首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The components and carbon isotope of gases in inclusions are one of the most important geochemical indexes for gas pools. The analysis results of the components and carbon isotope of gases from inclusions in reservoir layers of Upper Palaeozoic gas pools in the Ordos Basin show that most inclusions grown in reservoir sandstone are primary inclusions. There is only a little difference about the components and carbon isotope between the well gases and the secondary inclusions gases. This indicated that the epigenetic change of gas pools is little. This difference between the well gases and the secondary inclusions gases is caused by two reasons: (i) The well gases come from several disconnected sand bodies buried in a segment of depth, while the inclusion gases come from a point of depth. (ii) The secondary inclusions trapped the gases generated in the former stage of source rock gas generation, and the well gases are the mixed gases generated in all the stages. It is irresponsible to reconstruct the palaeo-temperature and palaeo-pressure under which the gas pool formed using carbon dioxide inclusions.  相似文献   

2.

The components and carbon isotope of gases in inclusions are one of the most important geochemical indexes for gas pools. The analysis results of the components and carbon isotope of gases from inclusions in reservoir layers of Upper Palaeozoic gas pools in the Ordos Basin show that most inclusions grown in reservoir sandstone are primary inclusions. There is only a little difference about the components and carbon isotope between the well gases and the secondary inclusions gases. This indicated that the epigenetic change of gas pools is little. This difference between the well gases and the secondary inclusions gases is caused by two reasons: (i) The well gases come from several disconnected sand bodies buried in a segment of depth, while the inclusion gases come from a point of depth. (ii) The secondary inclusions trapped the gases generated in the former stage of source rock gas generation, and the well gases are the mixed gases generated in all the stages. It is irresponsible to reconstruct the palaeo-temperature and palaeo-pressure under which the gas pool formed using carbon dioxide inclusions.

  相似文献   

3.

Well Yingnan 2, an important exploratory well in the east of Tarim Basin, yields high commercial oil and gas flow in Jurassic. Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas. Because this region presents many suits of hydrocarbon source rocks, there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present. By using the kinetics of hydrocarbon generation and carbon isotope, natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas, about 72%, it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir. The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2, so the gas reservoir belongs to late accumulation and continuous filling type.

  相似文献   

4.
Well Yingnan 2,an important exploratory well in the east of Tarim Basin,yields high commercial oil and gas flow in Jurassic.Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas.Because this region presents many suits of hydrocarbon source rocks,there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present.By using the kinetics of hydrocarbon generation and carbon isotope,natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas,about 72%,it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir.The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2,so the gas reservoir belongs to late accumulation and continuous filling type.  相似文献   

5.
Well Yingnan 2, an important exploratory well in the east of Tarim Basin, yields high commercial oil and gas flow in Jurassic. Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas. Because this region presents many suits of hydrocarbon source rocks, there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present. By using the kinetics of hydrocarbon generation and carbon isotope, natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas, about 72%, it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir. The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2, so the gas reservoir belongs to late accumulation and continuous filling type.  相似文献   

6.

The composition of fluid inclusions (FI) often represents the initial geochemical characteristics of palaeo-fluid in reservoir rock. Influence on composition and carbon isotopic composition of gas during primary migration, reservoir-forming and subsequent secondary alterations are discussed through comparing fluid inclusion gas with coal-formed gas and natural gas in present gas reservoirs in the Ordos Basin. The results show that primary migration of gas has significant effect on the molecular but not on the carbon isotopic composition of methane. Migration and diffusion fractionation took place during the secondary migration of gas in Upper Paleozoic gas reservoir according to carbon isotopic composition of methane in Fls. Composition and carbon isotopic composition of natural gas were nearly unchanged after the gas reservoir forming through comparing the FI gases with the natural gas in present gas reservoir.

