique for in situ measurements of hydraulic conductivity and solute transport properties. The measurements reported in this study give clear evidence to the occurrence of non-equilibrium water and chemical movement in surface soil. The method allows for quantification of non-equilibrium model parameters and preferential flow. Quantifying the parameters is a necessary step toward determining the influences of surface properties on infiltration, runoff, and vadose zone transport.  相似文献   

14.
Accurate estimation of streambed vertical hydraulic conductivity (Kv) is of great importance in the analysis of water quantity exchange and solute transfer between a stream and its sediments. The paper analyzed the inaccuracy of hydraulic conductivity values of sediments derived from grain-size distribution (Kg), which were determined from eight empirical grain-size methods to represent streambed Kv. In this study, the values of Kv for a streambed were derived using falling-head standpipe permeameter tests conducted at eight study sites in the Elkhorn River, Nebraska, and the tested streambed columns were then collected for grain-size analysis by sieving. These empirical methods were used to calculate the Kg values of the streambed from grain-size distribution data of sediments. Unlike many other studies, this study verifies Kg from grain-size distribution with Kv from permeameter tests on the basis of the same samples of streambed sediments. The Kg values derived from the eight empirical methods were larger than the Kv from permeameter tests; there are five methods that give Kg values of about 3–6 times larger than these Kv. The Kg values from the Kozeny formula followed by the Hazen formula give the largest overestimation error if they are used to represent the Kv of the streambed. The USBR and Shepherd formulas generated Kg values close to Kv, but these Kg values are still larger in general than the Kv values. Moreover, the new values of coefficient C for the empirical formulas were revised so that they can be used to calculate the approximate Kv of a streambed. Among the eight methods, the ratios of the original C values to the average new C range from 1.3 to 5.9. It can be hypothesized that smaller C values must be used in the estimation of Kv for general soil samples if these empirical formulas are used to calculate Kv.  相似文献   

15.
Coastal peatlands represent an interface between marine and terrestrial ecosystems; their hydrology is affected by salt and fresh water inflow alike. Previous studies on bog peat have shown that pore water salinity can have an impact on the saturated hydraulic conductivity (Ks) of peat because of chemical pore dilation effects. In this study, we aimed at quantifying the impact of higher salinities (up to 3.5% NaCl) on Ks of fen peat. Two experiments employing a constant‐head upward‐flow permeameter and differing in measurement and salinity change duration were conducted. Additionally, a third experiment to determine the impact of water salinity on the release of dissolved organic carbon (DOC) of the studied peat type was carried out. The results show a decrease of Ks with time, which does not depend on the water salinity but is differently shaped for different peat types. We assume pore clogging due to a conglomerate of physical, chemical, and biological processes, which rather depend on water movement rate and time than on water salinity. However, an increased water salinity did increase the DOC release. We conclude that salinity‐dependent behaviour of Ks is a function of peat chemistry and that for some peat types, salinity may only affect the DOC release without having a pronounced impact on water flow.  相似文献   

16.
Streambed hydraulic conductivity (K) and vertical K (K v) are key controls on groundwater and surface water exchange and biogeochemical fluxes through the hyporheic zone, but drivers of transient hydraulic properties in different fluvial environments are poorly understood. This study combines hydrogeology, geophysics, and sedimentology to reveal mechanisms of K and K v transience in the upper 0.5 m of a sandy streambed during low discharge. Hydraulic tests (44 slug tests, 130 falling-head permeameter tests) and 130 grain-size analyses were repeated three times over 8 weeks on a 1,200 m2 grid spanning: (a) a channel with continuously flowing water and mobile bed load; (b) an adjacent mid-channel bar that was stationary and infrequently submerged. Aerial photographs and ground-penetrating radar show scour and complete reworking of fluvial sediments in the channel. Bar sediments below the water table remained immobile, but infrequent flows of moderate discharge reworked the uppermost few centimetres of the bar top. Despite differences in sediment mobility and stream flow characteristics across environments, K and K v exhibited order-of-magnitude differences in spatial heterogeneity and temporal variability in both the channel and bar. Mean K and K v values in the channel were comparatively stable over time. In the immobile bar, mean K declined 20% and K v declined 26% after increased discharge temporarily inundated the bar. Grain-size distributions were steady across both environments over time, but repeat geophysical surveys of the bar show a decrease in electrical conductivity, likely from porosity reduction. These findings suggest that sediment dynamics and stream flow characteristics in different streambed environments are important drivers of K transience during low discharge conditions. Specifically, pore clogging can be an important mechanism of transience over short durations (weeks to months) in immobile sediments subject to infrequent flows and minor reworking.  相似文献   

