首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract P–T conditions, mineral isograds, the relation of the latter to foliation planes and kinematic indicators are used to elucidate the tectonic nature and evolution of a shear zone in an orogen exhumed from mid‐crustal depths in western Turkey. Furthermore, we discuss whether simple monometamorphic fabrics of rock units from different nappes result from one single orogeny or are related to different orogenies. Metasedimentary rocks from the Çine and Selimiye nappes at the southern rim of the Anatolide belt of western Turkey record different metamorphic evolutions. The Eocene Selimiye shear zone separates both nappes. Metasedimentary rocks from the Çine nappe underneath the Selimiye shear zone record maximum P–T conditions of about 7 kbar and >550 °C. Metasedimentary rocks from the overlying Selimiye nappe have maximum P–T conditions of 4 kbar and c. 525 °C near the base of the nappe. Kinematic indicators in both nappes are related to movement on the Selimiye shear zone and consistently show a top‐S shear sense. Metamorphic grade in the Selimiye nappe decreases structurally upwards as indicated by mineral isograds defining the garnet‐chlorite zone at the base, the chloritoid‐biotite zone and the biotite‐chlorite zone at the top of the nappe. The mineral isograds in the Selimiye nappe run parallel to the regional SR foliation, parallel the Selimiye shear zone and indicate that the Selimiye shear zone formed during this prograde greenschist to lower amphibolite facies metamorphic event but remained active after the peak of metamorphism. 40Ar/39Ar mica ages and the tectonometamorphic relationship with the Eocene Cyclades–Menderes thrust, which occurs above the Selimiye nappe in the study area, suggests an Eocene age of metamorphism in the Selimiye nappe. Metasedimentary rocks of the Çine nappe 20–30 km north of the Selimiye shear zone record maximum P–T conditions of 8–11 kbar and 600–650 °C. An age of about 550 Ma is indicated for amphibolite facies metamorphism and associated top‐N shear in the orthogneiss of the Çine nappe. Our study shows that simple monophase tectonometamorphic fabrics do not always indicate a simple orogenic development of a nappe stack. Preservation in some areas and complete overprinting of those fabrics in other areas apparently occur very heterogeneously.  相似文献   

2.
The Taurides, the southernmost of the three major tectonic domains that constitute present‐day Turkey, were emplaced following consumption of the Tethyan Ocean in Late Mesozoic to mid‐Tertiary times. They are generally assigned an origin at the northern perimeter of Gondwana. To refine palaeogeographic control we have investigated the palaeomagnetism of a range of Jurassic rocks. Forty‐nine samples of Upper Jurassic limestones preserve a dual polarity remanence (D/I=303/−9°, α95=6°) interpreted as a primary magnetization acquired close to the equator and rotated during emplacement of the Taurides. Result from mid‐Jurassic dolerites confirm a low palaeolatitude for the Tauride Platform during Jurassic times at the Afro–Arabian sector of Gondwana. Approximately 4000 km of Tethyan closure subsequently occurred between Late Jurassic and Eocene times. Although related Upper Jurassic limestones and Liassic redbeds preserve a sporadic record of similar remanence, the dominant signature in these latter rocks is an overprint of probable mid‐Miocene age, probably acquired during a single polarity chron and imparted by migration of a fluid front during nappe loading. This is now rotated consistently anticlockwise by c. 30° and conforms to results of previous studies recording bulk Neogene rotation of the Isparta region following Lycian nappe emplacement. The regional distribution of this overprint implies that the Isparta Angle (IA) has been subject to only small additional closure (<10°) since Late Miocene time. A smaller amount (c. 6°) of clockwise rotation within the IA since Early Pliocene times is associated with an ongoing extensional regime and reflects an expanding curvature of the Tauride arc produced by southwestward extrusion of the Anatolian collage as a result of continuing northward motion of Afro–Arabia. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
《International Geology Review》2012,54(13):1478-1507
The Central and Eastern Taurides contain numerous carbonate-hosted Pb–Zn deposits, mainly in Devonian and Permian dolomitized reefal–stramatolitic limestones, and in massive Jurassic limestones. We present and compare new fluid inclusion and isotopic data from these ore deposits, and propose for the first time a Mississippi Valley-type (MVT) mode of origin for them.

