首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
The Sanshandao Au deposit is located in the famous Sanshandao metallogenic belt, Jiaodong area. To date, accumulative Au resources of 1000 t have been identified from the belt. Sanshandao is a world-class gold deposit with Au mineralization hosted in Early Cretaceous Guojialing-type granites. Thus, studies on the genesis and ore-forming element sources of the Sanshandao Au deposit are crucial. He and Ar isotopic analyses of fluid inclusions from pyrite(the carrier of Au) indicate that the fluid inclusions have 3 He/4 He=0.043–0.21 Ra with an average of 0.096 Ra and 40 Ar/36 Ar=488–664 with an average of 570.8. These values represent the initial He and Ar isotopic compositions of ore-forming fluids for trapped fluid inclusions. The comparison of H–O isotopic characteristics combined with deposit geology and wall rock alteration reveals that the ore-forming fluids of the Sanshandao Au deposit show mixed crust–mantle origin characteristics, and they mainly comprise crust-derived fluid mixed with minor mantle-derived fluid and meteoric water during the uprising process. The ore-forming elements were generally sourced from pre-Cambrian meta-basement rocks formed by Mesozoic reactivation and mixed with minor shallow crustal and mantle components.  相似文献   

2.
The Lanping basin, Yunnan province, SW China, is located at the juncture of the Eurasian and Indian Plates in the eastern part of the Tibetan Plateau. The Lanping basin, in the Sanjiang Tethyan metallogenic province, is a significant Cu–Ag–Zn–Pb mineralized belt in China that includes the largest sandstone‐hosted Zn–Pb deposit in the world, the Jinding deposit, as well as several Ag–Cu deposits (the Baiyangping and Jinman deposits). These deposits, with total reserves of over 16.0 Mt Pb + Zn, 0.6 Mt Cu, and 7,000 t Ag, are mainly hosted in Meso‐Cenozoic clastic rocks and are dominantly controlled by two Cenozoic thrust systems developed in the western and eastern segments of the basin. The Baiyangping, Babaoshan, and Hetaoqing ore deposits are representative of the epithermal base metal deposits in the Lanping basin. The microthermometric data show that the ore‐forming fluids for these deposits were low temperature (110–180 °C) and had bimodal distribution of salinity at moderate and mid to high salinities (approximately 2–8 wt.% and 18–26 wt.% NaCl equivalent). The C and O isotope data indicate that the ore‐forming fluids were related to hot basin brines. We present new He and Ar isotope data on volatiles released from fluid inclusions contained in sulfides and in barite in these three deposits. 3He/4He ratios of the ore‐forming fluids are 0.01 to 0.14 R/Ra with a mean of 0.07 Ra (where R is the 3He/4He ratio and Ra is the ratio for atmospheric helium). This mean value is intermediate to typical 3He/4He ratios for the crust (R/Ra = 0.01 to 0.05) and the ratio for air‐saturated water (R/Ra = 1). The mean ratio is also significantly lower than the ratios found for mantle‐derived fluids (R/Ra = 6 to 9). The 40Ar/36Ar ratios of the ore‐forming fluids range from 298 to 382 with a mean of 323. This value is slightly higher than that for the air‐saturated water (295.5). The 3He/4He ratios of fluids from the fluid inclusions imply that the ore‐forming fluid for the Baiyangping, Babaoshan, and Hetaoqing deposits was derived from the crust and that any mantle‐derived He was negligible. The content of the radiogenic Ar ranges between 0.2 to 20.4%, and the proportion of air‐derived 40Ar averages 94.1%. This indicates that atmospheric Ar was important in the formation of these deposits but that some radiogenic 40Ar was derived from crustal rocks. Based on these observations coupled with other geochemical evidence, we suggest that the ore‐forming fluids responsible for the formation of the Ag–Cu–Pb–Zn polymetallic ore deposits in the Baiyangping area of the Lanping basin were mainly derived from crustal fluids. The fluids may have mixed with some amount of air‐saturated water, but there was no significant involvement of mantle‐derived fluids.  相似文献   