  相似文献   

7.
The composition of fluid inclusions (FI) often represents the initial geochemical characteristics of palaeo-fluid in reservoir rock. Influence on composition and carbon isotopic composition of gas during primary migration, reservoir-forming and subsequent secondary alterations are discussed through comparing fluid inclusion gas with coal-formed gas and natural gas in present gas reservoirs in the Ordos Basin. The results show that primary migration of gas has significant effect on the molecular but not on the carbon isotopic composition of methane. Migration and diffusion fractionation took place during the secondary migration of gas in Upper Paleozoic gas reservoir according to carbon isotopic composition of methane in Fls. Composition and carbon isotopic composition of natural gas were nearly unchanged after the gas reservoir forming through comparing the FI gases with the natural gas in present gas reservoir.  相似文献   

8.
Gaseous components of gas inclusions in deep carbonate rocks (>5700 m) from the Tacan 1 well were analyzed by online mass spectrometry by means of either the stepwise heating technique or vacuum electromagnetism crushing. The carbon isotopic compositions of gases released by vacuum electromagnetism crushing were also measured. Although the molecular compositions of gas inclusions show differences between the two methods, the overall characteristics are that gas inclusions mainly contain CO2, whilst hydrocarbon gases, such as CH4, C2H6 and C3H8, are less abundant. The content of CO is higher in the stepwise heating experiment than that in the method of vacuum electromagnetism crushing, and there are only minor amounts of N2, H2 and O2 in gas inclusions. Methane δ13C values of gas inclusions in Lower Ordovician and Upper Cambrian rocks (from 5713.7 to 6422 m; -52‰-63‰) are similar to those of bacterial methane, but their chemical compositions do not exhibit the dry character in comparison with biogenic gases. These characteristics of deep gas inclusions may be related to the migration fractionation. Some deep natural gases with light carbon isotopic characteristics in the Tazhong Uplift may have a similar origin. The δ13C1 values of gas inclusions in Lower Cambrian rocks (7117-7124 m) are heavier (-39‰), consistent with highly mature natural gases. Carbon isotopic compositions of CO2 in the gas inclusions of deep carbonate rocks are similar (from -4‰ to -13‰) to those of deep natural gases, indicating predominantly an inorganic origin.  相似文献   

9.
The composition of fluid inclusions(FI)often represents the initial geochemical characteristics of palaeo-fluid in reservoir rock.Influence on composition and carbon isotopic composition of gas during primary migration,reservoir-forming and subsequent secondary alterations are discussed through comparing fluid inclusion gas with coal-formed gas and natural gas in present gas reservoirs in the Ordos Basin.The results show that primary migration of gas has significant effect on the molecular but not on the carbon isotopic composition of methane.Migration and diffusion fractionation took place during the secondary migration of gas in Upper Paleozoic gas reservoir according to carbon isotopic composition of methane in FIs.Composition and carbon isotopic composition of natural gas were nearly unchanged after the gas reservoir forming through comparing the FI gases with the natural gas in present gas reservoir.  相似文献   

10.
Since the Meso-Cenozoic, controlled by paleoclimate, a series of fresh to brackish water basins and salt to semi-salt water basins were developed in wet climatic zones and in dry climate zones in China, respectively[1]. The geological and geochemical char…  相似文献   

11.
Isotopic evidence of TSR origin for natural gas bearing high H2S contents 1961 As the hazardous component of natural gas, the ex-istence of H2S, due to its extremely strong toxicity and corrosivity, not only decreases the percentage of hy-drocarbon gas within natural gas and reduces its in-dustrial value, it also threatens each aspect of drilling and exploitation. It frequently causes serious safety accidents[1] and leads to the E&P cost and risk of natural gas with higher H2S contents be…  相似文献   

12.
Tomohiro  Toki  Toshitaka  Gamo  Urumu  Tsunogai 《Island Arc》2006,15(3):285-291
Abstract   We collected free-gas and in situ fluid samples up to a depth of 200.6 m from the Sagara oil field, central Japan (34°44'N, 138°15'E), during the Sagara Drilling Program (SDP) and measured the concentrations and stable carbon isotopic compositions of CH4 and C2H6 in the samples. A combination of the CH4/C2H6 ratios with the carbon isotope ratios of methane indicates that the hydrocarbon gases are predominantly of thermogenic origin at all depths. The isotope signature of hydrocarbon gases of δ13      < δ13     suggests that these gases in the Sagara oil field are not generated by polymerization, but by the decomposition of organic materials.  相似文献   