Fluid inclusion studies reveal that the ore fluids were highly saline (13–26% NaCl equiv.), chloride-rich (CaCl2) brines, and have average homogenization temperatures of 112°C, 174.5°C, and 211°C for the Celal Da?, Delikkaya, and Ayrakl? deposits, respectively. Furthermore, the δ34S values of carbonate-hosted Pb–Zn deposits in the Central and Eastern Taurides vary between –5.4‰ and?+13.70‰. This indicates a possible source of sulphur from both organic compounds and crustal materials. In contrast, stable sulphur isotope data (average δ34S –0.15‰) for the Çad?rkaya deposit, which is related to a late Eocene–Oligocene (?) granodioritic intrusion, indicates a magmatic source. The lead isotope ratios of galena for all investigated deposits are heterogeneous. In particular, with the exception of the Suçat? district, all deposits in the Eastern (Delikkaya, Ayrakl?, Denizovas?, Çad?rkaya) and Central (Katranba??, Küçüksu) Taurides have high radiogenic lead isotope values (206Pb/204Pb between 19.058 and 18.622; 207Pb/204Pb between 16.058 and 15.568; and 208Pb/204Pb between 39.869 and 38.748), typical of the upper continental crust and orogenic belts.

Fluid inclusion, stable sulphur, and radiogenic lead isotope studies indicate that carbonate-hosted metal deposits in the Eastern (except for the Çad?rkaya deposit) and the Central Taurides are similar to MVT Pb–Zn deposits described elsewhere. The primary MVT deposits are associated with the Late Cretaceous–Palaeocene closure of the Tethyan Ocean, and formed during the transition from an extensional to a compressional regime. Palaeogene nappes that typically limit the exposure of ore bodies indicate a pre-Palaeocene age of ore formation. Host rock lithology, ore mineralogy, fluid inclusion, and sulphur?+?lead isotope data indicate that the metals were most probably leached from a crustal source such as clastic rocks or a crystalline massif, and transported by chloride-rich hydrothermal solutions to the site of deposition. Localization of the ore deposits on autochthonous basement highs indicates long-term basinal fluid migration, characteristic of MVT depositional processes. The primary MVT ores were oxidized in the Miocene, resulting in deposition of Zn-carbonate and Pb-sulphate–carbonate during karstification. The ores underwent multiple cycles of oxidation and, in places, were re-deposited to form clastic deposits. Modified deposits resemble the ‘wall-rock replacement’ and the ‘residual and karst fill’ of non-sulphide zinc deposits and are predominantly composed of smithsonite.  相似文献   

4.
The Çatallar Basin is one of the Miocene basins located in the southern part of the Bey Da?lar? Massif (SW Turkey). This basin has been reinvestigated and new stratigraphic and sedimentological data are now presented. The Çatallar Basin lies in paraconformity on the Bey Da?lar? carbonate platform of Late Cretaceous to Palaeogene age. It consists of an impersistent, shallow-marine carbonate base (Karabay?r formation, Late Oligocene to Early Burdigalian) followed by an onlapping detrital sequence including the Akçay and Ba?beleni formations (Langhian to Serravallian). The Akçay formation mainly contains turbidites in which several debris-flows and olistostromes are intercalated. The lowest debris flows derive from the local carbonate platforms of Cretaceous and Palaeogene age. Higher, the debris flows and olistostromes contain large carbonate blocks deriving from nearby sources (Bey Da?lar? platform carbonates), whereas the accompanying pebbles originate from the allochthonous ophiolitic units located farther to the north (Lycian Nappes) or to the east (Antalya Nappes). The origin of these ophiolitic detritus is a matter of debate. The new data obtained in this study favour a northern origin.  相似文献   