3.
The role of He and Ar isotopes in tracing the source of ore fluids has aroused great attention of the broad masses of the geological researchers. On the basis of lots of test and measurement of He and Ar isotopes in sulfides from Au, Ag polymetallic ore deposits in northern China, statistics has been made on the published He and Ar isotope data from 27 gold deposits, 13 silver polymetallic ore deposits, 8 polymetallic ore deposits, 1 rare-earth deposit, 3 oceanic incrustations, 3 volcanic springs and their wall rocks and granites. The statistical results indicate that the 3 He/ 4 Ar (×10-6 ) values of the Au, Ag polymetallic ore deposits are within the range of 0.24 9.39, with an average of 3.34×10-6 ; the He/Ar values, 0.007 6.01,with an average of 2.37; the 40 Ar/ 36 Ar values, 265.75 2361, with an average of 699.0; the 4 He/ 40 Ar values, 0.0020 643.86, with an average of 5.85, the 3 He/ 4 Ar (×10-6 ) values of gneiss and granite surrounding the mining area, 0.001 1.79, with an average of 1.00×10-6 , reflecting great differences in source. Mantle-source He in 48 Au, Ag polymetallic ore deposits accounts for 4.55% 83.06%, averaging 29.91%. It falls near the mantle-source region which can be seen in the He isotopic concentration diagram and the 3 He/ 4 He(R/Ra) 40 Ar/ 36 Ar plot. Studies suggested that the ore-forming materials for endogenic Au, Ag polymetallic ore deposits should be derived from the deep interior of the Earth, and with the multi-stage evolution of mantle plumes the deep-seated ore fluids would be transported from the deep interior of the Earth to the shallow levels. During this process the mixing of crust/mantle-source fluids would inevitably occur, therefore, the value range always lies between the mantle and the crust.  相似文献   

4.
粤北诸广南部铀矿田是我国重要的花岗岩型铀矿产地之一,有关诸广南部花岗岩型铀矿田的成因,多年来一直存在较大的争议。本文以诸广南部铀矿田典型铀矿床成矿期萤石、方解石和黄铁矿中流体包裹体为测试对象,研究了成矿流体的He、Ar同位素地球化学。研究表明,萤石流体包裹体的~3He/~4He比值为0. 021~0. 186Ra,~(40) Ar/~(36)比值为298. 4~2515. 7;方解石流体包裹体的3He/4He比值为0. 027~0. 209Ra,~(40) Ar/~(36)比值为295. 9~327. 2;黄铁矿流体包裹体的3He/4He比值为0. 021~1. 543Ra,~(40) Ar/~(36)比值为326. 9~1735. 1; He-Ar同位素系统显示成矿流体的3He/4He比值略高于地壳氦同位素特征值(0. 01~0. 05Ra),但低于幔源氦同位素特征值(6~9Ra),~(40) Ar/~(36)比值接近或高于大气氩的同位素组成(~(40) Ar/~(36)=295. 5),成矿流体为壳-幔混合来源。结合H-O、He-Ar、C和Sr等多元同位素证据表明,成矿流体由两个端元组成:一是含有一定放射性成因Ar的大气降水的地壳流体,二是含幔源He的地幔流体。进一步研究表明,受NNW向断裂控制的棉花坑、书楼丘、长排等铀矿床受地幔流体影响比较大,而受NE向断裂控制的蕉坪、东坑、烟筒岭铀矿床受大气降水影响比较大。  相似文献   

5.
The Tieshanlong tungsten‐polymetallic deposit is a large wolframite deposit of quartz vein type located in southern Jiangxi, South China. It is genetically related to a high‐K S‐type granite. Seven pyrite and two wolframite samples, selected for He and Ar isotope analyses, yielded 3He/4He values of 0.04–0.98 Ra, 40Ar/36Ar ratios of 293.5–368.0, and 38Ar/36Ar ratios of 0.176–0.193. These data indicate that the ore‐forming fluids associated with the deposit did not result from a simple mixing of the crustal‐ and mantle‐derived end‐member fluids, but that primeval meteoric fluids were also involved in the generation of the associated granitic magma by partial melting of crustal metasedimentary rocks. Further investigations show that only minimal He from the mantle was added during generation of the associated granitic magma. It is postulated that boiling and second mixing with “new” meteoric fluids took place during migration of magmatic‐hydrothermal fluids into wall‐rock fractures, resulting in a drastic decrease of their metal transport capacity, which triggered the tungsten‐polymetallic mineralization.  相似文献   

