首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A general Monte Carlo relaxation method has been formulated for the computation of physically self-consistent model stellar atmospheres. The local physical state is obtained by solving simultaneously the equations of statistical equilibrium for the atomic and ionic level populations, the kinetic energy balance equation for the electron gas to obtain the electron temperature, and the equation of radiative transfer. Anisotropic Thomson scattering is included in the equation of transfer and radiation pressure effects are included in the hydrostatic equation. The constraints of hydrostatic and radiative equilibrium are enforced. Local thermodynamic equilibrium (L.T.E.) is assumed as a boundary condition deep in the atmosphere. Elsewhere in the atmosphere L.T.E. is not assumed.The statistical equilibrium equations are solved with no assumptions made concerning detailed balance for the bound-bound radiative processes. The source function is formulated in microscopic detail. All atomic processes contributing to the absorption and emission of radiation are included. The kinetic energy balance equation for the electron gas is formulated in detail. All atomic processes by which kinetic energy is gained and lost by the electron gas are included.The method has been applied to the computation of a model atmosphere for a pure hydrogen early-type star. An idealized model of the hydrogen atom with five bound levels and the continuum was adopted. The results of the trial calculation are discussed with reference to stability, accuracy, and convergence of the solution.Contribution No. 385 from the Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

2.
To explain the effects of the ultraviolet (UV) background radiation on the collapse of pre-galactic clouds, we implement a radiation–hydrodynamical calculation, combining one-dimensional spherical hydrodynamics with an accurate treatment of the radiative transfer of ionizing photons. Both absorption and scattering of UV photons are explicitly taken into account. It turns out that a gas cloud contracting within the dark matter potential does not settle into hydrostatic equilibrium, but undergoes run-away collapse even under the presence of the external UV field. The cloud centre is shown to become self-shielded against ionizing photons by radiative transfer effects before shrinking to the rotation barrier. Based on our simulation results, we further discuss the possibility of H2 cooling and subsequent star formation in a run-away collapsing core. The present results are closely relevant to the survival of subgalactic Population III objects as well as to metal injection into intergalactic space.  相似文献   

3.
The coupled set of equations of hydrodynamics and radiative transfer is derived for small disturbances in a plane, grey atmosphere. Only radiative transfer is taken into account in the energy equation; dynamical effects of radiation are ignored. A mean stationary radiative flux through the photosphere is taken into account. The radiative transfer equation is used by assuming the Eddington approximation, moreover, an exponential height profile of the temperature and an analytical opacity formula are supposed. For this model we obtained an asymptotic solution for plane nonadiabatic acoustic waves and radiation waves. The approach provides a detailed discussion of the interaction of nonadiabatic p‐modes and radiation waves in a realistic model of the photosphere of a solar‐like star.  相似文献   

4.
The radiation spectra of supersoft X-ray sources based on a model for hydrogen burning on the white dwarf surface are investigated by solving hydrostatic equilibrium, radiative equilibrium, statistical equilibrium and radiative transfer self-consistently for various sets of mass, radius and luminosity. It is found that the radiation spectrum shows many bound–free emission/absorption features and greatly deviates from the blackbody spectrum at the effective temperature. By the effect of incoherent Compton scattering, the bound–free emission/absorption features do not appear in strong emission/absorption edges, as predicted by coherent models without Compton scattering, but appear as weak humps and relatively shallow absorption edges. The difference between the incoherent model and the coherent model is prominent for L 0.5 L Edd. A calculated spectrum is fitted to the ASCA observations of RX J0925.7−4758. It is found that the entire spectrum of RX J0925.7−4758 cannot be reproduced by model atmospheres with any parameter sets. This suggests that the observed spectrum consists of two or more components. In this case, the atmospheric component is explained by the emission from a white dwarf near the Chandrasekhar limit (∼1.4 M) with L ∼0.2 L Edd at a distance of 16–20 kpc.  相似文献   