13.
The values of the helium isotopes in the inclusions of the Ordovician reservoir rocks in the Kongxi buried hill belt in the Huanghua depression were first measured and the source of helium and its geological significance were investigated in comparison with those of the helium isotopes in the conclusions in the Ordovician rocks in the Ordos basin and the Tarim basin. The input of the mantle-derived helium into the inclusions in the carbonate reservoir rocks was found from the Konggu 3 well, the Konggu 4 well, and the Konggu 7 well in the Kongxi buried hill belt. The 3He/4He and R/Ra in the conclusions in the Ordovician oil-bearing reservoir rocks in the Konggu 7 well average 2.54×10-6(3) (sample quantity, the same below) and 1.82(3), respectively. The percent of the mantle-derived helium in the inclusions of the reservoir rocks in the Konggu 7 well reaches up to an average of 23.0%(3). The age of the contribution of the mantle-derived helium to the inclusions in the Kongxi buried hill belt is in the La  相似文献   

14.
China sedimentary basins present abundant natural gas resource thanks to its unique geological settings.Marine highly-matured hydrocarbon source rocks,widespread coal-measure strata and low temperature Quaternary saline strata,etc.,indicate the wide foreground of China natural gas resources. Up to now,most of the petroliferous basins have been discovered to have wholesale natural gas accumulation from Precambrian,Paleozoic,Mesozoic to Cenozoic in the east,the central,the west and the coast of China.These large and medium-scale gas reservoirs are mainly composed of hydrocarbon gas with big dry coefficient,tiny non-hydrocarbon,wide carbon isotope distribution and varying origin types,the hydrocarbon gas includes coal-formed gas,oil-formed gas,biogenic gas and inorganic gas, etc.Coal-formed gas is the main type of China natural gas resources,in particular several explored large-scale gas fields(>100 billion cubic meter)of Kela 2,Sulige and Daniudi,etc.,they all belong to coal-formed gas fields or the gas fields consisting mostly of coal-formed gas.Oil-formed gas is also abundant in China marine basins,for example marine natural gas of Sichuan Basin generated from crude oil cracking gas.Primary and secondary biogenic gas fields were discovered respectively in the Qaidam Basin and Western Slope of Songliao Basin.In addition,inorganic gases are mainly distributed in the eastern China,in particular the Songliao Basin with abundant carbon dioxide accumulation,indicating that the eastern China present large exploration potential of inorganic gas.  相似文献   

15.
The stable carbon isotope values of coalbed methane range widely, and also are gener- ally lighter than that of gases in normal coal-formed gas fields with similar coal rank. There exists strong carbon isotope fractionation in coalbed methane and it makes the carbon isotope value lighter. The correlation between the carbon isotope value and Ro in coalbed methane is less obvious. The coaly source rock maturity cannot be judged by coalbed methane carbon isotope value. The carbon isotopes of coalbed methane become lighter in much different degree due to the hydrodynamics. The stronger the hydrodynamics is, the lighter the CBM carbon isotopic value becomes. Many previous investigations indicated that the desorption-diffusion effects make the carbon isotope value of coalbed methane lighter. However, the explanation has encountered many problems. The authors of this arti- cle suggest that the flowing groundwater dissolution to free methane in coal seams and the free methane exchange with absorbed one is the carbon isotope fractionation mechanism in coalbed methane. The flowing groundwater in coal can easily take more 13CH4 away from free gas and com- paratively leave more 12CH4. This will make 12CH4 density in free gas comparatively higher than that in absorbed gas. The remaining 12CH4 in free gas then exchanges with the adsorbed methane in coal matrix. Some absorbed 13CH4 can be replaced and become free gas. Some free 12CH4 can be ab- sorbed again into coal matrix and become absorbed gas. Part of the newly replaced 13CH4 in free gas will also be taken away by water, leaving preferentially more 12CH4. The remaining 12CH4 in free gas will exchange again with adsorbed methane in the coal matrix. These processes occur all the time. Through accumulative effect, the 12CH4 will be greatly concentrated in coal. Thus, the stable carbon isotope of coalbed methane becomes dramatically lighter. Through simulation experiment on wa- ter-dissolved methane, it had been proved that the flowing water could fractionate the carbon isotope of methane, and easily take heavy carbon isotope away through dissolution.  相似文献   