6.
文章利用黄铁矿流体包裹体惰性气体同位素,探讨了广西栗木锡铌钽矿田成矿流体的来源.黄铁矿流体包裹体的3He/4He比值为0.14~0.97 Ra,远远低于地幔流体的比值,接近饱和大气水的比值,并与地壳流体的比值处在相同的数量级上;40 Ar/36 Ar比值为555.98~ 855.11,平均705.55,显然偏离大气氩的同位素组成;40Ar*/4He比值为0.08~0.27,平均值为0.153,接近地壳值;20Ne/22 Ne=9.671~9.748和21Ne/22 Ne=0.0306~ 0.0330,具有饱和大气水的Ne同位素比值特征.结果表明,广西栗木锡铌钽矿田老虎头、牛栏岭和金竹源3个矿床的成矿流体是大气水和地壳流体的混合流体;水溪庙矿床的成矿流体也主要是大气水和地壳流体的混合流体,但可能有少量地幔流体的加入.  相似文献   

7.
Systematic microthermometric measurements of fluid inclusions in the PGE-polymetallic deposits hosted in the Lower Cambrian black rock series in southern China were performed, and the results suggest: (1) there exist two types of fluid inclusions. TypeⅠis of NaCl-H2O system with low-medium salinity, and its homogenization temperatures (Th) and salinities are 106.9- 286.4℃ and ( 0.8- 21.8) wt%NaCl eq. respectively; TypeⅡ is of CaCl2-NaCl-H2O system with medium-high salinities, and its homogenization temperatures and salinities range from 120.1℃ to 269.6℃ and ( 11.4- 31.4) wt%NaCl eq., respectively. The typeⅡ fluid inclusions have been discovered for the first time in this kind of deposits; (2) two generations of ore-forming fluids were recognized. Characteristics of fluid inclusions in the PGE-polymetallic ores and carbonate-quartz stockworks in the underlying phosphorites are almost of no difference, they may represent ore-forming fluids at the main metallogenic stage. The peak value of homogenization temperature of those fluid inclusions is about 170℃, while their salinities possess a remarkable bimodal distribution pattern with two peak values of (27-31) wt%NaCl eq. and (4-6) wt%NaCl eq. On the contrary, fluid inclusions in the carbonate-quartz veins in the hanging wall may represent ore-forming fluids at the post-metallogenetic stage. The homogenization temperatures and the peak values of salinities are mostly 130-170℃ and (12-14) wt%NaCl eq., respectively; (3) nobel gas isotopic composition analyses in combination with the microthermometric measurements of fluid inclusions suggest that the ore-forming fluids at the main metallogenetic stage were probably derived from mixing of basinal hot brines with the CaCl2-NaCl-H2O system and seawater with the NaCl-H2O system; (4) in the Early Cambrian, the basinal hot brines were trapped in the Caledonian basins, which were distributed along the southern margin of the Yangtze Craton, and where giant thick sediments were accumulated, and expelled and migrated laterally along the strata because of the pressure caused by overlying sediments. The basinal hot brines absorbed Ni, Mo, V, PGE from the surrounding rocks and were transformed into ore-bearing hydrothermal fluids with the CaCl2-NaCl-H2O system and medium-high salinities, then ascended along faults and mixed with seawater of the NaCl-H2O system, and finally PGE-polymetallic deposits or occurrences were formed in the black rock series.  相似文献   