5.
We investigate the effects of magnetic fields and radiative protostellar feedback on the star formation process using self-gravitating radiation magnetohydrodynamical calculations. We present results from a series of calculations of the collapse of  50 M  molecular clouds with various magnetic field strengths and with and without radiative transfer. We find that both magnetic fields and radiation have a dramatic impact on star formation, though the two effects are in many ways complementary. Magnetic fields primarily provide support on large scales to low-density gas, whereas radiation is found to strongly suppress small-scale fragmentation by increasing the temperature in the high-density material near the protostars. With strong magnetic fields and radiative feedback, the net result is an inefficient star formation process with a star formation rate of  ≲10  per cent per free-fall time that approaches the observed rate, although we have only been able to follow the calculations for 1/3 of a free-fall time beyond the onset of star formation.  相似文献   

6.
The general formalism, presented in a previous paper of this series (Landi Degl'Innocenti, 1983a), is particularized to deduce the radiative transfer equations for polarized radiation and the statistical equilibrium equations for a multi-level atom in the zero-magnetic field, collisionless regime. The formulae are developed both in the standard representation and in the representation of the statistical tensors. For resonance scattering in a two-level atom, in the limiting case of complete depolarization of the ground level, we recover the classical results for Rayleigh scattering and we derive the expression of the phase matrix in terms of ordinary rotation matrices. The law of scattering is then generalized to take properly into account the influence of the anisotropy of the radiation field on the atomic polarization of the ground level (depopulation pumping).  相似文献   

7.
We present computed radiation spectra for the boundary layer (BL) of the accretion disk that is formed near the surface of a neutron star. Both free-free processes and Comptonization were taken into account. Our computations are based on the hydrodynamic solution obtained by Popham and Sunyaev (2001) for the BL structure. The computed spectra are highly diluted compared to the Planck spectra of the same surface temperature. They are complex in shape; in particular, an intense Wien emission component is formed in their high-energy region at high accretion rates. In general, the computed spectra are harder than those observed in actual X-ray sources. This is the result of a very high temperature found by Popham and Sunyaev (2001) for the BL. We show that such temperatures could result from an oversimplified treatment of radiative transfer in their paper, which completely ignored the frequency dependence of the matter opacity and radiation intensity. Our computations indicate that at moderate accretion rates, a proper treatment of radiative transfer with allowance for Comptonization leads to appreciably lower plasma temperatures and to softer radiation spectra.  相似文献   

8.
We have obtained a simultaneous solution of the statistical equilibrium equation for a non-LTE two-level atom and the radiative transfer equation in the comoving frames by employing the angle-averaged partial frequency redistribution.R i with isotropic scattering. In the first iteration we have set the population density of the upper level equal to zero and allow it to be populated in the subsequent iterations. The solution converges within two to four iterations. The process of iteration is terminated when the ratios of population densities in two successive iterations at each radial point, attain an accuracy of 1%. The effects of partial frequency redistribution is to increase the population density of the upper level. Radial gas motions do not seem to have significant effects, although in highly extend geometries, velocity gradients change the population densities considerably.  相似文献   

9.
Once the need for an iterative procedure in order to solve the problem of the formation of spectral lines in the case of a model atom with many energy levels, the sequel is to seek for the most effective form of such an iterative scheme. It is an almost universal is assumed within all the iterative methods for the solution of those radiative transfer problems, in which the transfer equations are coupled to the state of the matter, to take as the input of each step of iterations the values of the opacity coefficients obtained as a result of the previous one. This is, for instance, the procedure used to correct the temperature in the computation of stellar atmosphere models, or that to build the -operator (either the exact or the approximated one) within the Accelerated Lambda Iteration methods. Yet, if we assume, in order to solve the multilevel line transfer problem, that at each step of iterations the line opacities are known, we can express via the statistical equilibrium equations the populations of the energy levels - and consequently the source functions of the relevant spectral lines - as a linear function of the full set of the corresponding mean intensities of the radiation field. Once such linear forms for the source functions, we are able to solve without the need of any further approximation the radiative transfer equations for are obtained lines, now linearly coupled through the above linear forms of the statistical equilibrium equations. This is achieved by means of the Implicit Integral Method that we already presented in a series of previous papers.  相似文献   