16.
The origin and genetic types of natural gas in the Sichuan Basin are still disputed.To classify the origin and genetic types in different areas,the paper analyzes the carbon isotopic composition of gases and geologic features in the Sichuan Basin.The results showed that the gas sourced from terrestrial layers is typically characterized by terrestrial origin and was mainly accumulated nearby to form reservoir.The carbon isotopic composition of gas showed a normal combination sequence distribution,suggesting that natural gas in continental strata is not affected by secondary alteration or that this deformation is very weak.The gas source is singular,and only gas from the southern and northern Sichuan Basin shows the characteristic of mixed sources.However,marine gas presents the characteristics of an oil-formed gas.The carbon isotopic composition of natural gas in the western and central part of the basin mostly distributes in a normal combination sequence,and few of them showed an inversion,indicating that the gas perhaps had not experienced secondary alteration.The carbon isotopic composition of marine-origin gas in the southern,northern and eastern Sichuan Basin displays a completely different distribution pattern,which is probably caused by different mixing ratio of gas with multi-source and multi-period.  相似文献   

17.
The isotopic composition and abundances of He, Ne and Ar have been measured in a sequence of vertically stacked gas reservoirs at Hajduszoboszlo and Ebes, in the Pannonian Basin of Hungary. The gas reservoirs occur at depths ranging from 727 to 1331 m, are CH4 dominated and occupy a total rock volume of approximately 1.5 km3. There are systematic variations in both major species abundances and rare gas isotopic composition with depth: CO2 and N2 both increase from 0.47 and 1.76% to 14.1 and 30.5%, respectively, and 40Ar/36Ar and 21Ne/22Ne increase systematically from 340 and 0.02990 at 727 m to 1680 and 0.04290 at 1331 m. A mantle-derived He component between 2 and 5% is present in all samples, the remainder is crustal-radiogenic He. The Ar and Ne isotope variations arise from mixing between atmosphere-derived components in groundwater, and crustally produced radiogenic Ar and Ne. The atmosphere-derived 40Ar and 21Ne decreases from 85 and 97% of the total 40Ar and 21Ne at 727 m to 18 and 68% at 1331 m. The deepest samples are shown to have both atmosphere-derived and radiogenic components close to the air-saturated water and radiogenic production ratios. The shallowest samples show significant fractionation of He/Ar and Ne/Ar ratios in atmosphere-derived and radiogenic rare gas components, but little or no fractionation of He/Ne ratios. This suggests that diffusive fractionation of rare gases is relatively unimportant and that rare gas solubility partitioning between CH4 and H2O phases controls the observed rare gas elemental abundances.The total abundance of atmosphere-derived and radiogenic rare gas components in the Hajduszoboszlo gas field place limits on the minimum volume of groundwater that has interacted with the natural gas, and the amount of crust that has degassed and supplied radiogenic rare gases. The radiogenic mass balance cannot be accounted for by steady state production either within the basin sediments or the basement complex since basin formation. The results require that radiogenic rare gases are stored at their production ratios on a regional scale and transported to the near surface with minimal fractionation. The minimum volume of groundwater required to supply the atmosphere-derived rare gases would occupy a rock volume of some 1000 km3 (assuming an average basin porosity of 5%), a factor of 670 greater than the reservoir volume. Interactions between groundwater and the Hajduszoboszlo hydrocarbons has been on a greater scale than often envisaged in models of hydrocarbon formation and migration.  相似文献   