8.
Fluid origins in the sandstone-hosted Pb-Zn class of ore deposit have been investigated in three deposits from Scandinavia; Laisvall, Vassbo and Osen. The deposits studied are hosted by autochthonous Cambrian sandstones that preserve a near original structural relationship to the underlying Precambrian basement, enabling the role of basement interaction to be assessed.Mineral samples have been collected from across the paragenetic sequence: sphalerite, galena, pyrite, fluorite and barite, of impregnation and related joint-hosted mineralization. Fluid-inclusion halogen (Cl, Br and I) and noble gas isotope (40Ar, 36Ar, 84Kr) compositions were determined simultaneously by noble gas mass spectrometry of irradiated sample splits. Complementary He isotope analyses are obtained from nonirradiated splits of the same samples.3He/4He values at Laisvall and Osen are highly radiogenic, 0.02 Ra, and the 4He/40Ar* ratio extends to values greater than the crustal production value of 5, characteristic of low-temperature crustal fluids. At Vassbo, a slightly elevated 3He/4He ratio of 0.1-0.3 Ra is compatible with a very minor mantle component (1%-4%) suggesting a distal source for the basinal brine-dominated fluid.Br/Cl molar ratios 3.2-8.2 × 10−3 are greater than the present seawater value of 1.54 × 10−3 and correspond with I/Cl molar ratios in the range 64-1600 × 10−6. The upper limits of both the I/Cl and Br/Cl values are amongst the highest measured in crustal fluids. Together, the data indicate acquisition of salinity by the evaporation of seawater beyond the point of halite saturation and subsequent fluid interaction with I-rich organic matter in the subsurface. The data are compatible with the independent transport of sulfate and sulfide and indicate that fluids responsible for joint-hosted mineralization were distinct to those responsible for impregnation mineralization.All three deposits preserve fluids with 40Ar/36Ar in the range of 6,000-10,000 and fluid inclusion 40Ar* concentrations of >0.02-0.05 cm3cm−3. Fluid-inclusion 4He concentrations are also extremely elevated with maximum values of ∼0.1 cm3cm−3 in Laisvall fluorite and sphalerite. The high 40Ar/36Ar values, together with the high 4He and 40Ar* concentrations, result from a very long premineralization crustal residence time on the order of 100-200 Ma.Together, the noble gas and halogen data are compatible with a Caledonian mineralization event (∼425 Ma) caused by mixing of two or more, long-lived, hydrothermal basinal brines and pore fluids at the sites of mineralization. The data suggest negligible recharge of the basinal brines by meteoric water and indicate extensive fluid-basement interaction before mineralization. The similar noble gas composition of each deposit, suggests that similar processes operated at all three deposits and favors a single-pass fluid-flow model for mineralization.  相似文献   

9.
The Dongmozhazhua deposit, the largest Pb–Zn deposit in south Qinghai, China, is stratabound, carbonate‐hosted and associated with epigenetic dolomitization and silicification of Lower–Middle Permian—Upper Triassic limestones in the hanging walls of a Cenozoic thrust fault system. The mineralization is localized in a Cenozoic thrust‐folded belt along the northeastern edge of the Tibetan plateau, which was formed due to the India–Asia plate collision during the early Tertiary. The deposit comprises 16 orebodies with variable thicknesses (1.5–26.3 m) and lengths (160–1820 m). The ores occur as dissemination, vein, and breccia cement. The main sulfide assemblage is sphalerite + galena + pyrite + marcasite ± chalcopyrite ± tetrahedrite, and gangue minerals consist mainly of calcite, dolomite, barite, and quartz. Samples of pre‐ to post‐ore stages calcite yielded δ13C and δ18O values that are, respectively, similar to and lower than those yielded by the host limestones, suggesting that the calcite formed from fluids derived from carbonate dissolution. Fluid inclusions in calcite and sphalerite in the polymetallic sulfidization stage mostly comprise liquid and gas phases at room temperature, with moderate homogenization temperatures (100–140°C) and high salinities (21–28 wt% NaCl eq.). Micro‐thermometric fluid inclusion data point to polysaline brines as ore‐forming fluids. The δD and δ18O values of ore fluids, cation compositions of fluid inclusions, and geological information suggest two main possible fluid sources, namely basinal brines and evaporated seawater. The fluid inclusion data and regional geology suggest that basinal brines derived from Tertiary basins located southeast of the Dongmozhazhua deposit migrated along deep detachment zones of the regional thrust system, leached substantial base metals from country rocks, and finally ascended along thrust faults at Dongmozhazhua. There, the base‐metal‐rich basinal brines mixed with bacterially‐reduced H2S‐bearing fluids derived from evaporated seawater preserved in the Permo–Triassic carbonate strata. The mixing of the two fluids resulted in Pb–Zn mineralization. The Dongmozhazhua Pb–Zn deposit has many characteristics that are similar to MVT Pb–Zn deposits worldwide.  相似文献   