10.
We have calculated prominence thread models for different values of the center temperature and pressure. We have simultaneously solved the radiative transfer, statistical equilibrium and ionization equilibrium equations assuming a three-level atom plus continuum. We have also computed the energy balance equation including the hydrogen radiative losses from our calculations, plus other radiative losses and heat conduction. Some models have been calculated assuming possible variations in thermal conductivity and heating terms. We computed the lines and continua emitted by a number of threads, in order to compare with the observations and evaluate how the different values of the parameters affect the profiles and absolute intensities of L, L, H, and Ly continuum.Member of the Carrera del Investigador, CONICET, Argentina.c.c.67 Suc. 28 Buenos Aires 1428, Argentina.  相似文献   

11.
We introduce a new code for computing time-dependent continuum radiative transfer and non-equilibrium ionization states in static density fields with periodic boundaries. Our code solves the moments of the radiative transfer equation, closed by an Eddington tensor computed using a long characteristics (LC) method. We show that traditional short characteristics and the optically thin approximation are inappropriate for computing Eddington factors for the problem of cosmological re-ionization. We evolve the non-equilibrium ionization field via an efficient and accurate (errors <1 per cent) technique that switches between fully implicit or explicit finite differencing depending on whether the local time-scales are long or short compared to the time-step. We tailor our code for the problem of cosmological re-ionization. In tests, the code conserves photons, accurately treats cosmological effects and reproduces analytic Strömgren sphere solutions. Its chief weakness is that the computation time for the LC calculation scales relatively poorly compared to other techniques  ( t LC∝ N ∼1.5cells)  ; however, we mitigate this by only recomputing the Eddington tensor when the radiation field changes substantially. Our technique makes almost no physical approximations, so it provides a way to benchmark faster but more approximate techniques. It can readily be extended to evolve multiple frequencies, though we do not do so here. Finally, we note that our method is generally applicable to any problem involving the transfer of continuum radiation through a periodic volume.  相似文献   

12.
Hydrogen Lyman α (Lyα) is our primary emission-line window into high-redshift galaxies. Despite an extensive literature, Lyα radiative transfer in the most realistic case of a dusty, multiphase medium has received surprisingly little detailed theoretical attention. We investigate Lyα resonant scattering through an ensemble of dusty, moving, optically thick gas clumps. We treat each clump as a scattering particle and use Monte Carlo simulations of surface scattering to quantify continuum and Lyα surface scattering angles, absorption probabilities, and frequency redistribution, as a function of the gas dust content. This atomistic approach speeds up the simulations by many orders of magnitude, making possible calculations which are otherwise intractable. Our fitting formulae can be readily adapted for fast radiative transfer in numerical simulations. With these surface scattering results, we develop an analytic framework for estimating escape fractions and line widths as a function of gas geometry, motion, and dust content. Our simple analytic model shows good agreement with full Monte Carlo simulations. We show that the key geometric parameter is the average number of surface scatters for escape in the absence of absorption,     , and we provide fitting formulae for several geometries of astrophysical interest. We consider the following two interesting applications. (i) Equivalent widths ( EWs ). Lyα can preferentially escape from a dusty multiphase interstellar medium if most of the dust lies in cold neutral clouds, which Lyα photons cannot penetrate. This might explain the anomalously high EWs sometimes seen in high-redshift/submillimetre sources. (ii) Multiphase galactic outflows . We show the characteristic profile is asymmetric with a broad red tail, and relate the profile features to the outflow speed and gas geometry. Many future applications are envisaged.  相似文献   