18.
Hu  AnPing  Li  Jian  Zhang  WenZheng  Li  ZhiSheng  Hou  Lu  Liu  QuanYou 《中国科学:地球科学(英文版)》2008,51(1):183-194

The Ordos Basin, the second largest sedimentary basin in China, contains the broad distribution of natural gas types. So far, several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin, each having over 1000×108m3 of proven gas reserves, and several gas pools have also been discovered in the Mesozoic. This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs, and then discussed their origin. For hydrocarbons preserved in the Upper Paleozoic, the elevated δ 13C values of methane, ethane and propane indicate that the gases would be mainly coal-formed gases; the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity. In the Lower Paleozoic, the δ 13C1 values are mostly similar with those in the Upper Paleozoic, but the δ 13C2 and δ 13C3 values are slightly lighter, suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases. There are multiple reversals in carbon isotopes for gaseous alkanes, especially abnormal reversal for methane and ethane (i.e. δ 13C1>δ 13C2), inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases. In the Mesozoic, the δ 13C values for gaseous alkanes are enriched in 12C, indicating that the gases are mainly derived from sapropelic sources; the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity. In contrast to the Upper Paleozoic gases, the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane, which may be caused by gases generated from different kerogen types. Finally, according to δ 13C1-R 0 relationship and extremely low total organic carbon contents, the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source, bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.

  相似文献   

19.
The Ordos Basin, the second largest sedimentary basin in China, contains the broad distribution of natural gas types. So far, several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin, each having over 1000×108m3 of proven gas reserves, and several gas pools have also been discovered in the Mesozoic. This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs, and then discussed their origin. For hydrocarbons preserved in the Upper Paleozoic, the elevated δ 13C values of methane, ethane and propane indicate that the gases would be mainly coal-formed gases; the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity. In the Lower Paleozoic, the δ 13C1 values are mostly similar with those in the Upper Paleozoic, but the δ 13C2 and δ 13C3 values are slightly lighter, suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases. There are multiple reversals in carbon isotopes for gaseous alkanes, especially abnormal reversal for methane and ethane (i.e. δ 13C1>δ 13C2), inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases. In the Mesozoic, the δ 13C values for gaseous alkanes are enriched in 12C, indicating that the gases are mainly derived from sapropelic sources; the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity. In contrast to the Upper Paleozoic gases, the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane, which may be caused by gases generated from different kerogen types. Finally, according to δ 13C1-R 0 relationship and extremely low total organic carbon contents, the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source, bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.  相似文献   

20.
The northeastern area of Sichuan Basin, southwestern China, is the area with the maximal reserve of natural gas containing higher hydrogen sulphide (H2S) that has been found among the petroliferous basins of China, with the proven and controlled gas reserve of more than 200 billion cubic meters. These gas pools, with higher H2S contents averaging 9%, some 17%, are mainly distributed on structural belts of Dukouhe, Tieshanpo, Luojiazhai, Puguang, etc., while the oolitic-shoal dolomite of the Triassic Feixianguan Fm. (T1f) is the reservoir. Although many scholars regard the plentiful accumulation of H2S within the deep carbonate reservoir as the result of Thermochemical Sulfate Reduction (TSR), however, the process of TSR as well as its residual geological and geochemical evidence is still not quite clear. Based on the carbon isotopic analysis of carbonate strata and secondary calcite, etc., together with the analysis of sulfur isotopes within H2S, sulphur, gypsum, iron pyrites, etc., as well as other aspects including the natural gas composition, carbon isotopes of hydrocarbons reservoir petrology, etc., it has been proved that the above natural gas is a product of TSR. The H2S, sulphur and calcite result from the participation of TSR reactions by hydrocarbon gas. During the process for hydrocarbons being consumed due to TSR, the carbons within the hydrocarbon gas participate in the reactions and finally are transferred into the secondary calcite, and become the carbon source of secondary calcite, consequently causing the carbon isotopes of the secondary calcite to be lower (−18.2‰). As for both the intermediate product of TSR, i.e. sulfur, and its final products, i.e. H2S and iron pyrites, their sulfur elements are all sourced from the sulfate within the Feixianguan Fm. During the fractional processes of sulfur isotopes, the bond energy leads to the 32S being released firstly, and the earlier it is released, the lower δ 34S values for the generated sulphide (H2S) or sulfur will be. However, for the anhydrite that participates in reactions, the higher the reaction degree, the more 32S is released, while the less 32S remains and the more δ 34S is increased. The testing results have proved the process of the dynamic fractionation of sulfur isotopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号