5.
New zircon and apatite fission-track (FT) data, including apatite thermal modelling, are combined with an extensive literature survey and reconnaissance-type structural fieldwork in the Eastern Apuseni Mountains. This leads to a better understanding of the complex structural and thermal history of a key area at the boundary between two megatectonic units in the Balkan peninsula, namely the Tisza and Dacia Mega-Units. Following Late Jurassic obduction of the Transylvanian ophiolites onto a part of the Dacia Mega-Unit, that is, the Biharia nappe system, both units were buried to a minimum of 8 km during late Early Cretaceous times when these units were underthrust below the Tisza Mega-Unit consisting of the present-day Codru and Bihor nappe systems. Tisza formed the upper plate during Early Cretaceous (‘Austrian’) east-facing orogeny. Turonian to Campanian zircon FT cooling ages (95–71 Ma) from the Bihor and Codru nappe systems and the Biharia and Baia de Arie? nappes (at present the structurally lowest part of the Dacia Mega-Unit) record exhumation that immediately followed a second Cretaceous-age (i.e. Turonian) orogenic event. Thrusting during this overprinting event was NW-facing and led to the overall geometry of the present-day nappe stack in the Apuseni Mountains. Zircon FT ages, combined with thermal modelling of the apatite FT data, show relatively rapid post-tectonic cooling induced by a third shortening pulse during the latest Cretaceous (‘Laramian’ phase), followed by slower cooling across the 120°–60 °C temperature interval during latest Cretaceous to earliest Paleogene times (75–60 Ma). Cenozoic-age slow cooling (60–40 Ma) was probably related to erosional denudation postdating ‘Laramian’ large-scale updoming.  相似文献   

6.
Within the Çokkul synform, Caledonian metamorphic rocks of the Middle Köli Nappe Complex (MKNC) are in low-angle fault contact with the basement mylonites derived from the Precambrian Tysfjord granite-gneiss. In the synform, the MKNC is composed of four fault-bounded nappes each of which has a distinct tectonic stratigraphy composed of amphibolite-facies metamorphosed pelitic and psammitic schists with minor lensoidal bodies of mafic and ultramafic rocks. Pelitic rocks from the three structurally lowest nappes contain the low-variance AFM mineral assemblages gar + bio + staur and staur + ky + bio with mu + qtz + ilm, whereas staur and ky are absent from the highest nappe, the Kallakvare nappe. AFM mineral assemblages in the three lowest nappes indicate peak metamorphic temperatures of 610–660°C and peak pressures in excess of 600 MPa. Mineral assemblages from the Kallakvare nappe are not as diagnostic of metamorphic grade. However, rocks from that nappe contain coexisting plagioclases from both sides of the peristerite gap, suggesting lower-grade peak P–T conditions than those of the structurally lower nappes. In addition, biotite from the lower nappes is more Ti-rich than biotite from the Kallakvare nappe. However, gar–bio–mu–plag and gar–bio–ky–plag–qtz thermobarometry suggests that all four nappes equilibrated at approximately 525 ± 25°C and 700 ± 100 MPa. Gibbs method thermodynamic modelling of garnet zoning profiles suggests that the lower three nappes followed clockwise P–T paths that involved heating and compression to a metamorphic peak of approximately 575–625°C, 800 MPa followed by cooling and decompression to 525°C, 700 MPa. P–T paths calculated for the Kallakvare nappe show decompression and minor heating to a peak T of 500–525°C. In the lower nappes, staur and ky grew during the heating phase not seen by the highest nappe. The outer parts of the paths from all four nappes are approximately parallel, possibly recording the emplacement of the Kallakvare nappe onto the already stacked lower three nappes at some time following the metamorphic peak. These P–T paths suggest that the sole fault of the Kallakvare nappe is a normal fault. Garnet zonation thus appears to record a previously unrecognized phase of uplift and tectonic thinning of the MKNC. This event appears to be restricted to the MKNC and to have occurred prior to the emplacement of the MKNC onto the Tysfjord granite-gneiss basement of Baltoscandia under greenschist-facies conditions. It may have been responsible for the uplift and cooling of the MKNC from 25–30 km amphibolite-facies conditions prior to its emplacement onto Baltoscandia under 15–20 km greenschist-facies conditions. The deformation zone associated with this normal fault is relatively narrow, generally less than 1 m thick. If this is typical of other detachment faults in the metamorphic infrastructure of the Scandinavian Caledonides, they may be relatively common, but not often recognized due to the detailed study needed to document them.  相似文献   