13.
We present a study of radiative transfer in dusty, clumpy star-forming regions. A series of self-consistent, 3D, continuum radiative transfer models are constructed for a grid of models parametrized by central luminosity, filling factor, clump radius and face-averaged optical depth. The temperature distribution within the clouds is studied as a function of this parametrization. Among our results, we find that: (i) the effective optical depth in clumpy regions is less than in equivalent homogeneous regions of the same average optical depth, leading to a deeper penetration of heating radiation in clumpy clouds, and temperatures higher by over 60 per cent; (ii) penetration of radiation is driven by the fraction of open sky (FOS) – which is a measure of the fraction of solid angle along which no clumps exist; (iii) FOS increases as clump radius increases and as filling factor decreases; (iv) for values of   FOS >0.6–0.8  the sky is sufficiently 'open' that the temperature distribution is relatively insensitive to FOS; (v) the physical process by which radiation penetrates is preferentially through streaming of radiation between clumps as opposed to diffusion through clumps; (vi) filling factor always dominates the determination of the temperature distribution for large optical depths, and for small clump radii at smaller optical depths; (vii) at lower face-averaged optical depths, the temperature distribution is most sensitive to filling factors of 1–10 per cent, in accordance with many observations; (viii) direct shadowing by clumps can be important for distances approximately one clump radius behind a clump.  相似文献   

14.
Coulomb corrections to the equation of state of degenerate matter are usually neglected in high-temperature regimes, owing to the inverse dependence of the plasma coupling constant, Γ, on temperature. However, nuclear statistical equilibrium matter is characterized by a large abundance by mass of large- Z (iron group) nuclei. It is found that Coulomb corrections to the ion ideal gas equation of state of matter in nuclear statistical equilibrium are important at temperatures T ≲5–10×109 K and densities ρ ≳108 g cm−3. At a temperature T =8.5×109 K and a density ρ =8×109 g cm−3, the neutronization rate is larger by ≳28 per cent when Coulomb corrections are included. However, the conductive velocity of a thermonuclear deflagration wave in C–O drops by ∼16 per cent when Coulomb corrections to the heat capacity are taken into account. The implications for SNIa models and nucleosynthesis, and also for the accretion-induced collapse of white dwarfs, are discussed. Particularly relevant is the result that the minimum density for collapse of a white dwarf to a neutron star is shifted down to 5.5–6×109 g cm−3, a value substantially lower than previously thought.  相似文献   

15.
The polarization-free (POF) approximation (Trujillo Bueno and Landi Degl'Innocenti, 1996) is capable of accounting for the approximate influence of the magnetic field on the statistical equilibrium, without actually solving the full Stokes vector radiative transfer equation. The method introduces the Zeeman splitting or broadening of the line absorption profile I in the scalar radiative transfer equation, but the coupling between Stokes I and the other Stokes parameters is neglected. The expected influence of the magnetic field is largest for strongly-split strong lines and the effect is greatly enhanced by gradients in the magnetic field strength. Formally the interaction with the other Stokes parameters may not be neglected for strongly-split strong lines, but it turns out that the error in Stokes I obtained through the POF approximation to a large extent cancels the neglect of interaction with the other Stokes parameters, so that the resulting line source functions and line opacities are more accurate than those obtained with the field-free approach. Although its merits have so far only been tested for a two-level atom, we apply the POF approximation to multi-level non-LTE radiative transfer problems on the premise that there is no essential difference between these two cases. Final verification of its validity in multi-level cases still awaits the completion of a non-LTE Stokes vector transfer code.For two realistic multi-level cases (CaII and MgI in the solar atmosphere) it is demonstrated that the POF method leads to small changes, with respect to the field-free method, in the line source functions and emergent Stokes vector profiles (much smaller than for a two-level atom). Real atoms are dominated by strong ultraviolet lines (only weakly split) and continua, and most lines with large magnetic splitting (in the red and the infrared) are at higher excitation energies, i.e. they are relatively weak and unable to produce significant changes in the statistical equilibrium. We find that it is generally unpredictable by how much the POF results will differ from the field-free results, so that it is nearly always necessary to confirm predictions by actual computations.The POF approximation provides more reliable results than the field-free approximation without significantly complicating the radiative transfer problem, i.e. without solving any extra equations and without excessive computational resource requirements, so that it is to be preferred over the field-free approximation.  相似文献   