10.
The Chengchao iron deposit,the largest high-grade skarn iron deposit in southeastern Hubei Province,contains considerable amounts of magnetite and by-product anhydrite.To obtain better understanding of the ore-formation process,this study carried out He-Ar-S-Pb multi-isotopic analyses on the pyrites formed during two stages of mineralization.The results indicate that the δ~(34)S values(ranging from 14.0‰ to 17.6‰) of pyrites formed from the two stages have no obvious differences,suggesting that they were not derived from a single magmatic sulfur source.The δ~(34)S values of anhydrite mostly range from 21.9‰ to 28.4‰,similar to that of the Middle Triassic sedimentary anhydrite in the Middle-Lower Yangtze River metallogenic belt(MLYRB).The Pb isotopic compositions of the pyrites of both stages are homogeneous,with values of ~(208)Pb/~(204)Pb,~(207)Pb/~(204)Pb,and~(206)Pb/~(204)Pb being 38.006-38.257,15.523-15.556,and 17.806-18.052,respectively,indicating a mixed crust-mantle source.The He-Ar results exhibit different compositions of the two stages:the ~3He/~4He(R/Ra) and ~(40)Ar/~(36)Ar values for the early-stage pyrite are 0.46-0.63 and 311-322,respectively,whereas the values for late-stage pyrite are 0.23-0.34 and 305-361,respectively.Both stages of pyrites indicate the multiple sources of the ore-forming fluids,with decreasing amount of magmatic water and increasing amount of modified meteoric water(MASW) during fluid evolution.The Triassic evaporites played an important role in the mineralization process.  相似文献   

11.
The Jinman Cu polymetallic deposit is located within Middle Jurassic sandstone and slate units in the Lanping Basin of southwestern China. The Cu mineralization occurs mainly as sulfide‐bearing quartz–carbonate veins in faults and fractures, controlled by a Cenozoic thrust–nappe system. A detailed study of fluid inclusions from the Jinman deposit distinguishes three types of fluid inclusions in syn‐ore quartz and post‐ore calcite: aqueous water (type A), CO2–H2O (type B), and CO2‐dominated (type C) fluid inclusions. The homogenization temperatures of CO2–H2O inclusions vary from 208°C to 329°C, with corresponding salinities from 0.6 to 4.6 wt.% NaCl equivalent. The homogenization temperatures of the aqueous fluid inclusions mainly range from 164°C to 249°C, with salinities from 7.2 to 20.2 wt.% NaCl equivalent. These characteristics of fluid inclusions are significantly different from those of basinal mineralization systems, but similar to those of orogenic or magmatic mineralization systems. The H and O isotope compositions suggest that the ore‐forming fluid is predominantly derived from magmatic water, with the participation of basinal brine. The δ34S values are widely variable between ?9.7 ‰ and 9.7 ‰, with a mode distribution around zero, which may be interpreted by the variation in physico‐chemical conditions or by compositional variation of the sources. The mixing of a deeply sourced CO2‐rich fluid with basinal brine was the key mechanism responsible for the mineralization of the Jinman deposit.  相似文献   

12.
大宝山多金属矿床是粤北地区典型的巨厚型及细脉带型矿化的多金属硫化物矿床.层状和脉状黄铁矿的氦氩同位素表明:3He/4He的R/Ra值为0.60~4.13,40Ar/86Ar=327~411,反映该成矿流体是大气饱和水(海水)与地幔流体混合作用的结果.铅和硫同位素都揭示了层状(块状)和脉状矿体可能来自不同时期的成矿流体.其中层状矿体为泥盆纪海底火山喷发沉积作用所致,脉状矿体可能来自燕山期岩浆热液充填叠加形成,古大陆碎屑物质和部分有机质的还原对后期成矿流体具有较大的影响作用.  相似文献   

13.
The orogenic gold deposits in Southeast Guizhou are an important component of the Xuefeng polymetallic ore belt and have significant exploration potential, but geochronology research on these gold deposits is scarce. Therefore, the ore genetic models are poorly constrained and remain unclear. In the present study, two important deposits(Pingqiu and Jinjing) are investigated, including combined Re-Os dating and the He-Ar isotope study of auriferous arsenopyrites. It is found that the arsenopyrites from the Pingqiu gold deposit yielded an isochron age of 400 ± 24 Ma,with an initial ~(187)Os/~(188)Os ratio of 1.24 ± 0.57(MSWD = 0.96). An identical isochron age of 400 ± 11 Ma with an initial ~(187)Os/~(188)Os ratio of 1.55 ± 0.14(MSWD = 0.34) was obtained from the Jinjing deposit. These ages correspond to the regional Caledonian orogeny and are interpreted to represent the age of the main stage ore. Both initial ~(187)Os ratios suggest that the Os was derived from crustal rocks. Combined with previous rare earth element(REE), trace elements, Nd-Sr-S-Pb isotope studies on scheelite, inclusion fluids with other residues of gangue quartz, and sulfides from other gold deposits in the region, it is suggested that the ore metals from Pingqiu and Jinjing were sourced from the Xiajiang Group. The He and Ar isotopes of arsenopyrites are characterized by ~3 He/~4 He ratios ranging from 5.3 × 10~(-4) Ra to 2.5 × 10~(-2) Ra(Ra = 1.4 × 10~(-6), the ~3 He/~4 He ratio of air), 40 Ar=/~4 He ratios from 0.64 × 10~(-2) to 15.39×10~(-2), and ~(40)Ar/~(36)Ar ratios from 633.2 to 6582.0. Those noble gas isotopic compositions of fluid inclusions also support a crustal source origin,evidenced by the Os isotope. Meanwhile, recent noble gas studies suggest that the amount of in situ radiogenic ~4 He generated should not be ignored, even when Th and U are present at levels of only a few ppm in host minerals.  相似文献   