7.
The Lepontine dome represents a unique region in the arc of the Central and Western Alps, where complex fold structures of upper amphibolite facies grade of the deepest stage of the orogenic belt are exposed in a tectonic half-window. The NW-verging Mont Blanc, Aar und Gotthard basement folds and the Lower Penninic gneiss nappes of the Central Alps were formed by ductile detachment of the upper European crust during its Late Eocene–Early Oligocene SE-directed underthrust below the upper Penninic and Austroalpine thrusts and the Adriatic plate. Four underthrust zones are distinguished in the NW-verging stack of Alpine fold nappes and thrusts: the Canavese, Piemont, Valais and Adula zones. Up to three schistosities S1–S3, folds F1–F3 and a stretching lineation XI with top-to-NW shear indicators were developed in the F1–F3 fold nappes. Spectacular F4 transverse folds, the SW-verging Verzasca, Maggia, Ziccher, Alpe Bosa and Wandfluhhorn anticlines and synclines overprint the Alpine nappe stack. Their formation under amphibolite facies grade was related to late ductile folding of the southern nappe roots during dextral displacement of the Adriatic indenter. The transverse folding F4 was followed since 30 Ma by the pull-apart exhumation and erosion of the Lepontine dome. This occurred coevally with the formation of the dextral ductile Simplon shear zone, the S-verging backfolding F5 and the formation of the southern steep belt. Exhumation continued after 18 Ma with movement on the brittle Rhone-Simplon detachment, accompanied by the N-, NW- and W-directed Helvetic and Dauphiné thrusts. The dextral shear is dated by the 29–25 Ma crustal-derived aplite and pegmatite intrusions in the southern steep belt. The cooling by uplift and erosion of the Tertiary migmatites of the Bellinzona region occurred between 22 and 18 Ma followed by the exhumation of the Toce dome on the brittle Rhone–Simplon fault since 18 Ma.  相似文献   

8.
Western Anatolia is one of the world’s most seismically active regions. A nearly N–S-oriented extension caused the formation of E–W- and NE–SW-trending major grabens, creating the potential for earthquakes with magnitudes ≥ 5. The fault segments of the NE-trending Çameli Basin were evaluated using geomorphic indices, common tools for assessment of relative tectonic activity in such areas. Quantitative measurement of geomorphic indices including mountain-front sinuosity (Smf; 1.35–2.39), valley floor width-to-height ratios (Vf; 0.08?0.37), and hypsometric integral (HI; 0.31–1.05) suggest relatively higher tectonic activity along western and southern part of the basin. Hypsometric curves for all segments of the faults mostly exhibit concave or straight profiles, signifying existence of young mountain fronts in the Çameli Basin. These calculations indicate that the Çameli Basin is tectonically active and, southern/south-western areas of this depression have earthquake potential, consistent with epicentres of recent earthquakes, occurred along some fault segments. Possible reason of this activity seems to be related to the E–W-trending corridor lying between the Gulf of Gökova and south-eastern part of the Çameli Basin, represented by active normal faults. These findings should be valid beyond the Çameli Basin for similar situations along the Isparta Angle’s western margin.  相似文献   

9.
《Geodinamica Acta》2013,26(3-4):167-208
The Denizli graben-horst system (DGHS) is located at the eastern-southeastern converging tips of three well-identified major grabens, the Gediz, the Küçük Menderes and the Büyük Menderes grabens, in the west Anatolian extensional province. It forms a structural link between these grabens and the other three NE-NW-trending grabens—the Çivril, the Ac?göl and the Burdur grabens—comprising the western limb of the Isparta Angle. Therefore, the DGHS has a critical role in the evolutionary history of continental extension and its eastward continuation in southwestern Turkey, including western Anatolia, west-central Anatolia, and the Isparta Angle. The DGHS is a 7-28-km wide, 62-km long, actively growing and very young rift developed upon metamorphic rocks of both the Menderes Massif and the Lycian nappes, and their Oligocene-Lower Miocene cover sequence. It consists of one incipient major graben, one modern major graben, two sub-grabens and two intervening sub-horsts evolved on the four palaeotectonic blocks. Therefore, the DGHS displays different trends along its length, namely, NW, E-W, NE and again E-W.

The DGHS has evolved episodically rather than continuously. This is indicated by a series of evidence: (1) it contains two graben infills, the ancient graben infill and the modern graben infill, separated by an intervening angular unconformity; (2) the ancient graben infill consists of two Middle Miocene-Middle Pliocene sequences of 660 m thickness accumulated in a fluvio-lacustrine depositional setting under the control of first NNW-SSE- and later NNE-SSW-directed extension (first-stage extension), and deformed (folded and strike-slip faulted) by a NNE-SSW- to ENE-WSW-directed phase of compression in the latest Middle Pliocene, whereas the modern graben infill consists of 350-m thick, undeformed (except for local areas against the margin-bounding active faults), nearly flat-lying fanapron deposits and travertines of Plio-Quaternary age; (3) the ancient graben infill is confined not only to the interior of the graben but is also exposed well outside and farther away from the graben, whereas the modern graben infill is restricted to only the interior of the graben. These lines of evidence imply an episodic, two-stage extensional evolutionary history interrupted by an intervening compressional episode for the DGHS.