17.
Relationships between gravimetric soil moisture content (w) and matric potential (ϕ), and between volumetric soil moisture content (θv) and pressure head (h) were approximated for the unsaturated zone on Long Island, New York. Soil samples were collected from two sites using a hand auger. The soil moisture content was determined using the filter‐paper (wf) and gravimetric (w) methods, respectively. The wf was then used in an empirical equation to estimate ϕm. Each set of ϕm and w was combined with a straight‐line empirical model to obtain a wm) relationship. Soil ϕm was converted to h, and w to the volumetric moisture content θv, in order to produce a θv(h) curve. Graphical and statistical comparison showed that the resulting θv(h) curves fell within one order of magnitude of similar curves generated by a more sophisticated non‐linear model developed previously. The simplicity and low cost of the filter‐paper approach described in this study recommends it for preliminary studies of hydraulic properties in the unsaturated zone. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Testing infiltrometer techniques to determine soil hydraulic properties is necessary for specific soils. For a loam soil, the water retention and hydraulic conductivity predicted by the BEST (Beerkan Estimation of Soil Transfer parameters) procedure of soil hydraulic characterization was compared with data collected by more standard laboratory and field techniques. Six infiltrometer techniques were also compared in terms of saturated soil hydraulic conductivity, Ks. BEST yielded water retention values statistically similar to those obtained in the laboratory and Ks values practically coinciding with those determined in the field with the pressure infiltrometer (PI). The unsaturated soil hydraulic conductivity measured with the tension infiltrometer (TI) was reproduced satisfactorily by BEST only close to saturation. BEST, the PI, one‐potential experiments with both the TI and the mini disk infiltrometer (MDI), the simplified falling head (SFH) technique and the bottomless bucket (BB) method yielded statistically similar estimates of Ks, differing at the most by a factor of three. Smaller values were obtained with longer and more soil‐disturbing infiltration runs. Any of the tested infiltration techniques appears usable to obtain the order of magnitude of Ks at the field site, but the BEST, BB and PI data appear more appropriate to characterize the soil at some stage during a rainfall event. Additional investigations on both similar and different soils would allow development of more general procedures to apply infiltrometer techniques for soil hydraulic characterization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Although widely used in wetland hydrological studies, hydraulic conductivity (K) estimates from piezometer slug tests are often of questionable validity. Frequently, this is because insufficient attention is paid to the details of the test procedure. Further, in a potentially heterogeneous and anisotropic medium such as peat, the use of slug tests is prone to error. In this paper we address some of the methodological issues surrounding piezometer slug tests in peat. We compare slug test data with laboratory determinations of vertical and horizontal K obtained using a new method. Piezometers were installed at three depths in a floodplain fen peat in Norfolk, UK. Slug tests were initiated by both slug insertion and slug withdrawal, and repeat tests were conducted to examine the robustness of our K estimates. Most of the tests displayed departures from the log‐linear model of Hvorslev, the form of departure being consistent with compressible soil behaviour. The results suggest that insertion tests gave similar results to those initiated by withdrawal. Repeat testing showed that withdrawal data, in particular, gave highly reproducible normalized responses that were independent of the initial head. Values for K estimated using the slug tests were in the range 1 × 10−4 to 1·6 × 10−3 cm s−1, which is towards the upper end of the range reported for peats generally. Laboratory tests yielded similar values of K to those obtained from the slug tests. Although the laboratory tests showed that the peat was anisotropic, the K values generated by slug testing proved relatively good estimates of both vertical and horizontal K. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
We report the results of numerical and analytical simulations to test the hypothesis that downward vertical flow of porewater from the crests of domed alpine and kettle bogs controls vertical porewater distributions of major solutes such as Ca and Mg. The domed Etang de la Gruère bog (EGr), Switzerland, characterized by a vertical downward gradient of 0·04 and stratified layers of peat, is chosen as a field site for the model calibration and evaluation. The middle 4‐m section of the 6·5 m thick bog peat is heavily humified and has a hydraulic conductivity of ~10?5·6 cm s?1. Above and below, peat is less humified with a hydraulic conductivity of ~10?3 cm s?1. Heuristic finite difference simulations, using Visual MODFLOW, of the bog hydraulics show that the higher conductivity peat at the bog base is critical to create the observed deep, local flow cells that substantively recharge porewater. Model results and Peclet number calculations show that before ~7000 14C yr BP diffusion of solutes from underlying mineral soils controlled the vertical distribution of porewater chemistry. From 7000 to ~1250 14C BP the porewater chemistry was probably controlled by both upward diffusion and downward advection, and after ~1250 14C yr BP porewater chemistry was probably controlled by downward advection. Concentrations of conservative major solutes in the porewaters of alpine, ombrotrophic bogs are the net effect of both downward vertical porewater movement and upward vertical diffusion, the magnitudes of which are delicately poised to the configuration of the bog water table over time and subsurface peat stratigraphy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号