14.
Extreme Enrichment of Tellurium in Deep-Sea Sediments   总被引:2,自引:0,他引:2  
Tellurium is a sort of scattered rare element on the earth. Its concentration is very low in earth's crust, only 1.0 ng/g. However, it has extremely high abundance in Co-rich crusts, marine polymetallic nodules, deep-sea sediments and aerolites. To find out the origin of tellurium enrichment in deep-sea sediments, we analyzed and compared tellurium concentrations and helium isotope compositions in the magnetic parts and those in the bulk parts of deep-sea sediments. The result indicates that the helium content, 3He/4He ratio and tellurium concentration are obviously higher in the magnetic parts than those in the bulk parts. The 3He abundance varies synchronously with the tellurium concentration. 3He and Te have a distinct positive correlation with each other. It is the first time that the paper brings forward that the extreme enrichment of tellurium in deep-sea sediments, like helium isotope anomalies, probably results from the input of interplanetary dust particles (IDPs). Similarly, the extreme enrichment of tellurium in marine polymetallic nodules and Co-rich crusts is possibly related to IDPs.  相似文献   

15.
The Bulong gold deposit, located in the southwest Tianshan in China, occurs in the Upper Devonian finegrained clastic rocks. The gold orebodies are controlled by an gently inclined interlayer fractured zone. They are hosted only in quartz-barite veins though there are barite veins and quartz veins in the ore district. The δ34S values of pyrite in the ores range from 14.6‰ to 19.2‰ and those of barite from 35.0‰ to 39.6‰, indicating that the sulfur was derived from the strata. 3He/4He ratios of fluid inclusions in pyrite are 0.24-0.82 R/Ra, approximating to that of the crust. The 40Ar/39Ar ratios range from 338 to 471, slightly higher than that of the atmosphere. 40Ar /4He ratios of ore fluids range from 0.015 to 0.412 with a mean of 0.153. Helium and argon isotope compositions of fluid inclusions show that the ore fluids of the Bulong gold deposit were mainly derived from the crust.  相似文献   

16.
Atmospheric Ne, Ar, Kr and Xe are observed in fluids occurring in deep basins. Modifications of their abundance patterns reveal modes of recharge and brine formation, phase separations during boiling, and association of natural gas with water or oil. Radiogenic 4He and 40Ar serve as age indicators of entrapped fluids, effective over a significant portion of the geological time scale. Simultaneous application of δ13C, atmospheric noble gases and radiogenic 4He and 40Ar, is recommended to identify: (a) recent bacterial natural gas formation, not accompanied by oil, and (b) natural gas formed along with oil in a mature source rock.  相似文献   

17.
Petrographic and geochemical studies of an Upper Eocene reef and associated basinal sediments from the mixed carbonate–siliciclastic fill of the south‐eastern Pyrenean foreland basin near Igualada (NE Spain) provide new insights into the evolution of subsurface hydrology during the restriction of a marine basin. The reef deposits are located on delta‐lobe sandstones and prodelta marls, which are overlain by hypersaline carbonates and Upper Eocene evaporites. Authigenic celestite (SrSO4) is an important component in the observed diagenetic sequences. Celestite is a significant palaeohydrological indicator because its low solubility constrains transportation of Sr2+ and SO42? in the same diagenetic fluid. Stable isotopic analyses of carbonates in the reef indicate that meteoric recharge was responsible for aragonite stabilization and calcite cementation. Sulphur and oxygen isotope geochemistry of the celestite demonstrates that it formed from residual sulphate after bacterial sulphate reduction, but also requires that there was a prior episode of sulphate recycling. Meteoric water reaching the reef and basinal areas was most probably charged with SO42? from the dissolution of younger Upper Eocene marine evaporites. This sulphate, combined with organic matter present in the sediments, fuelled bacterial sulphate reduction in the meteoric palaeoaquifer. Strontium for celestite precipitation was partly derived in situ from dissolution of aragonite corals in the reef and basinal counterparts. However, 87Sr/86Sr data also suggest that Sr2+ was partly derived from dissolution of overlying evaporites. Mixing of these two fluids promoted celestite formation. The carbonate stable isotopic data suggest that the local meteoric water was enriched in 18O compared with that responsible for stabilization of other reefs along the basin margin. Furthermore, meteoric recharge at Igualada post‐dated evaporite deposition in the basin, whereas other parts of the same reef complex were stabilized before evaporite formation. This discrepancy resulted from the spatial distribution of continental siliciclastic units that acted as groundwater conduits.  相似文献   