Both the southern and northern margin-bounding faults of the DGHS are oblique-slip normal faults with minor right- and/or left-lateral strike-slip components. They are mapped and classified into six categories, and named the Babada?, Honaz, A?a??da?dere, Küçükmal?da?, Pamukkale and Kaleköy fault zones, and composed of 0.5-36-km long fault segments linked by a number of relay ramps. Total throw amounts accumulated on both the northern and southern margin-bounding faults are 1,050 m and 2,080 m, respectively. In addition, the maximum width of the DGHS and the thickness of the crust beneath it are more or less same (~ 28 km). The total of these values indicate a vertical slip rate of 0.15-0.14 mm/year and averaging 7% extension for the asymmetrical DGHS.

The master faults of the Babada?, Honaz, Küçükmal?da?, Pamukkale and Kaleköy fault zones are still active and have a potential seismicity with magnitudes 6 or higher. This is indicated by both the historical (1703 and 1717 seismic events) to recent (1965, 1976, 2000 seismic events) earthquakes sourced from margin-bounding faults and some diagnostic morphotectonic features, such as deflected drainage system, degraded alluvial fans with apices adjacent to fault traces, back-tilting of fault-bounded blocks, and actively growing travertine occurrences. The kinematic analyses of main fault-slip-plane data, Upper Quaternary fissure ridges and focal-mechanism solutions of some destructive earthquakes clearly indicate that the current continental extension (second-stage extension) by normal faulting in the DGHS continues in a (mean) 026° to 034° (NNE-SSW) direction.

Detailed and recent field geological mapping, stratigraphy of the Miocene-Quaternary basins, palaeostress analysis of fault populations and main margin-bounding faults of these basins, extensional gashes to fissures, and focal-mechanism solutions of destructive earth-quakes that have occurred in last century strongly indicate that extension is not unidirectional and confined only to western Anatolia, but also continues farther east across the Isparta Angle and west-central Anatolia, up to the Salt Lake fault zone in the east and the inönü-Eski?ehir fault zone in the north-northeast. Therefore, the term “southwest Turkey extensional province” is proposed in lieu of the term “west Anatolian extensional province”.  相似文献   

10.
The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping  相似文献   

11.
The Helvetic nappes in Switzerland consist of sediments, which have been sheared off and thrust over the crystalline basement of the European passive continental margin during Alpine orogeny. Their basal shear zones usually root above the external crystalline massifs. However, the mechanisms that initiated the shear zones and the associated nappe formation are still debated. We perform two-dimensional numerical simulations of the shearing of linear viscous fluids above a linear viscous fluid with considerably higher viscosity (quasi-undeformable). The boundary between the fluid, mimicking the sediments, and the quasi-undeformable fluid, mimicking the basement, exhibits geometrical perturbations, mimicking half-grabens. These geometrical perturbations can trigger significant strain localization and the formation of shear zones within the linear viscous fluid although no rheological softening mechanism is active. This kinematic, ductile strain localization is caused by the half-grabens and the viscosity ratio between basement and sediments. The viscosity ratio has a strong control on the kinematics of strain localization, whereas the depth of the half-grabens has a weak control. For sediment viscosities in the order of 1021 Pas and typical half-graben geometries of 5 km depth and 25 km width the localization generates (a) low-angle shear zones at the basement-sediment interface, but also entirely within the sediments, (b) horizontal transport >10 km associated with the shear zones, (c) shear zones with thickness in the order of 100 m, (d) an ordered stacking of model nappes and (e) shear zones that root above the basement. The results suggest that tectonic inheritance in the form of half-grabens and associated kinematic strain localization could have been the triggering mechanism for Helvetic nappe formation, and not rheological softening mechanisms, which might, however, have subsequently further intensified shear localization significantly.  相似文献   