16.
Viscous resistance to changes in the volume of a gas arises when different degrees of freedom have different relaxation times. Collisions tend to oppose the resulting departures from equilibrium and, in so doing, generate entropy. Even for a classical gas of hard spheres, when the mean free paths or mean flight times of constituent particles are long we find a non-vanishing bulk viscosity. Here we apply a method recently used to uncover this result for a classical rarefied gas to radiative transfer theory, and derive an expression for the radiative stress tensor for a grey medium with absorption and Thomson scattering. We determine the transport coefficients through the calculation of the comoving entropy generation. When scattering dominates absorption, the bulk viscosity may be much larger than either the shear viscosity or the thermal conductivity.  相似文献   

17.
A complete set of transfer equations required for the order-of-scattering analysis of partially polarized radiation in inhomogeneous, anisotropically scattering atmospheres is provided. The equations have been derived for both a local study using the radiative transfer equation and its associated auxiliary equation for the source-matrix, and a global study in terms of the scattering and transmission matrices; they account for the polarity of the scattering medium. Their derivations for the finite order scattering and the finitely cumulative scattering, in particular, have yielded important new equations expressing the invariance principles and the integro-differential recurrences for the scattering and transmission matrices. These novel expressions contain as a special case Bellmanet al's (1972) equations for the simpler case of isotropic scattering of unpolarized light in homogeneous atmospheres.  相似文献   

18.
Atmospheres and spectra of strongly magnetized neutron stars   总被引:1,自引:0,他引:1  
We construct atmosphere models for strongly magnetized neutron stars with surface fields     and effective temperatures     . The atmospheres directly determine the characteristics of thermal emission from isolated neutron stars, including radio pulsars, soft gamma-ray repeaters, and anomalous X-ray pulsars. In our models, the atmosphere is composed of pure hydrogen or helium and is assumed to be fully ionized. The radiative opacities include free–free absorption and scattering by both electrons and ions computed for the two photon polarization modes in the magnetized electron–ion plasma. Since the radiation emerges from deep layers in the atmosphere with     , plasma effects can significantly modify the photon opacities by changing the properties of the polarization modes. In the case where the magnetic field and the surface normal are parallel, we solve the full, angle-dependent, coupled radiative transfer equations for both polarization modes. We also construct atmosphere models for general field orientations based on the diffusion approximation of the transport equations and compare the results with models based on full radiative transport. In general, the emergent thermal radiation exhibits significant deviation from blackbody, with harder spectra at high energies. The spectra also show a broad feature     around the ion cyclotron resonance     , where Z and A are the atomic charge and atomic mass of the ion, respectively; this feature is particularly pronounced when     . Detection of the resonance feature would provide a direct measurement of the surface magnetic fields on magnetars.  相似文献   

19.
We quantitatively scrutinize the effects of the radiation drag arising from the radiation fields in a galactic bulge in order to examine the possibility that the radiation drag could be an effective mechanism to extract angular momentum in a spheroidal system like a bulge and allow plenty of gas to accrete on to the galactic centre. For this purpose, we numerically solve the relativistic radiation hydrodynamical equation coupled with accurate radiative transfer, and quantitatively assess the radiation drag efficiency. As a result, we find that in an optically thick regime the radiation drag efficiency is sensitively dependent on the density distributions of the interstellar medium (ISM). The efficiency drops according to     in an optically thick uniform ISM, where τ T is the total optical depth of the dusty ISM , whereas the efficiency remains almost constant at a high level if the ISM is clumpy . Hence, if bulge formation begins with a star formation event in a clumpy ISM, the radiation drag will effectively work to remove the angular momentum and the accreted gas may form a supermassive black hole. As a natural consequence, this mechanism reproduces a putative linear relation between the mass of a supermassive black hole and the mass of a galactic bulge, although further detailed modelling for stellar evolution is required for a more precise prediction.  相似文献   

20.
We have solved the equation of radiative transfer with Compton scattering. The specific intensity has been expanded by Taylor series with respect to wavelength and the first three terms have been retained in solving the transfer equation. It is noted that in a medium stratified in plane parallel layers, the multiple Compton scattering redistributes the initial energy over a range of 3 to 5 Compton wavelengths. A good fraction of the incident radiation is transferred across the layer with redistribution in wavelength, the actual value depending on the optical thickness of the medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号