18.
The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ~(18)O_(H2O) values calculated from the δ~(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.  相似文献   

19.
为探讨贵州下寒武统黑色岩系中铂族元素物质来源及钼-镍、钒多金属形成的沉积环境与成矿作用,在钼-镍、钒多金属层及其顶底页岩、底部硅质岩中采集样品测试分析。通过对样品中金、铂族元素含量(质量分数)及其地球化学特征值研究,结果表明:黑色岩系中金及铂族元素含量显示协同变化特征;Pd富集,Ru、Ir亏损明显,Pt、Rh、Os基本持平或略有变化;样品的原始地幔标准值标准化模式配分曲线从Os、Ru、Rh、Ir、Pt到Pd大致呈“W”型,配分曲线略呈左倾,总体上呈现w(Pd)>w(Pt)>w(Os)>w(Rh)>w(Ru)>w(Ir)的变化关系;黑色岩系铂族元素来源与正常海水及海底热水喷流作用关系密切,地外来源可能性极小;黑色岩系钼-镍、钒多金属层中铂族元素的富集存在单独成矿作用或成矿作用的叠加,而且在钒多金属层内局部存在分层或条带分异。  相似文献   

20.
The Tieluping silver deposit, which is sited along NE-trending faults within the high-grade metamorphic basement of the Xiong‘er terrane, is part of an important Mesozoic orogenic-type Ag-Pb and Au belt recently discovered. Ore formation includes three stages: Early (E), Middle (M) and Late (L), which include quartz-pyrite (E),polymetallic sulfides (M) and carbonates (L), respectively. The E-stage fluids are characterized by δD=-90%c,δ^13CCO2=2.0‰ and δ^18O=9‰ at 373℃, and are deeply sourced; the L-stage fluids, with δD=-70‰, δ^13C CO2=-1.3%c and δ^18O=-2‰, are shallow-sourced meteoric water; whereas the M-stage fluids, with δD=-109‰, δ^13C CO2=0.1%c and δ^18O2‰, are a mix of deep-sourced and shallow-sourced fluids. Comparisons of the D-O-C isotopic systematics of the Estage ore-forming fluids with the fluids derived from Mesozoic granites, Archean-Paleoproterozoic metamorphic basement and Paleo-Mesoproterozoic Xiong‘er Group, show that these units cannot generate fluids with the measured isotopic composition (high δ^180 and δ^13C ratios and low δD ratios) characteristic of the ore-forming fluids. This suggests that the E-stage ore-forming fluids originated from metamorphic devolatilization of a carbonate-shale-chert lithological association, locally rich in organic matter, which could correspond to the Meso-Neoproterozoic Guandaokou and Luanchuan Groups, rather than to geologic units in the Xiong‘er terrane, the lower crust and the mantle. This supports the view that the rocks of the Guandaokou and Luanchuan Groups south of the Machaoying fault might be the favorable sources. A tectonic model that combines collisional orogeny, metallogeny and hydrothermal fluid flow is proposed to explain the formation of the Tieluping silver deposit. During the Mesozoic collision between the South and North China paleocontinents, a crustal slab containing a lithological association consisting of carbonate-shale-chert, locally rich in organic matter (carbonaceous shale) was thrust northwards beneath the Xiong‘er terrane along the Machaoying fault.Metamorphic devolatilization of this underthrust slab provided the ore-forming fluids to develop the Au-Ag-(Pb-Zn) ore belt, which includes the Tieluping silver deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号