12.
This contribution discusses the development of the Palaeoproterozoic Buganda-Toro belt in the Rwenzori Mountains and its influence on the western part of the East African Rift System in Uganda. The Buganda-Toro belt is composed of several thick-skinned nappes consisting of Archaean Gneisses and Palaeoproterozoic cover units that are thrusted northwards. The high Rwenzori Mountains are located in the frontal unit of this belt with retrograde greenschist facies gneisses towards the north, which are unconformably overlain by metasediments and amphibolites. Towards the south, the metasediments are overthrust by the next migmatitic gneiss unit that belongs to a crustal-scale nappe. The southwards dipping metasedimentary and volcanic sequence in the high Rwenzori Mountains shows an inverse metamorphic grade with greenschist facies conditions in the north and amphibolite facies conditions in the south. Early D1 deformation structures are overgrown by cordierite, which in turn grows into D2 deformation, representing the major northwards directed thrusting event. We argue that the inverse metamorphic gradient develops because higher grade rocks are exhumed in the footwall of a crustal-scale nappe, whereas the exhumation decreases towards the north away from the nappe leading to a decrease in metamorphic grade. The D2 deformation event is followed by a D3 E-W compression, a D4 with the development of steep shear zones with a NNE-SSW and SSE-NNW trend including the large Nyamwamba shear followed by a local D5 retrograde event and D6 brittle reverse faulting. The Palaeoproterozoic Buganda-Toro belt is relatively stiff and crosses the NNE-SSW running rift system exactly at the node where the highest peaks of the Rwenzori Mountains are situated and where the Lake George rift terminates towards the north. Orientation of brittle and ductile fabrics show some similarities indicating that the cross-cutting Buganda-Toro belt influenced rift propagation and brittle fault development within the Rwenzori Mountains and that this stiff belt may form part of the reason why the Rwenzori Mountains are relatively high within the rift.  相似文献   

13.
The Adula Nappe in the Central Alps comprises pre-Mesozoic basement and minor Mesozoic sediments, overprinted by Paleogene eclogite-facies metamorphism. Peak pressures increase southward from ca. 1.2 GPa to values over 3 GPa, which is interpreted to reflect exhumation from a south-dipping subduction zone. The over- and underlying nappes experienced much lower Alpine pressures. To the north, the Adula Nappe ends in a lobe surrounded by Mesozoic metasediments. The external shape of the lobe is simple but the internal structure highly complicated. The frontal boundary of the nappe represents a discontinuity in metamorphic peak temperatures, between higher T in the Adula Nappe and lower T outside. A shear zone with steeply dipping foliation and shallowly-plunging, WSW-ENE oriented, i.e. orogen-parallel stretching lineation overprinted the northernmost part of the Adula Nappe and the adjacent Mesozoic metasediments (Vals-Scaradra Shear Zone). It formed during the local Leis deformation phase. The shear sense in the Vals-Scaradra Shear Zone changes along strike; from sinistral in the W to dextral in the E. Quartz textures also vary along strike. In the W, they indicate sinistral shearing with a component of coaxial (flattening) strain. A texture from the middle part of the shear zone is symmetric and indicates coaxial flattening. Textures from the eastern part show strong, single c-axis maxima indicating dextral shearing. These relations reflect complex flow within the Adula Nappe during a late stage of its exhumation. The structures and reconstructed flow field indicate that the Adula basement protruded upward and northward into the surrounding metasediments, spread laterally, and expelled the metasediments in front towards west and east.  相似文献   

14.
Deformation fabrics in Proterozoic/Cambrian granitic rocks of the Çine nappe, and mid-Triassic granites of the Bozdag nappe constrain aspects of the tectonometamorphic evolution of the Menderes nappes of southwest Turkey. Based on intrusive contacts and structural criteria, the Proterozoic/Cambrian granitic rocks of the Çine nappe are subdivided into older orthogneisses and younger metagranites. The deformation history of the granitic rocks documents two major deformation events. An early, pre-Alpine deformation event (DPA) during amphibolite-facies metamorphism affected only the orthogneisses and produced predominantly top-to-NE shear-sense indicators associated with a NE-trending stretching lineation. The younger metagranites are deformed both by isolated shear zones, and by a major shear zone along the southern boundary of the Çine submassif. We refer to this Alpine deformation event as DA3. DA3 shear zones are associated with a N-trending stretching lineation, which formed during greenschist-facies metamorphism. Kinematic indicators associated with this stretching lineation reveal a top-to-south sense of shear. The greenschist-facies shear zones cut the amphibolite-facies structures in the orthogneisses. 207Pb/206Pb dating of magmatic zircons from a metagranite, which crosscuts orthogneiss containing amphibolite-facies top-to-NE shear-sense indicators, shows that DPA occurred before 547.2ǃ.0 Ma. Such an age is corroborated by the observation that mid-Triassic granites of the Çine and Bozdag nappes lack DPA structures. The younger, top-to-south fabrics formed most likely as a result of top-to-south Alpine nappe stacking during the collision of the Sakarya continent with Anatolia in the Eocene.  相似文献   

15.
The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks.  相似文献   

16.
The study area is located in the Central Taurides (southern Turkey), which is bounded by the K?rkkavak fault to the west and Ecemi? fault to the east. The sequences are studied in detail based on measured sections composed of the rocks deposited during the Cenomanian–Maastrichtian and located within different tectonic units previously described in the Taurides. The study materials include 217 thin section data from seven Cenomanian–Maastrichtian sequences of outcropping in different parts of the Central Taurides. The sediments deposited during the Cenomanian–Maastrichtian period in the Central Taurides are subdivided into eight units based on their lithological, paleontological, and textural properties. The lower boundaries of the upper Santonian and Campanian are unconformable contacts. The Upper Cretaceous sequence starts with the middle Cenomanian and represents a continuation of the Lower Cretaceous tidal flat and shelf lagoon sequence. Upper Turonian–Coniacian sediments are not observed due to the eustatic sea level drop. The second main transgression period of the Upper Cretaceous platform took place in the Santonian. This unit is represented by limestones composed of wackestones/packstones containing benthic foraminifera and rudist fragments, which are deposited in tidal flats and subtidal environments. The late Campanian starts with a transgression, and the environment transformed transitions into slope facies from inner platform facies, as a result of the thrust of ophiolitic rocks. In the following period, slope front and basin plain environments were dominant due to the increasing slope. Slumped pelagic limestones were deposited on the slope. Planktonic foraminiferal pelagic limestones were unconformably deposited on plaque limestone in the slope front environment depending on the increase in slope gradient and local faulting. As a result of decreasing tectonic activity, the sediments were deposited onto a stable basin plain. They were initially fed from the nearby carbonate platform and then by siliciclastic turbidites derived from the thrusted ophiolitic rocks. In this study, the lithostratigraphic properties of the Cenomanian–Maastrichtian units outcropping in various parts of the Central Taurides are described. The sedimentary deposits described here suggest different basinal conditions in the region.  相似文献   

17.
The northerly dipping Sha’it–Nugrus shear zone (SNSZ) is the boundary separating the Central Eastern Desert from the South Eastern Desert of Egypt. The hangingwall of this shear zone is composed of low-grade metavolcanics and ophiolitic nappes of the Central Eastern Desert, while the footwall consists of South Eastern Desert high-grade metapsammitic gneisses (Migif-Hafafit gneissic complex). The SNSZ is about 700 m thick and represents the shear foliated lower parts of the hangingwall and upper parts of the footwall. A significant part of the SNSZ has been truncated by a later normal fault along Wadi Sha’it, however the SNSZ is well-preserved along Wadi Nugrus. Features of the SNSZ include shear-related schistosity (termed Ss), mylonite zones, sheared syn-kinematic granitoid intrusions, diverse metasomatism and metamorphic effects (higher T overprinting of hangingwall lithologies and retrogression of footwall lithologies). Shear-sense indicators clearly show top-to-N or NW displacement sense. SNSZ structures overprint arc collision related nappe structures (~680 Ma) and are therefore post-arc collision. SNSZ syn-kinematic intrusives have been dated at ~600 Ma. The SNSZ is deformed (regionally and locally folded and thrust dissected) during later NE–SW compressive tectonism. The SNSZ had an originally approximately E–W strike, low-angle N-dip and a normal shear sense, making this an example of a low-angle normal ductile shear (LANF) or detachment fault. The steep NE dip of Ss foliations and low-pitching slip lineations along Wadi Nugrus are due to NW–SE folding of the SNSZ, and do not indicate a sinistral strike-slip shear zone. The normal shear sense activity is responsible for juxtaposing the low-grade Central Eastern Desert lithologies against South Eastern Desert gneisses. A displacement of 15–30 km is estimated on the SNSZ, which is comparable to LANF displacements in the Basin and Range province of the western USA. Frictional resistance along this shear was probably reduced by high magmatic fluid pressure and hydrothermal fluid pressure. The vastness and diversity of the hydrothermal activity along this shear zone is a characteristic of other LANFs in the Eastern Desert, e.g. at Gabal El-Sibai, and may be Gabal Meatiq. The SNSZ formed during the Neoproterozoic extensional tectonic phase of Eastern Desert that began ~600 Ma, and followed arc collision and NW-ward ejection of nappes.  相似文献   

18.
A palaeomagnetic study has been carried out within the Mesozoic and Tertiary units of the relatively autochthonous carbonate platforms and the allochthonous deep-sea volcanics and sediments of the Antalya Complex, exposed around the Isparta angle, SW Turkey. The Antalya Complex is interpreted as a mosaic of carbonate platforms, basinal sediments, volcanic and ophiolitic rocks which formed within a southerly strand of the Neotethyan ocean, adjacent to Gondwana.

The results indicate a widespread remagnetisation event. Negative fold tests show that the remanence at most sites is of secondary origin (e.g., within the çirali lavas). The magnetisation is carried by magnetite of presumed authigenic origin. The remagnetisation event is believed to have occurred in the Early-Middle Miocene (Burdigalian-Langhian). It was possibly triggered by the migration of orogenic fluids ahead of the advancing Lycian nappes during their emplacement onto the carbonate platforms.

Subsequent to remagnetisation, a large segment of the Isparta angle underwent an anticlockwise rotation of 30°. This rotation is attributed to the overall convergence and bending of the Hellenic arc and the final stages of emplacement of the Lycian Nappes during the Late Miocene, in agreement with previous studies.

Previously, southerly palaeolatitudes were inferred from Late Triassic extrusives of the Gödene Zone ( albali Dag unit). The post-folding magnetisation identified here within the Çirali lavas of the Gödene Zone to the south implies that these low palaeolatitudes result from the inappropriate application of structural tilt corrections. The available data cannot be used to substantiate an origin for the Antalya units south of the equator in the early Mesozoic. Instead, a position close to the northern margin of Gondwana is indicated.  相似文献   


19.
Southern Italy consists tectonically of ophiolite and basement nappes thrust over the Apenninic sedimentary nappes. Whilst all more recent authors agree that the sediments of the Apenninic nappes were deposited on Apulian basement (i.e. on African continental crust), and that the ophiolites were associated with the oceanic basement of the Mesozoic Tethys, the provenance of the basement nappes is still debated.New data based on microstructural criteria have shown that the main shear sense of the ophiolite nappes and of the overlying basement nappes in Northern Calabria is from west to east, in today's co-ordinate system. The basement nappes might not therefore be of Austroalpine (African) provenance, but could be of European origin.  相似文献   

20.
A study of the metamorphic and tectonic evolution of the Bündnerschiefer of the Engadine window shows that the individual nappes have been thinned by a large amount and that extension was active during and soon after nappe stacking.
Based on contrasting P–T  histories the Penninic Bündnerschiefer can be divided in two major units bounded by a horizontal contact. The lower (Mundin) unit shows typical high- P /low- T  parageneses in metapelites (Mg-carpholite) and in metabasites (glaucophane); metamorphic conditions are estimated around 12  kbar, 375  °C. The upper (Arina) unit contains no specific high- P minerals; metamorphic conditions are estimated around 7  kbar, 325  °C. A minimum pressure gap of 5  kbar is thus observed. The contact between the two units is marked by a mappable normal shear zone with top-to-the-north-west sense of shear. Near the shear zone, fresh carpholite fibres trend parallel to the regional stretching lineation, implying that the detachment is an early structure active from the depth of stability of the carpholite and persisting during subsequent exhumation. The good preservation of carpholite and the absence of retrograde chloritoid below the shear zone show that exhumation occurred along a cooling path, whereas the deeper units are exhumed along an isothermal path. Exhumation probably occurred during convergence and further nappe stacking during the earlier Eocene. These results suggest that pre-collisional tectonic thinning of the Penninic oceanic units may be more widespread and significant than generally recognized.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号